Антикоррозийная защита: Антикоррозийная защита — Морозовский Химический Завод

Содержание

Антикоррозийная защита — Морозовский Химический Завод

Антикоррозийная защита металла.

В современном строительстве металлоконструкции играют значимую роль. У них выделено огромное количество преимуществ, и сейчас их используют в любом строительстве, даже незначительном. У металлоконструкций очень большой срок эксплуатации, но, как и у любого материала, у них также есть недостатки, и самый главный и ощутимый минус – это сильная подверженность коррозиям. Поэтому при строительстве главным аспектом выступает антикоррозийная защита или обработка металла. Способов обработки большое количество, и зависят они напрямую от факторов, которые обязательно учитываются в момент выбора материала:

1. Условия применения, здесь следует участь прямое влияние погодных условий и сейсмических факторов;

2. Сам тип конструкций и ее назначение при эксплуатации;

3. Размер области применения;

4. Воздействие внешних факторов.

Чтобы способ защиты был правильно подобран, нужно обязательно определить тип самого воздействия. В данном случае такая подборка позволит произвести качественную обработку и сможет гарантировать:

• Большой срок службы – более 50 лет;

• Эстетический вид металла, будет выглядеть гораздо лучше;

• Высокую безопасность.

Если антикоррозийная обработка была подобрана правильно, то после нее существенно улучшится внешний вид материала.

Способы защиты металлоконструкций от коррозии.

СеверСталь Эстакада газопровод

Защита металла от коррозии является неотъемлемой частью как в гражданском, так и в оборонном строительстве. Но, к сожалению, не все организации подрядчиков уделяют этому необходимое внимание, поэтому не обеспечивают необходимый уровень защиты изделиям из металла, в результате подвергая конструкции воздействиям окружающей среды. Металл постоянно подвергается коррозии, начиная с самого производства, и заканчивая перевозкой и хранением, а также при эксплуатации. Во время коррозии металл начинает терять свою массу, структура начинает разрушаться, все это приводит к ухудшению конструкций и сильной потере прочности и долговечности конструкции.

На сегодняшний день строительство применяет несколько способов защиты металла от коррозии;

1. Улучшается сам химический состав металла, что предотвращает коррозию;

2. Поверхность стали изолируется специальными материалами;

3. В месте осуществления строительства уменьшается агрессивность среды;

4. Накладывается внешний ток, это способствует образованию высоких показателей, электрозащиты метала.

Все это защищает металл от коррозии, как перед началом строительства, так и в последующей эксплуатации зданий.

Покраска металлических конструкций.

Самым распространенным способом защиты метала, является обработка специальными покрытиями. Такой метод быстро увеличивает максимальные показатели защиты, и сводят к минимуму риск образования коррозии. Катодная защита требует нанесения более толстых слоев материала, но в тоже время она увеличивает показатели твердости, и, конечно же, защищает металл. Все антикоррозийные покрытия можно разделить на несколько видов:

1. Термостойкие. Такое покрытие применяется для защиты трубопроводов, которые подвергаются нагреванию под воздействием высоких температур;

Например такие как:

  • АРМОКОТ Т700 — Термо- и химически стойкий материал для защиты от сернокислой коррозии дымовых труб, газоходов и других металлических, бетонных и железобетонных конструкций.
  • АРМОКОТ ТЕРМО — Термостойкое электроизоляционное покрытие для защиты металла от атмосферных воздействий, агрессивных воздушных сред. Используется при температуре до +700°С.

2. Цинконаполенные. Такие покрытия создают цинковую пленку, которая предотвращает развитие подпленочной коррозии;

Такие как :

  • Армотанк® Цинк
    Двухкомпонентный эпоксидный грунт протекторного типа с высоким содержанием цинка

3. Атмосфероустойчивые. Этим покрытием обрабатывается металл, который располагается под землей;

Такие как:

  • Армотанк® N700
    Двухкомпонентная полиуретановая атмосферостойкая эмаль, химстойкая
  • Армокот® Z650     Предназначен для промышленного применения с целью создания защитно-декоративного          покрытия для наружной поверхности металлоконструкций: резервуаров, технологического       оборудования, трубопроводов, конструкций и сооружений, эксплуатирующихся в условиях         промышленной атмосферы.

4. Кузнечные. Для обработки цветного металла;

Такие как:

  • Кремнийорганическая эмаль КО-88, Термо-, атмосферо-, влаго-, бензостойкая эмаль

5. Специальные. Обрабатываются конструкции, которые предназначены для перевозки агрессивных веществ.

Такие как:

  • АРМОТАНК® ОЙЛ — двухкомпонентная эпоксидная толстослойная грунт-эмаль, с высоким сухим остатком. Предназначена для защиты внутренней поверхности резервуаров для хранения сырой нефти, темных и светлых нефтепродуктов, загрязненной и подтоварной воды, с температурой эксплуатации до 60°С

Антикоррозийная защита металлоконструкций. Покрытие и обработка конструкций из металла против ржавчины


Коррозия – это процесс разъедания (химического разрушения) различных металлов и сплавов при взаимодействии с окружающей средой. Разрушение материала имеет электрохимическую или химическую природу, и одинаково серьезно влияют на работу конструкции и срок ее эксплуатации.


В современном мире представлены всевозможные покрытия и методы защиты стальных конструкций. Шестьдесят лет назад антикоррозийная обработка металла не была так эффективна как сегодня, однако, современные методы защиты дают возможность конструкции эксплуатироваться без значительного коррозионного износа более 30 лет. Это стало возможно после изучения и создания новых связующих веществ и наполнителей.


Мы имеем возможность обработки от коррозии металлических объектов, различного назначения: резервуары для хранения нефти и нефтепродуктов или веществ с повышенной температурой, силосов, трубопроводных магистралей, металлических изделий со сложной геометрической формой и др.

К основным достоинствам антикоррозийной обработки металлоконструкций можно отнести:

  • Значительное увеличение срока службы изделия;
  • Работа по антикор обработке для металлоконструкций не занимает много времени;
  • Доступность специальных вяжущих веществ;
  • Уменьшение риска аварийных ситуаций в период эксплуатации изделия.

Виды коррозии


Коррозию выделяют двух видов: химическую и электрохимическую.


Химическая коррозия может быть в среде жидкостей и в среде газов (пар). Такой процесс протекает в среде, где не имеется возможности передавать электрический ток.


Газовая коррозия возникает из-за действия газа (пара) на поверхность металла, что вызывает повышение температуры.


Жидкостная, в свою очередь, возникает вследствие действия жидкости на поверхность металла, но не передает электрический ток. Именно такой вид коррозии чаще всего встречается в емкостях для хранения и транспортирования нефтепродуктов и нефти.


В двух вариантах процесс разъедания материала будет протекать со скоростью пропорциональной скорости химической реакции.

Как победить ржавчину: основные способы антикоррозийной защиты металла


К каждому изделия необходим индивидуальный подход, так как причина развития коррозии у каждого своя: обусловлена конкретными атмосферными и эксплуатационными факторами.


Специалисты нашего предприятия имеют обширный опыт с антикоррозийной обработкой металлоконструкций и помогают заказчикам в выборе необходимого вида и способа защиты.


Можно выделить основные способы антикоррозийной защиты металлический коснтрукций:

  • Электрохимический;
  • Химический;
  • Снижение агрессивности среды;
  • Нанесений покрытий (металлических и неметаллических).

Электрохимические способы защиты металлоконструкций от коррозии


Электрохимический способ защиты является наиболее распространенным, так как протекает в естественной среде и основным условием протекания является постоянный электрический ток.


Чтобы понимать суть, происходящих реакций, важно знать, что электрод – проводник электрического тока, имеющий положительный или отрицательный заряд.


Суть метода в том, что защищаемый материал соединяется с катодом (отрицательный электрод) внешнего источника тока и все изделие становится катодом. Анодом (положительный электрод), который вследствие реакции разрушается, может стать стальной электрод (любой стальной элемент).

Протекторная защита от коррозии


Одним из видов электрохимической защиты является защита с помощью протекторов. В качестве протекторов выступают более активные материалы, чем те, из которых состоит защищаемая металлическая конструкция. Суть метода, такая как при обычной электрохимической защите, отличие заключается только в том, что протектор служит анодом и в процессе реакции разрушается, предохраняя изделие от коррозии.

Защита от коррозии снижением агрессивности воздействия среды


Снижение агрессивности воздействия среды применяется при условии, что среда изолирована и замкнута. Суть заключается в удалении агрессивных компонентов из воздух помещений путем вентиляции или удаления агрессивного фактора из жидкой среды.

Защита от коррозии посредством специальных антикоррозийных составов для металла


Специальные антикоррозийные покрытия металлов имеют металлическую и неметаллическую природу.

Металлические антикоррозийные покрытия металлоконструкций


Металлические покрытия хорошо повышают износостойкость изделия, однако большинство методов их нанесения затруднительно для крупногабаритных конструкций (погружение в расплавленный металл, получения покрытия с помощью гидразина, нанесение расплавленного металла струей сжатого воздуха и др.) и конструкций, находящихся в особых условиях (в почве, под водой и пр.).


К металлическим покрытиям относят серебро, хром, алюминий, никель и др.)


Принцип защитного действия таких покрытий сводится к изоляции защищаемой поверхности от внешней среды. Такого рода покрытия хорошо защищают поверхность, пока целостность защитного покрытия не нарушена. Если целостность нарушается, то образуется гальванический элемент и начинается электрохимическая реакция, зависящая от характеристик защитного и защищаемого металла.

Неметаллическая антикоррозийная защита металлических конструкций


Неметаллические покрытия наиболее распространены в силу своей доступности и простоты нанесения. Их можно разделить на органические и неорганические .


К специальным антикоррозийным составам для металла относят:

  • Неорганические эмали;
  • Лакокрасочные покрытия.


Достоинства неметаллических покрытий в борьбы с коррозией:

  • демократичность цен;
  • не большое время высыхания;
  • длительная защита строительных металлоконструкций после обработки;
  • широкий ассортимент пигментов;
  • огнеупорные свойства;
  • простота и большой выбор способов нанесения состава;
  • устойчивы к перепадам температуры и другим атмосферным явлениям.

Пленочная антикоррозионная защита металлоконструкций


К пленочной защиты относятся покрытия, при обработке которыми, на поверхности защищаемого изделия образуется устойчивая химическое соединение — пленка.


Основные способы образования пленочной защиты:

  • Фосфатирование — образование фосфатных пленок, такая пленка оказывается химически связанной с металлом изделия;
  • Оксидирование — образование оксидных пленок;
  • Сульфидирование.

Подготовка поверхности к действию антикоррозийных составов


Перед нанесением защитного состава в обязательном порядке выполняется подготовка защищаемой поверхности для лучшей адгезии покрытия и металла. Чем тщательнее работники подойдут к подготовке поверхности изделия, тем дольше окажется будущий срок эксплуатации конструкции.


Подготовка поверхности заключается в очистке от накопившейся грязи, пыли и продуктах образования ржавчины. Поверхность зачищают, чтобы избежать образования окалин, бугров и других неровностей. Металл тщательно обезжиривают специальными растворами, вымывают мыльными составами, обрабатывают песком посредством специальных пескоструйных и гидроструйных установок. Подготовленной поверхности дается время на высушивание, этот процесс ускоряется с помощью применения промышленных пылесосов, калориферных или вентиляционных установок. После этого наносятся свои защитного покрытия.


Каждому нанесенному защитному слою дается время до полного высыхания, только после высушивания одного слоя, можно приступать к нанесению другого. Это делается для улучшения адгезии металла и защитного состава.

Цены ПО “ВЗРК” на услугу по защите металлоконструкций от коррозии


Цена для каждого объекта рассчитывается индивидуально для каждого заказчика.


Цена складывается в зависимости от начальных условий: размеров конструкции, выбранного защитного покрытия, состояния старого защитного покрытия и количества образовавшейся ржавчины, необходимого оборудования для выполнения работ и пр.

Преимущества заказа услуги по антикоррозийной обработке металлоконструкций у ВЗРК


Волгоградский завод резервуарных конструкций предоставляет свои услуги по антикоррозийной защите 10 лет. Мы предлагаем своим клиентам:

  • гарантию на работы;
  • достойное качество;
  • опытных специалистов;
  • качественные материалы для обработки;
  • современное оборудование;
  • короткие сроки исполнения.

Как заказать услугу


Для связи с нашими специалистами Вы можете заполнить онлайн-форму на сайте и мы сами свяжемся с Вами. Также Вы можете позвонить по указанным в верхушке сайта телефонам. Наши сотрудники ответят на все интересующие Вас вопросы, сориентируют по ценам и Вы сможете заказать у нас услугу по антикоррозийной защите металлоконструкций.

Антикоррозийная защита металлоконструкций: технология, требования СНИП

Процесс самопроизвольного разрушения металла под воздействием агрессивной внешней среды (коррозия) приводит кардинальному изменению прочностных и физико-химических свойств изделий из стали и ее сплавов,  значительному снижению их функциональности и сроков годности. По данным беспощадной статистики постоянные потери от этого физико-химического процесса составляют 4-5% общего национального дохода страны, при этом безвозвратно гибнет 10-15% от объема ежегодно производимых ферросплавов.

Помимо материального ущерба коррозия металлов может привести  (и зачастую приводит) к различным  катастрофическим последствиям из-за выхода из строя сосудов высокого давления, оборудования энергетических объектов, деталей самолетов и паровых турбин, участков газонефтепроводов и т. д. Существуют различные виды борьбы с процессом окисления металла, при этом технология антикоррозийной  обработки металлоконструкций постоянно совершенствуется.

Конструктивные методы защиты

Конструктивные методы защиты используются еще на стадии проектирования и изготовления изделия, до начала его активной эксплуатации. Они заключаются в выборе материала, способного противостоять пагубному воздействию среды (нержавеющие стали, кортеновские стали с прочной, неразрушаемой окисной пленкой, применение в ряде случаев высокополимерных материалов, стекла или керамики).

Помимо этого конструктивная антикоррозийная защита металлоконструкций СНИП подразумевает и методы рациональной эксплуатации металлических изделий:

  • устранение щелей, трещин и зазоров в конструкции, в которые может попадать влага;
  • ликвидация зон застоя влаги и защита от брызг и водяных капель;
  • введение ингибиторов в агрессивную среду.

Пассивная защита от коррозии

К пассивным методам защиты относится нанесение на металлическую поверхность какого-либо покрытия, которое будет препятствовать контакту металла с кислородом и влагой. Современные лакокрасочные материалы обладают улучшенными эксплуатационными свойствами. В зависимости от состава, ЛКМ могут выполнять барьерные, протекторные, преобразующие или пассиваторные функции.

Барьерная защита — механически изолирует поверхность металла. Чаще всего барьерные ЛКМ наносят на черные металлы.  При этом любое нарушение целостности защитной пленки (даже в виде микротрещин) ведет к проникновению агрессивной среды и возникновению подпленочной коррозии.

Пассивирование поверхности металла производится лакокрасочными материалами, в составе которых содержится фосфорная кислота или хроматные пигменты (соли хромовой кислоты), замедляющие коррозионные процессы. Антикоррозийное покрытие металлоконструкцийпассивирующими грунтовками выполняется при помощи распылителя. Пассивирующие грунтовки могут быть как одно, так и двухкомпонентными, в последнем случае составляющие части смешивают непосредственно перед употреблением. Таким образом можно защищать как черные, так и цветные металлы.

Следует отметить, что антикоррозийная защита металлоконструкций при помощи ЛКМ эффективна лишь в случае скрупулезно проведенных подготовительных мероприятий, особенно важно тщательное удаление продуктов коррозии, уже образовавшихся на поверхности металла.

При этом наносятся специальные составы, разрушающие ржавчину, а затем поверхность зачищается. Если же механическая обработка перед окрашиванием по тем или иным причинам производится не может или экономически нецелесообразна, используются так называемые преобразователи ржавчины. Преобразующие грунтовки содержат специальные добавки, которые превращают продукты ржавчины в нерастворимые соединения. Эти составы могут наноситься как при помощи кисти, так и распылением.  В некоторых случаях преобразователи ржавчины уже входят в состав защитной композиции и тогда ЛКМ может наносится сразу на металл, без предварительной его обработки.

Пассивная антикоррозийная обработка металлоконструкций СНИП может выполнять и роль протектора, в этом случае в состав ЛКМ включают  достаточно большое количество (>86%) металлической пыли из элемента, который обладает более высокой восстановительной способностью, чем обрабатываемая поверхность. Так как чаще всего в качестве наполнителя используют высокодисперсный порошок цинка, данный метод получил название «холодного цинкования». Цинконаполненные лакокрасочные материалы выгодно отличаются от традиционных увеличенными сроками службы и устойчивостью к абразивному износу.

Термопластичные полимеры и эпоксидные смолы, на основе которых выпускаются цинкосодержащие композиции, позволяют наносить эти грунтовки даже при сложных погодных условиях (повышенная влажность, отрицательные температуры). Кроме этого, цинковые протекторные ЛКМ не требуют смешивания компонентов, а по своим прочностным и защитным свойствам сопоставимы с такими гораздо более трудоемкими операциями, как горячее цинкование.

Активные методы защиты

К активным методам защиты можно отнести  методы специальной обработки металла. Для повышения стойкости ферросплавов и изделий из них применяют:

  • горячее цинкование деталей. Деталь или конструкция обезжиривается, подвергается пескоструйной обработке или травлению кислотой и покрывается тонким слоем расплава цинка в специальной вращающейся ванне. В результате химической реакции на поверхности образуется защитная пленка, экранирующая металл от доступа влаги, образующая гальвано пару со сталью и способная самовосстанавливаться после небольших повреждений. В качестве сырья для горячей металлизации могут применяться и другие металлы. Этот метод особенно хорош для крупных объектов (судов, баков, цистерн) ;
  • электрохимическое (гальваническое) цинкование, которое основано на принципе диффузионного  извлечения ионов цинка из слабокислого раствора при электролизе.  Обрабатываемые детали и источник цинка (пластины, шары, болванки) помещаются в ванну с электролитом, через которую в дальнейшем пропускается электрический ток. В процессе электролиза цинк, являясь анодом, растворяется и оседает на стальной поверхности, придавая ей высокодекоративный блестящий вид. Однако адгезионные свойства полученного покрытия невелики, а сам процесс производства экологически вреден и трудоемок. Гальваническая обработка металлов применяется для обработки метизов и деталей средних размеров;
  • термодиффузионное нанесение цинкового покрытия. Суть метода состоит в проникновении атомов цинка из цинкосодержащего порошка в поверхность железа при очень высокой температуре (в диапазоне 290-450˚С). При этом покрытие получается очень твердым и износостойким, в точности повторяя исходную деталь, включая резьбы или тонкий рельеф. Не требует сложного подготовительного этапа (очистки от пятен ржавчины, обезжиривания и т.п.). Подобная антикоррозийная обработка металлоконструкций и трубопроводов  в 2-3 раза долговечнее, чем гальваническая и может длительно оберегать  сталь даже при эксплуатации ее в условиях воздействия морской воды.   Из недостатков метода можно отметить его небольшую производительность и необходимость наличия специального оборудования (роторных печей).

Электрохимическая защита металла от коррозии

Антикоррозийная обработка металлоконструкций может быть дополнена электрохимической защитой, при которой на ограждаемую деталь устанавливается специальный протекторный анод из металла с более электроотрицательными свойствами. При этом скорость окислительного процесса в защищаемом партнере падает практически до нуля вплоть до полного разрушения анода, который в данном дуэте называют «жертвенным». Подобным образом экранируют свайные фундаменты, металл которых находится в грунте (особенно засоленном), нефтегазопромысловые сооружения и хранилища, а также днища судов, на которые постоянно воздействует морская вода.

Аноды могут быть изготовлены из платинированного титана, железнокремниевых сплавов, графитопластов. В настоящее время разрабатываются методы электрохимической защиты кузовов автомобилей, при этом токопроводящие аноды выполняются из электропроводящих полимеров в декоративном исполнении и наклеиваются на кузов в потенциальных коррозионноопасных точках.

Новые методы защиты

Несомненно, нанесение лакокрасочных материалов наиболее доступный метод сбережения ферросодержащих конструктивных элементов и деталей. Однако этот защитный слой требует обновления каждые 5-7 лет, что довольно трудоемко. Гальваническая и электрохимическая  подготовка металла, позволяющая забыть о ржавчине лет на 50, — дело достаточно затратное. Однако в настоящее время уже существует недорогой инновационный метод защиты металлов от окисления и ржавления.

«Жидкая резина» — двухкомпонентный эластомер, при помощи которого выполняется надежная и долговечная антикоррозийная защита металлоконструкций. Эта сплошная, бесшовная мембранная прослойка наносится на металл при помощи распылительного пистолета, без всякой предварительной подготовки поверхности. После нанесения битумная эмульсия застывает мгновенно, не образуя потеков и неровностей, даже если основа была гладкой, скользкой и влажной. Производитель гарантирует, что данное покрытие в течение первых 20 лет не только не теряет своих свойств, но даже становится со временем прочнее. Таким образом могут быть обработаны металлические трубы, строительные конструкции любой конфигурации, поверхность цистерн и даже кровля. Металлы экранируемые при помощи такого резинового слоя абсолютно индифферентны к воздействию повышенной влажности и критическим температурам.

Антикоррозийная защита и обработка металлоконструкций: как выбрать покрытие?

6

Мар 2015

Антикоррозийная защита металлоконструкций: как выбрать покрытие?

 


Схема нанесения лакокрасочных материалов на металл.


Антикоррозийна защита по типовой схеме представляет собой сочетание антикоррозийного грунта, огнезащитной краски и финишного покрытия.


О том как выбрать огнезащитную краску мы писали ранее. В этой статье мы хотели бы рассмотреть основные параметры выбора антикоррозийного грунта.


Все стальные конструкции, находящиеся на воздухе в воде или в грунте, требуют постоянной защиты. Степень защиты и выбор краски зависит от многих факторов:


Условия эксплуатации металлоконструкций

  • Температура и влажность воздуха
  • Наличие ультрафиолетового излучения.
  • Химическое воздействие
  • Механическое воздействие


Тип металла


Антикоррозийная защита требуется для таких материалов, как углеродистая, оцинкованная горячим способом или металлонапыленная сталь, алюминий или нержавеющая сталь.


Сроки службы покрытия


Имеется в виду предполагаемый промежуток времени до первого ремонта.


Определив параметры можно приступать к выбору грунта. На рынке представлены десятки импортных и отечественных материалов на любой бюджет.


Как выбрать качественное покрытие?


Стоит разобраться какие характеристики материала важны для конкретно объекта. Мы рекомендуем учитывать при выборе 9 показателей материала:


  1. Скорость сушки


От скорости сушки зависит скорость выполнения работ, а следовательно, и стоимость антикоррозийных работ.


  1. Адгезия


Низкая агдезия влияет на недолговечность покрытия и уязвимость к механическому воздействию. Антикоррозийный материал должен обеспечить прочное сцепление с окрашиваемой поверхностью. Это очень важно и для огнезащиты металлоконструкции.


  1. Укрывистость


Экономически важный показатель. От класса укрывистости зависит расход материала до полного закрашивания поверхности.


  1. Возможность нанесения при низких температурах


Для некоторых регионов нашей страны это один из решающих показателей.


  1. Антикоррозионные свойства


Свойства материала, позволяющие препятствовать проникновению ржавчины в глубокие слои металла, и его разрушению в течение долгого времени.


  1. Безопасность для здоровья


Обратите внимание на этот показатель, если ищете покрытие для жилых или административных зданий или помещений.


    1. Лёгкость нанесения, растекаемость


К сожалению, об этом не прочитать на упаковке, но многие производители предлагают образцы покрытия.


  1. Возможность нанесения на неподготовленную поверхность


Такая возможность позволяет значительно экономить на подготовке металлоконструкций к окраске, но и сильно влияет на стоимость продукта.


  1. Совместимость с другими покрытиями


Совместимость с выбранным вами огнезащитным материалом. Обязательное условие для дальнейшей огнезащиты металлокнструкций.


Подходите с умом к выбору антикоррозийного покрытия и вы сможете сократить расходы на антикоррозийную защиту и найти идеальное решение для вашего объекта строительства.


© «KRON construction», при полном или частичном копировании материала ссылка на первоисточник обязательна.

 

 










Грунт-эмаль по ржавчине 3 в 1 — особенности и применение
   

Технология нанесения огнезащиты на металлоконструкции — инструкция по обработке огнезащитной краской на водной основе
   

Инструкция по нанесению морозостойкой огнезащитной краски KRON SW – огнезащита металла при отрицательных температурах
   

Системы огнезащиты воздуховодов, виды огнезащитных покрытий и составов
   

Конструктивная огнезащита металлоконструкций зданий

Антикоррозийная защита

Антикоррозийная защита в Екатеринбурге


Применение металла при строительстве зданий и сооружений в буквальном смысле перевернуло всю хозяйственную деятельность человека, дало мощнейший толчок к развитию промышленности, строительной сферы, автомобилестроения. Однако, при всех плюсах металла как конструкционного материала, – прочность, гибкость, возможность соединения деталей, относительная лёгкость, есть и один значительный недостаток. И это коррозия! Под воздействием воды, кислот, солей, поверхность металла постепенно окисляется, что со временем приводит к истончению стенок, разрушению или утрате изначальной прочности металлоконструкций.


Для предотвращения этих процессов разработан целый ряд мер, объединённых общим названием антикоррозийная защита. Существует много способов уберечь металл от разрушения под воздействием коррозии. Однако, в промышленности и строительстве чаще всего применяется т.н. барьерная защита, то есть создание на поверхности металла специальной плёнки выступающей в качестве барьера между агрессивной внешней средой и металлом. Наиболее часто в качестве такой плёнки применяются всевозможные лакокрасочные покрытия. Именно такой способ защиты металла используем в своей работе и мы.










Цена на антикоррозийную защиту металлоконструкций


 ед.

изм. 


 цена  


Очистка от ржавчины металлическими кордщётками с применением электроинструмента (степень очистки ISO-St)


м2


180


Пескоструйная очистка до степени ISO-Sa 2,5


м2


300


Обработка поверхности преобразователем ржавчины


м2


140


Обеспыливание поверхности


м2


50


Обезжиривание поверхности уайт-спиритом


м2


50


Огрунтовка поверхности


м2


100


Окраска поверхности на 2 слоя


м2


230


Антикоррозийная защита м/к полный комплекс (очистка щётками, обезжиривание, обеспыливание, огрунтовка, окраска на два раза)


м2


530


Специалисты компании «Штурм» выполняют работы по антикоррозийной защите металлоконструкций различного назначения:

  • мосты и эстакады
  • опоры ЛЭП, вышки, мачты
  • резервуары, цистерны
  • железнодорожный транспорт, вагоны
  • краны любых моделей и предназначения
  • строительные конструкции
  • электрические подстанции
  • трубопроводы
  • резервуары
  • металлические конструкции
  • объектов транспортной инфраструктуры
  • дымовые трубы
  • любые другие изделия из металла, требующие защиты от воздействия внешней среды


Весь персонал компании, задействованный в работах по антикоррозийной защите конструкций обладает необходимым уровнем знаний и практической подготовки, имеет весь набор требуемых аттестаций и разрешений, в том числе для выполнения высотных работ. Опыт большинства наших сотрудников в сфере защиты металла составляет срок более пяти лет.


Этапы выполнения работ по антикоррозийной защите металлоконструкций


Стандартная схема, применяемая на нашем предприятии, состоит из следующих этапов:

  • очистка поверхности металла от ржавчины. В зависимости от поставленной задачи это может быть пескоструйная, дробеструйная, гидродинамическая или механическая очистка. Все они, в конечном итоге, отличаются друг от друга тщательностью удаляемой ржавчины, а также созданием на металле так называемого «профиля поверхности» — шероховатости для обеспечения лучшей адгезии лакокрасочного покрытия.
  • обеспыливание и обезжиривание для обеспечения хорошей адгезии лакокрасочного покрытия к поверхности металла.
  • нанесение лакокрасочного покрытия в соответствии с технологической схемой производителя конкретного материала. Как правило включает в себя огрунтовку и окраску на два слоя. Метод нанесения тоже может быть различным: ручное нанесение кистями или валиками, безвоздушное напыление, пневматическое напыление, электростатическое напыление


Компания «Штурм» готова предложить весь свой практический опыт, знания и наработки для решения Ваших задач по обеспечению надёжной защиты металлических конструкций от коррозии!


Выполняем работы как в Екатеринбурге, так и в других крупных городах региона: Челябинск, Пермь, Тюмень, Нижний Тагил и др.


Если вас интересуют другие виды работ, выполняемые специалистами нашей компании, переходите в раздел Услуги, там много всего полезного!

Антикоррозийная защита строительных, металлических конструкций ингибитором КФ-80

Антикоррозийная защита металла в земле, грунте, воде

Универсальный замедлитель коррозии КФ-80 — это надежная, долговечная антикоррозийная защита строительных железобетонных и металлических конструкций от ржавчины. Он обеспечивает защиту объектов и сооружений при их ремонте и/или техническом обслуживании. КФ-80 показал свою высокую эффективность при профилактике коррозионного разрушения железобетонных и металлических конструкций, эксплуатируемых в жестких условиях. Широко применяется при проведении ремонтно-восстановительных работ для «остановки» уже текущих коррозионных процессов. Антикоррозийная защита металла может использоваться для обработки поврежденных железобетонных поверхностей, в которых арматура подвержена коррозии, а так же в случае угрозы развития коррозии в результате карбонизации, воздействия хлоридов и агрессивных атмосферных явлений. Область применения средства антикоррозийной защиты поверхностей металла — железобетонные мосты, шоссейные дороги, путепроводы другие строительные конструкции.

Антикоррозийная защита стальных, железобетонных конструкций

Антикоррозийная защита стальных, железобетонных и металлических строительных конструкций КФ-80 при добавлении в бетон адсорбируется на поверхности арматурной стали, образуя защитные слои и значительно повышая ее коррозионную стойкость. При нанесении антикоррозийной защиты металла КФ-80 на поверхность железобетонного изделия либо добавлении его в используемый при ремонтных работах бетон, препарат впитывается в бетонный камень и, достигая арматуры, останавливает ее разрушение. При нанесении средства защиты арматуры в бетоне КФ-80 на поверхность железобетонного изделия, либо добавлении его в используемые при ремонтных работах смеси, препарат также впитывается в бетонный камень, достигает арматуры, адсорбируется на ней и образует наноразмерный защитный слой. Таким образом, мигрирующий ингибитор останавливает коррозионное разрушение металла.

Купить средство защиты арматуры в бетоне КФ-80

Купить оптом или в розницу средство антикоррозийной защиты поверхности металла, стали КФ-80 по цене производителя вы можете в Москве, Санкт-Петербурге, Красноярске, Екатеринбурге, Ростове-на-Дону, Нижнем Новгороде, Иркутске, Кемерово, Казани, Барнауле, Кургане, Калуге, Челябинске, Уфе, Тюмени, Йошкар-Оле, Абакане, Саяногорске, Чебоксарах, Новочебоксарске, в Алматы, Минске, Кишиневе, в которых Конферум открыл свои представительства. Можно это сделать на сайте, выйдя с нами на связь удобным вам способом.

  • прост в применении;
  • экономичен;
  • не требует разбавления;
  • предотвращают развитие имеющихся на металле очагов коррозии и появление новых;
  • не меняет внешнего вида бетона;
  • продлевает долговечность железобетонных конструкций в 10 и более раз;
  • защищает металл в бетонах с высоким содержанием хлоридов;
  • по заключению экспертов, КФ-80 по защитным и технологическим свойствам превосходит мировые аналоги;
  • препарат прост в применении, экономичен, предотвращают развитие имеющихся на металле очагов коррозии и появление новых. Он не меняет внешнего вида бетона, защищает металл в бетонах с высоким содержанием хлоридов и продлевает долговечность железобетонных конструкций в 10 и более раз;
  • не уступает по своим свойствам средству ИФХАН-80 и дешевле его.

Для пропитки готовых железобетонных изделий
Перед применением ингибитора поверхность бетона должна быть промыта водой под напором или очищена другим способом от загрязнений, пыли и каких-либо покрытий и высушена. КФ-80 следует наносить с помощью распыления, валиком или кистью. Количество слоев зависит от пористости и содержания влаги в бетоне, а также от погодных условий. Обычно для достижения требуемого расхода необходимо нанести от 3 до 5 слоев. Время промежуточной сушки поверхности между нанесением слоев от 30 минут до нескольких часов. Для увеличения скорости проникновения материала обработанный КФ-80 бетон рекомендуется увлажнить один или два раза в первые 1–3 дня после нанесения.

При замешивании в бетон для ремонтно-восстановительных работ
Удалите отслаивающиеся части бетона от арматуры. Очистите пескоструйным способом или щетками ржавчину и другие загрязнения с поверхности арматурных стержней. Нанесите ремонтную бетонную смесь, содержащую ингибитор КФ-80. Дайте участкам, обработанным КФ-80, как следует просохнуть в течение двух дней и промойте обработанную поверхность водой.

Оформить заказ на товар, который заинтересовал вас, вы можете несколькими
способами:

  1. Нажмите на кнопку «Заказать» и далее выберите необходимый вам объем тары,
    как в обычном Интернет-магазине.
  2. Напишите нам по email: [email protected] или
    позвоните по телефонам
    +7 (495) 1234-765
    .

Мы можем доставить купленный у нас товар по Москве или Московской области
собственным
транспортом. Доставка по России осуществляется транспортными компаниями.
Возможна безналичная форма оплаты.

Компания ООО «Конферум» имеет представительства в следующих
городах:

МоскваАлматы, КазахстанЕкатеринбург
КазаньКемеровоКострома
КрасноярскКурганМинск, Беларусь
Ростов-на-ДонуСамараСанкт-Петербург
СаратовТверьТольятти
ТюменьУфаЧелябинск
Ярославль  

Мы отправляем заказы в указанные ниже города. Если вы не нашли свой населенный
пункт
в этом списке, напишите нам и мы обязательно постараемся вам помочь.

НовосибирскНижний НовгородОмск
ВолгоградПермьВоронеж
СаратовКраснодарБарнаул
УльяновскИжевскИркутск
ВладивостокХабаровскМахачкала
ОренбургНовокузнецкТомск
Отказ от ответственности

Выше приведенные данные являются средними значениями к моменту публикации
настоящей технической информации. Их нельзя рассматривать как основные данные.
Данные продукта приводятся в уточнённой технической информации.

При использовании продукта необходимо руководствоваться рекомендациями и
информацией, приведенными описании на продукт, в паспорте безопасности, а также
правилами техники безопасности при работе с химикатами.

Приведенная в настоящей публикации информация основывается на имеющихся у нас в
настоящее время опыте и знаниях.

Поскольку множество факторов может влиять на процессы обработки и применения
продукта, приведенные данные не освобождают наших потребителей от необходимости
проведения собственных испытаний.

Эти данные не являются юридически обязывающей гарантией определенных свойств
продукта, а также гарантией пригодности его для конкретной цели. Получатель
наших продуктов обязан под собственную ответственность соблюдать действующие
законы и постановления РФ.

Защита от коррозии — SteelConstruction.info

Экономичная защита стальных конструкций от коррозии не вызовет затруднений при обычном применении и окружающей среде, если с самого начала будут определены факторы, влияющие на долговечность.

Многие стальные конструкции успешно эксплуатируются в течение многих лет даже в неблагоприятных условиях. Первое крупное железное сооружение, мост в Коулбрукдейле, Великобритания, просуществовало более 200 лет, в то время как о железнодорожном мосту Форт, которому более 100 лет, ходят легенды.
Сегодня доступны современные прочные защитные покрытия, которые при правильном использовании позволяют увеличить интервалы обслуживания и повысить производительность.

Ключ к успеху заключается в распознавании коррозионной активности окружающей среды, воздействию которой будет подвергаться конструкция, и в определении четких и подходящих спецификаций покрытия. Там, где сталь находится в сухом отапливаемом помещении, риск коррозии незначителен, и защитное покрытие не требуется. И наоборот, стальная конструкция, подвергающаяся воздействию агрессивной среды, должна быть защищена высокоэффективной обработкой и, возможно, должна быть спроектирована с учетом технического обслуживания, если требуется продление срока службы.

Оптимальная защитная обработка, которая сочетает в себе соответствующую подготовку поверхности, подходящие материалы покрытия, требуемую долговечность и минимальную стоимость, достигается с помощью современной технологии обработки поверхности.

Содержание

  • 1 Коррозия конструкционной стали
  • 2 Влияние конструкции на коррозию
  • 3 Подготовка поверхности
  • 4 Лакокрасочные покрытия
  • 5 Металлические покрытия
    • 5.1 Горячее цинкование
    • 5.2 Металлические покрытия, полученные термическим напылением
  • 6 Соответствующие спецификации
  • 7 Инспекция и контроль качества
  • 8 Каталожные номера
  • 9 Ресурсы
  • 10 Дальнейшее чтение
  • 11 См. также
  • 12 Внешние ссылки
  • 13 CPD

[вверх]Коррозия конструкционной стали

Основная статья: Коррозия конструкционной стали

 

Схематическое изображение механизма коррозии стали

Коррозия конструкционной стали представляет собой электрохимический процесс, требующий одновременного присутствия влаги и кислорода. При отсутствии того и другого коррозия не возникает. По сути, железо в стали окисляется с образованием ржавчины, которая занимает примерно в 6 раз больше объема исходного материала, потребляемого в процессе. Здесь показан общий процесс коррозии.

Наряду с общей коррозией могут возникать различные виды локальной коррозии; биметаллическая коррозия, точечная коррозия и щелевая коррозия. Однако они, как правило, не имеют существенного значения для металлоконструкций.

Скорость, с которой развивается процесс коррозии, зависит от ряда факторов, связанных с «микроклиматом», непосредственно окружающим конструкцию, в основном от времени увлажнения и уровня загрязнения атмосферы. Из-за изменений в атмосферных условиях данные о скорости коррозии не могут быть обобщены. Тем не менее, среды можно классифицировать в широком смысле, и соответствующие измеренные скорости коррозии стали дают полезный показатель вероятной скорости коррозии. Дополнительную информацию можно найти в BS EN ISO 129.44-2 [1] и БС ЕН ИСО 9223 [2] .

Категории атмосферной коррозионной активности и примеры типичных сред (BS EN ISO 12944-2 [1] )
Категория коррозионной активности Низкоуглеродистая сталь Потеря толщины (мкм) a Примеры типичных сред (только для справки)
Внешний вид Интерьер
C1
очень низкий
≤ 1,3 Отапливаемые здания с чистой атмосферой, напр. офисы, магазины, школы, гостиницы
C2
низкий
> 1,3 до 25 Атмосферы с низким уровнем загрязнения: преимущественно сельские районы Неотапливаемые здания, в которых может образовываться конденсат, напр. склады, спортивные залы
C3
средний
> 25 до 50 Городская и промышленная атмосфера, умеренное загрязнение двуокисью серы; прибрежная зона с низкой соленостью Производственные помещения с повышенной влажностью и некоторым загрязнением воздуха, напр. предприятия пищевой промышленности, прачечные, пивоварни, молокозаводы
C4
высокий
> от 50 до 80 Промышленные зоны и прибрежные районы с умеренным уровнем засоления Химические заводы, плавательные бассейны, прибрежные суда и верфи
C5
очень высокий
> 80 до 200 Промышленные зоны с повышенной влажностью и агрессивной атмосферой и прибрежные зоны с повышенной соленостью Здания или зоны с почти постоянной конденсацией и высоким уровнем загрязнения
CX
экстремальный
> 200 до 700 Морские районы с высокой соленостью и промышленные районы с повышенной влажностью и агрессивной атмосферой, субтропической и тропической атмосферой Промышленные зоны с повышенной влажностью и агрессивной атмосферой

Примечания:

  • 1 мкм (1 микрон) = 0,001 мм
  • a Значения потери толщины даны после первого года воздействия. Убытки могут уменьшиться в последующие годы.
  • Значения потерь, используемые для категорий коррозионной активности, идентичны значениям, указанным в BS EN ISO 9223 [2] .

[вверх] Влияние конструкции на коррозию

Основная статья: Влияние конструкции на коррозию

Конструкция и детали конструкции могут влиять на долговечность любого нанесенного на нее защитного покрытия. Конструкции, спроектированные с большим количеством мелких конструктивных элементов и крепежных элементов, труднее защитить, чем конструкции с большими плоскими поверхностями. Ключевые вопросы, которые необходимо рассмотреть, включают:

  • Доступ для нанесения покрытия и обслуживания
  • Избегание ловушек для влаги и мусора
  • Предотвращение или герметизация щелей
  • Дренаж и вентиляция для минимизации времени увлажнения
  • Тщательное управление контактом с другими материалами

Общие указания по предотвращению коррозии за счет надлежащей детализации конструкции можно найти в BS EN ISO 12944-3 [3] , а также некоторые типичные рекомендации и запреты для стальных каркасов. здания показаны ниже.

 

Примеры детализации зданий

[вверх]Подготовка поверхности

Основная статья: Подготовка поверхности

 

Стальная балка, выходящая из установки автоматической пескоструйной очистки

Подготовка поверхности — это необходимая первая стадия обработки стальной подложки перед нанесением любого покрытия, которая обычно считается наиболее важным фактором, влияющим на общий успех защиты от коррозии система.

Характеристики покрытия в значительной степени зависят от его способности должным образом прилипать к материалу подложки. Исходное состояние поверхности стали может варьироваться в зависимости от количества остаточной прокатной окалины и степени начальной ржавчины. Однако, как правило, это неудовлетворительная основа для нанесения современных высокоэффективных защитных покрытий. Существует ряд методов подготовки и степеней чистоты, но, безусловно, наиболее важным и важным методом, используемым для тщательной очистки поверхностей от прокатной окалины и ржавчины, является абразивоструйная очистка. Стандартные степени чистоты для абразивоструйной очистки в соответствии с ISO 8501-1 [4] являются:

  • Sa 1 – Легкая пескоструйная очистка
  • Sa 2 – Тщательная пескоструйная очистка
  • Sa 2½ – Очень тщательная пескоструйная очистка
  • Sa 3 – Дробеструйная очистка до визуально чистой стали

Ручная пескоструйная очистка
(Видео предоставлено Corrodere/MPI)

Процесс подготовки поверхности не только очищает сталь, но также обеспечивает подходящий профиль и амплитуду поверхности для нанесения защитного покрытия. Толстослойные лакокрасочные покрытия и металлические покрытия, полученные термическим напылением, требуют грубого угловатого профиля поверхности для обеспечения механического ключа. Это достигается за счет использования абразивных материалов. Дробеструйные абразивы используются для тонкопленочных лакокрасочных покрытий, таких как заводские грунтовки. Разница между дробью и дробью и соответствующими профилями поверхности показана ниже на трехмерных диаграммах, полученных с помощью оборудования для бесконтактного определения характеристик поверхности.

  • Абразивная дробь

  • Зернистый абразив

После абразивоструйной очистки можно проверить дефекты поверхности и изменения поверхности, возникшие в процессе изготовления, например, сварка. Некоторые поверхностные дефекты, появившиеся во время первоначальной обработки стали, могут не оказывать отрицательного влияния на эксплуатационные характеристики покрытия, особенно для конструкций в категориях окружающей среды с относительно низким уровнем риска. Однако, в зависимости от конкретных требований к конструкции, может потребоваться дополнительная обработка поверхности для удаления поверхностных дефектов на сварных швах и кромках реза, а также растворимых солей, чтобы обеспечить приемлемое состояние поверхности для окраски.

[вверх]Лакокрасочные покрытия

Основная статья: Лакокрасочные покрытия

 

Поперечное сечение многослойной системы окраски

Лакокрасочные покрытия для стальных конструкций разрабатывались на протяжении многих лет в соответствии с промышленным законодательством по защите окружающей среды и в ответ на требования владельцев мостов и сооружений о повышении долговечности. Краска состоит из пигмента, диспергированного в связующем и растворенного в растворителе. Наиболее распространены методы классификации красок либо по их пигментации, либо по типу связующего вещества.

Современная система окраски обычно включает последовательное нанесение красок или, альтернативно, красок, наносимых поверх металлических покрытий, для образования «дуплексной» системы покрытия. Защитные лакокрасочные системы обычно состоят из грунтовки, промежуточных/сборочных слоев и финишных слоев. Каждый «слой» покрытия в любой защитной системе выполняет определенную функцию, и различные типы наносятся в определенной последовательности: грунтовка, промежуточные/сборочные слои в цеху и, наконец, финишное покрытие (или верхнее покрытие) либо в цехе. или на месте.

Предварительные грунтовки используются на металлоконструкциях сразу после пескоструйной очистки, чтобы сохранить реактивно очищенную поверхность в состоянии отсутствия ржавчины в процессе изготовления до тех пор, пока не будет проведена окончательная покраска. Эти типы грунтовки не используются перед нанесением термического напыления покрытий.

Способ нанесения систем окраски и условия нанесения оказывают существенное влияние на качество и долговечность покрытия. Стандартные методы, используемые для нанесения красок на стальные конструкции, включают нанесение кистью, валиком, обычным воздушным распылением и безвоздушным распылением/электростатическим безвоздушным распылением.

Безвоздушное распыление стало наиболее часто используемым методом нанесения лакокрасочных покрытий на стальные конструкции в контролируемых заводских условиях. нанесение кистью и валиком чаще используется для нанесения на месте, хотя также используются методы распыления. Покрытия «полосатые», наносимые на кромки и острые углы, обычно наносятся кистью.

  • Безвоздушное распыление на стальные балки моста

Основными условиями, влияющими на нанесение лакокрасочных покрытий, являются температура стали и окружающей среды, а также влажность. Их легче контролировать в условиях магазина, чем на месте. С появлением современных высокоэффективных покрытий правильное нанесение становится все более важным для достижения намеченных характеристик. Промышленность признала это и ввела схему обучения и сертификации специалистов по нанесению красок (ICATS — Схема обучения специалистов по нанесению покрытий). Регистрация ICATS (или эквивалентная схема, например, Trainthepainter) впоследствии стала обязательным требованием для работы на мостах Highways England и сооружениях Network Rail.

Безвоздушное распыление краски
(Видео предоставлено Corrodere/MPI)

[вверх]Металлические покрытия

Основная статья: Металлические покрытия

Существует четыре широко используемых метода нанесения металлического покрытия на стальные поверхности. Это горячее цинкование, термическое напыление, гальваническое покрытие и шерардизация. Последние два процесса не используются для металлоконструкций, но используются для фитингов, крепежных изделий и других мелких предметов. В целом защита от коррозии, обеспечиваемая металлическими покрытиями, в значительной степени зависит от выбора металла покрытия и его толщины и не сильно зависит от способа нанесения.

[вверх]Горячее цинкование

 

Стальные элементы, извлекаемые из обычной ванны для горячего цинкования

Горячее цинкование — это процесс, который включает погружение стального компонента, подлежащего покрытию, в ванну с расплавленным цинком (при температуре около 450 °C) после травления и флюсования, а затем отзыв его. Погруженные поверхности равномерно покрыты цинковым сплавом и слоями цинка, образующими металлургическую связь с подложкой. Полученное покрытие является прочным, прочным, устойчивым к истиранию и обеспечивает катодную (жертвенную) защиту любых небольших поврежденных участков на стальной основе. Типичная минимальная средняя толщина покрытия для стальных конструкций составляет 85 мкм.

 

Поперечное сечение горячеоцинкованного покрытия

[вверх] Металлические покрытия термическим напылением

 

Поперечный разрез термически напыленного алюминиевого покрытия

Термически напыленные покрытия из цинка, алюминия и цинко-алюминиевых сплавов могут обеспечить долговременную защиту от коррозии стальных конструкций, подвергающихся воздействию агрессивных сред. Металл в виде порошка или проволоки подается через специальный пистолет-распылитель, содержащий источник тепла, которым может быть кислородное пламя или электрическая дуга. Капли расплавленного металла выдуваются струей сжатого воздуха на предварительно очищенную пескоструйным методом стальную поверхность. Легирования не происходит, покрытие состоит из перекрывающихся пластин металла и является пористым. Затем поры герметизируются путем нанесения тонкого органического покрытия, проникающего вглубь поверхности. Важно, чтобы герметик полностью заполнил все поры в металлическом покрытии.

Адгезия напыленных металлических покрытий к стальным поверхностям считается в основном механической по своей природе. Поэтому необходимо наносить покрытие на чистую шероховатую поверхность, и обычно рекомендуется пескоструйная очистка крупнозернистым абразивом.

Дуговое напыление
(Видео предоставлено Metallisation)

[наверх]Подходящие спецификации

Основная статья: Подходящие спецификации

Общий успех схемы защитного покрытия начинается с хорошо подготовленной спецификации. Это важный документ, предназначенный для предоставления подрядчику четких и точных инструкций о том, что и как следует делать. Спецификация должна быть составлена ​​кем-то с соответствующими техническими знаниями, и в ней должно быть ясно, что требуется, а что является практичным и достижимым.
Он должен быть написан в логической последовательности, начиная с подготовки поверхности, проходя через каждую наносимую краску или металлическое покрытие и, наконец, касаясь конкретных областей, например. сварные швы. Он также должен быть максимально кратким, согласующимся с предоставлением всей необходимой информации. Наиболее важными элементами спецификации являются следующие:

  • Обработка металла для удаления острых краев, выступов и т. д., а также стальных загрязнений.
  • Требуемый метод подготовки поверхности и стандарт.
  • Максимальный интервал между подготовкой поверхности и последующим грунтованием или металлическим покрытием.
  • Типы используемых красок или металлических покрытий, поддерживаемые соответствующими стандартами.
  • Используемый(е) метод(ы) применения.
  • Количество наносимых слоев и интервал между слоями.
  • Толщина влажной и сухой пленки для каждого слоя.
  • Место нанесения каждого слоя (т. е. магазины или строительная площадка) и требуемые условия нанесения с точки зрения температуры, влажности и т. д.
  • Детали для обработки сварных швов, болтовых соединений и т. д.
  • Процедуры устранения повреждений и т. д.

Большинство стальных мостов защищены в соответствии с требованиями Highways England и стандартными спецификациями Network Rail. Для других мостов могут быть указаны альтернативные системы и методы покрытия, но должны применяться те же стандарты и принципы надлежащей практики покрытия.

[вверх]Инспекция и контроль качества

Основная статья: Инспекция и контроль качества

 

Ассортимент инструментов для испытаний и контроля

Контроль является неотъемлемой частью контроля качества. Его целью является проверка соблюдения требований спецификации и предоставление клиенту отчета с надлежащими записями. Одним из самых больших преимуществ для инспектора по покрытиям является четкая письменная спецификация, на которую можно без сомнений ссылаться.

Назначение стороннего инспектора с соответствующей квалификацией следует рассматривать как инвестиции в качество, а не просто как дополнительные расходы. Проверка процессов, процедур и материалов, необходимых для нанесения защитного покрытия на стальные конструкции, имеет жизненно важное значение, поскольку серьезную ошибку даже в одной операции нельзя легко обнаружить после выполнения следующей операции, и если ее не исправить немедленно, это может значительно снизить ожидаемые срок службы до первого технического обслуживания.

[наверх]Ссылки

  1. 1.0 1.1 BS EN ISO 12944-2: 2017, Краски и лаки. Защита стальных конструкций от коррозии защитными системами окраски. Часть 2. Классификация сред, BSI
  2. 2.0 2.1 BS EN ISO 9223: 2012, Коррозия металлов и сплавов. Коррозионная активность атмосферы. Классификация, определение и оценка BSI
  3. ↑ BS EN ISO 12944-3: 2017, Краски и лаки. Защита стальных конструкций от коррозии защитными системами окраски. Часть 3. Вопросы проектирования, BSI
  4. ↑ BS EN ISO 8501-1: 2007 Подготовка стальных поверхностей перед нанесением красок и сопутствующих продуктов. Визуальная оценка чистоты поверхности. Степени ржавчины и степени подготовки стальных поверхностей без покрытия и поверхностей после полного удаления предыдущих покрытий, ISO

Ресурсы

  • Хенди, Ч.Р.; Айлс, округ Колумбия (2015) Группа стальных мостов: Руководящие указания по передовой практике строительства стальных мостов (6-й выпуск). (стр. 185). SCI
    • Руководство 8.01 Подготовка к эффективной защите от коррозии
    • Руководство 8.02 Защитная обработка крепежных изделий
    • Руководство 8.03 Горячее цинкование погружением
    • Руководство 8.04 Металлические покрытия, полученные термическим напылением
    • Руководство 8.05 Высокоэффективные лакокрасочные покрытия
    • Руководство 8.06 Проверка подготовки поверхности и обработки покрытий
  • Стальные здания, 2003 г. , Британская ассоциация строительных металлоконструкций, ООО.
    • Глава 12 – Защита от коррозии

[наверх]Дополнительная литература

  • Д.Дикон и Р.Хадсон (2012 г.), Руководство по проектированию металлоконструкций (7-е издание), глава 36 – Коррозия и предотвращение коррозии, Институт стальных конструкций.
  • Д.А. Bayliss & D.H.Deacon (2002), Steelwork Corrosion Control (2-е издание), Spon Press

[вверху] См. также

  • Коррозия конструкционной стали
  • Влияние конструкции на коррозию
  • Подготовка поверхности
  • Лакокрасочные покрытия
  • Стандартные системы защиты зданий от коррозии
  • Металлические покрытия
  • Соответствующие спецификации
  • Инспекция и контроль качества

[наверх]Внешние ссылки

  • Британская федерация покрытий
  • Ассоциация гальванистов
  • Ассоциация исследования красок
  • Ассоциация термического напыления и обработки поверхностей
  • ИКАТС
  • Корродор
  • Защита от коррозии

Защита от коррозии — SteelConstruction.

info

Экономичная защита от коррозии стальных конструкций не вызовет затруднений для обычных применений и сред, если с самого начала будут определены факторы, влияющие на долговечность.

Многие стальные конструкции успешно эксплуатируются в течение многих лет даже в неблагоприятных условиях. Первое крупное железное сооружение, мост в Коулбрукдейле, Великобритания, просуществовало более 200 лет, в то время как о железнодорожном мосту Форт, которому более 100 лет, ходят легенды.
Сегодня доступны современные прочные защитные покрытия, которые при правильном использовании позволяют увеличить интервалы обслуживания и повысить производительность.

Ключ к успеху заключается в распознавании коррозионной активности окружающей среды, воздействию которой будет подвергаться конструкция, и в определении четких и подходящих спецификаций покрытия. Там, где сталь находится в сухом отапливаемом помещении, риск коррозии незначителен, и защитное покрытие не требуется. И наоборот, стальная конструкция, подвергающаяся воздействию агрессивной среды, должна быть защищена высокоэффективной обработкой и, возможно, должна быть спроектирована с учетом технического обслуживания, если требуется продление срока службы.

Оптимальная защитная обработка, которая сочетает в себе соответствующую подготовку поверхности, подходящие материалы покрытия, требуемую долговечность и минимальную стоимость, достигается с помощью современной технологии обработки поверхности.

Содержание

  • 1 Коррозия конструкционной стали
  • 2 Влияние конструкции на коррозию
  • 3 Подготовка поверхности
  • 4 Лакокрасочные покрытия
  • 5 Металлические покрытия
    • 5.1 Горячее цинкование
    • 5.2 Металлические покрытия, полученные термическим напылением
  • 6 Соответствующие спецификации
  • 7 Инспекция и контроль качества
  • 8 Каталожные номера
  • 9 Ресурсы
  • 10 Дальнейшее чтение
  • 11 См. также
  • 12 Внешние ссылки
  • 13 CPD

[вверх]Коррозия конструкционной стали

Основная статья: Коррозия конструкционной стали

 

Схематическое изображение механизма коррозии стали

Коррозия конструкционной стали представляет собой электрохимический процесс, требующий одновременного присутствия влаги и кислорода. При отсутствии того и другого коррозия не возникает. По сути, железо в стали окисляется с образованием ржавчины, которая занимает примерно в 6 раз больше объема исходного материала, потребляемого в процессе. Здесь показан общий процесс коррозии.

Наряду с общей коррозией могут возникать различные виды локальной коррозии; биметаллическая коррозия, точечная коррозия и щелевая коррозия. Однако они, как правило, не имеют существенного значения для металлоконструкций.

Скорость, с которой развивается процесс коррозии, зависит от ряда факторов, связанных с «микроклиматом», непосредственно окружающим конструкцию, в основном от времени увлажнения и уровня загрязнения атмосферы. Из-за изменений в атмосферных условиях данные о скорости коррозии не могут быть обобщены. Тем не менее, среды можно классифицировать в широком смысле, и соответствующие измеренные скорости коррозии стали дают полезный показатель вероятной скорости коррозии. Дополнительную информацию можно найти в BS EN ISO 129. 44-2 [1] и БС ЕН ИСО 9223 [2] .

Категории атмосферной коррозионной активности и примеры типичных сред (BS EN ISO 12944-2 [1] )
Категория коррозионной активности Низкоуглеродистая сталь Потеря толщины (мкм) a Примеры типичных сред (только для справки)
Внешний вид Интерьер
C1
очень низкий
≤ 1,3 Отапливаемые здания с чистой атмосферой, напр. офисы, магазины, школы, гостиницы
C2
низкий
> 1,3 до 25 Атмосферы с низким уровнем загрязнения: преимущественно сельские районы Неотапливаемые здания, в которых может образовываться конденсат, напр. склады, спортивные залы
C3
средний
> 25 до 50 Городская и промышленная атмосфера, умеренное загрязнение двуокисью серы; прибрежная зона с низкой соленостью Производственные помещения с повышенной влажностью и некоторым загрязнением воздуха, напр. предприятия пищевой промышленности, прачечные, пивоварни, молокозаводы
C4
высокий
> от 50 до 80 Промышленные зоны и прибрежные районы с умеренным уровнем засоления Химические заводы, плавательные бассейны, прибрежные суда и верфи
C5
очень высокий
> 80 до 200 Промышленные зоны с повышенной влажностью и агрессивной атмосферой и прибрежные зоны с повышенной соленостью Здания или зоны с почти постоянной конденсацией и высоким уровнем загрязнения
CX
экстремальный
> 200 до 700 Морские районы с высокой соленостью и промышленные районы с повышенной влажностью и агрессивной атмосферой, субтропической и тропической атмосферой Промышленные зоны с повышенной влажностью и агрессивной атмосферой

Примечания:

  • 1 мкм (1 микрон) = 0,001 мм
  • a Значения потери толщины даны после первого года воздействия. Убытки могут уменьшиться в последующие годы.
  • Значения потерь, используемые для категорий коррозионной активности, идентичны значениям, указанным в BS EN ISO 9223 [2] .

[вверх] Влияние конструкции на коррозию

Основная статья: Влияние конструкции на коррозию

Конструкция и детали конструкции могут влиять на долговечность любого нанесенного на нее защитного покрытия. Конструкции, спроектированные с большим количеством мелких конструктивных элементов и крепежных элементов, труднее защитить, чем конструкции с большими плоскими поверхностями. Ключевые вопросы, которые необходимо рассмотреть, включают:

  • Доступ для нанесения покрытия и обслуживания
  • Избегание ловушек для влаги и мусора
  • Предотвращение или герметизация щелей
  • Дренаж и вентиляция для минимизации времени увлажнения
  • Тщательное управление контактом с другими материалами

Общие указания по предотвращению коррозии за счет надлежащей детализации конструкции можно найти в BS EN ISO 12944-3 [3] , а также некоторые типичные рекомендации и запреты для стальных каркасов. здания показаны ниже.

 

Примеры детализации зданий

[вверх]Подготовка поверхности

Основная статья: Подготовка поверхности

 

Стальная балка, выходящая из установки автоматической пескоструйной очистки

Подготовка поверхности — это необходимая первая стадия обработки стальной подложки перед нанесением любого покрытия, которая обычно считается наиболее важным фактором, влияющим на общий успех защиты от коррозии система.

Характеристики покрытия в значительной степени зависят от его способности должным образом прилипать к материалу подложки. Исходное состояние поверхности стали может варьироваться в зависимости от количества остаточной прокатной окалины и степени начальной ржавчины. Однако, как правило, это неудовлетворительная основа для нанесения современных высокоэффективных защитных покрытий. Существует ряд методов подготовки и степеней чистоты, но, безусловно, наиболее важным и важным методом, используемым для тщательной очистки поверхностей от прокатной окалины и ржавчины, является абразивоструйная очистка. Стандартные степени чистоты для абразивоструйной очистки в соответствии с ISO 8501-1 [4] являются:

  • Sa 1 – Легкая пескоструйная очистка
  • Sa 2 – Тщательная пескоструйная очистка
  • Sa 2½ – Очень тщательная пескоструйная очистка
  • Sa 3 – Дробеструйная очистка до визуально чистой стали

Ручная пескоструйная очистка
(Видео предоставлено Corrodere/MPI)

Процесс подготовки поверхности не только очищает сталь, но также обеспечивает подходящий профиль и амплитуду поверхности для нанесения защитного покрытия. Толстослойные лакокрасочные покрытия и металлические покрытия, полученные термическим напылением, требуют грубого угловатого профиля поверхности для обеспечения механического ключа. Это достигается за счет использования абразивных материалов. Дробеструйные абразивы используются для тонкопленочных лакокрасочных покрытий, таких как заводские грунтовки. Разница между дробью и дробью и соответствующими профилями поверхности показана ниже на трехмерных диаграммах, полученных с помощью оборудования для бесконтактного определения характеристик поверхности.

  • Абразивная дробь

  • Зернистый абразив

После абразивоструйной очистки можно проверить дефекты поверхности и изменения поверхности, возникшие в процессе изготовления, например, сварка. Некоторые поверхностные дефекты, появившиеся во время первоначальной обработки стали, могут не оказывать отрицательного влияния на эксплуатационные характеристики покрытия, особенно для конструкций в категориях окружающей среды с относительно низким уровнем риска. Однако, в зависимости от конкретных требований к конструкции, может потребоваться дополнительная обработка поверхности для удаления поверхностных дефектов на сварных швах и кромках реза, а также растворимых солей, чтобы обеспечить приемлемое состояние поверхности для окраски.

[вверх]Лакокрасочные покрытия

Основная статья: Лакокрасочные покрытия

 

Поперечное сечение многослойной системы окраски

Лакокрасочные покрытия для стальных конструкций разрабатывались на протяжении многих лет в соответствии с промышленным законодательством по защите окружающей среды и в ответ на требования владельцев мостов и сооружений о повышении долговечности. Краска состоит из пигмента, диспергированного в связующем и растворенного в растворителе. Наиболее распространены методы классификации красок либо по их пигментации, либо по типу связующего вещества.

Современная система окраски обычно включает последовательное нанесение красок или, альтернативно, красок, наносимых поверх металлических покрытий, для образования «дуплексной» системы покрытия. Защитные лакокрасочные системы обычно состоят из грунтовки, промежуточных/сборочных слоев и финишных слоев. Каждый «слой» покрытия в любой защитной системе выполняет определенную функцию, и различные типы наносятся в определенной последовательности: грунтовка, промежуточные/сборочные слои в цеху и, наконец, финишное покрытие (или верхнее покрытие) либо в цехе. или на месте.

Предварительные грунтовки используются на металлоконструкциях сразу после пескоструйной очистки, чтобы сохранить реактивно очищенную поверхность в состоянии отсутствия ржавчины в процессе изготовления до тех пор, пока не будет проведена окончательная покраска. Эти типы грунтовки не используются перед нанесением термического напыления покрытий.

Способ нанесения систем окраски и условия нанесения оказывают существенное влияние на качество и долговечность покрытия. Стандартные методы, используемые для нанесения красок на стальные конструкции, включают нанесение кистью, валиком, обычным воздушным распылением и безвоздушным распылением/электростатическим безвоздушным распылением.

Безвоздушное распыление стало наиболее часто используемым методом нанесения лакокрасочных покрытий на стальные конструкции в контролируемых заводских условиях. нанесение кистью и валиком чаще используется для нанесения на месте, хотя также используются методы распыления. Покрытия «полосатые», наносимые на кромки и острые углы, обычно наносятся кистью.

  • Безвоздушное распыление на стальные балки моста

Основными условиями, влияющими на нанесение лакокрасочных покрытий, являются температура стали и окружающей среды, а также влажность. Их легче контролировать в условиях магазина, чем на месте. С появлением современных высокоэффективных покрытий правильное нанесение становится все более важным для достижения намеченных характеристик. Промышленность признала это и ввела схему обучения и сертификации специалистов по нанесению красок (ICATS — Схема обучения специалистов по нанесению покрытий). Регистрация ICATS (или эквивалентная схема, например, Trainthepainter) впоследствии стала обязательным требованием для работы на мостах Highways England и сооружениях Network Rail.

Безвоздушное распыление краски
(Видео предоставлено Corrodere/MPI)

[вверх]Металлические покрытия

Основная статья: Металлические покрытия

Существует четыре широко используемых метода нанесения металлического покрытия на стальные поверхности. Это горячее цинкование, термическое напыление, гальваническое покрытие и шерардизация. Последние два процесса не используются для металлоконструкций, но используются для фитингов, крепежных изделий и других мелких предметов. В целом защита от коррозии, обеспечиваемая металлическими покрытиями, в значительной степени зависит от выбора металла покрытия и его толщины и не сильно зависит от способа нанесения.

[вверх]Горячее цинкование

 

Стальные элементы, извлекаемые из обычной ванны для горячего цинкования

Горячее цинкование — это процесс, который включает погружение стального компонента, подлежащего покрытию, в ванну с расплавленным цинком (при температуре около 450 °C) после травления и флюсования, а затем отзыв его. Погруженные поверхности равномерно покрыты цинковым сплавом и слоями цинка, образующими металлургическую связь с подложкой. Полученное покрытие является прочным, прочным, устойчивым к истиранию и обеспечивает катодную (жертвенную) защиту любых небольших поврежденных участков на стальной основе. Типичная минимальная средняя толщина покрытия для стальных конструкций составляет 85 мкм.

 

Поперечное сечение горячеоцинкованного покрытия

[вверх] Металлические покрытия термическим напылением

 

Поперечный разрез термически напыленного алюминиевого покрытия

Термически напыленные покрытия из цинка, алюминия и цинко-алюминиевых сплавов могут обеспечить долговременную защиту от коррозии стальных конструкций, подвергающихся воздействию агрессивных сред. Металл в виде порошка или проволоки подается через специальный пистолет-распылитель, содержащий источник тепла, которым может быть кислородное пламя или электрическая дуга. Капли расплавленного металла выдуваются струей сжатого воздуха на предварительно очищенную пескоструйным методом стальную поверхность. Легирования не происходит, покрытие состоит из перекрывающихся пластин металла и является пористым. Затем поры герметизируются путем нанесения тонкого органического покрытия, проникающего вглубь поверхности. Важно, чтобы герметик полностью заполнил все поры в металлическом покрытии.

Адгезия напыленных металлических покрытий к стальным поверхностям считается в основном механической по своей природе. Поэтому необходимо наносить покрытие на чистую шероховатую поверхность, и обычно рекомендуется пескоструйная очистка крупнозернистым абразивом.

Дуговое напыление
(Видео предоставлено Metallisation)

[наверх]Подходящие спецификации

Основная статья: Подходящие спецификации

Общий успех схемы защитного покрытия начинается с хорошо подготовленной спецификации. Это важный документ, предназначенный для предоставления подрядчику четких и точных инструкций о том, что и как следует делать. Спецификация должна быть составлена ​​кем-то с соответствующими техническими знаниями, и в ней должно быть ясно, что требуется, а что является практичным и достижимым.
Он должен быть написан в логической последовательности, начиная с подготовки поверхности, проходя через каждую наносимую краску или металлическое покрытие и, наконец, касаясь конкретных областей, например. сварные швы. Он также должен быть максимально кратким, согласующимся с предоставлением всей необходимой информации. Наиболее важными элементами спецификации являются следующие:

  • Обработка металла для удаления острых краев, выступов и т. д., а также стальных загрязнений.
  • Требуемый метод подготовки поверхности и стандарт.
  • Максимальный интервал между подготовкой поверхности и последующим грунтованием или металлическим покрытием.
  • Типы используемых красок или металлических покрытий, поддерживаемые соответствующими стандартами.
  • Используемый(е) метод(ы) применения.
  • Количество наносимых слоев и интервал между слоями.
  • Толщина влажной и сухой пленки для каждого слоя.
  • Место нанесения каждого слоя (т. е. магазины или строительная площадка) и требуемые условия нанесения с точки зрения температуры, влажности и т. д.
  • Детали для обработки сварных швов, болтовых соединений и т. д.
  • Процедуры устранения повреждений и т. д.

Большинство стальных мостов защищены в соответствии с требованиями Highways England и стандартными спецификациями Network Rail. Для других мостов могут быть указаны альтернативные системы и методы покрытия, но должны применяться те же стандарты и принципы надлежащей практики покрытия.

[вверх]Инспекция и контроль качества

Основная статья: Инспекция и контроль качества

 

Ассортимент инструментов для испытаний и контроля

Контроль является неотъемлемой частью контроля качества. Его целью является проверка соблюдения требований спецификации и предоставление клиенту отчета с надлежащими записями. Одним из самых больших преимуществ для инспектора по покрытиям является четкая письменная спецификация, на которую можно без сомнений ссылаться.

Назначение стороннего инспектора с соответствующей квалификацией следует рассматривать как инвестиции в качество, а не просто как дополнительные расходы. Проверка процессов, процедур и материалов, необходимых для нанесения защитного покрытия на стальные конструкции, имеет жизненно важное значение, поскольку серьезную ошибку даже в одной операции нельзя легко обнаружить после выполнения следующей операции, и если ее не исправить немедленно, это может значительно снизить ожидаемые срок службы до первого технического обслуживания.

[наверх]Ссылки

  1. 1.0 1.1 BS EN ISO 12944-2: 2017, Краски и лаки. Защита стальных конструкций от коррозии защитными системами окраски. Часть 2. Классификация сред, BSI
  2. 2.0 2.1 BS EN ISO 9223: 2012, Коррозия металлов и сплавов. Коррозионная активность атмосферы. Классификация, определение и оценка BSI
  3. ↑ BS EN ISO 12944-3: 2017, Краски и лаки. Защита стальных конструкций от коррозии защитными системами окраски. Часть 3. Вопросы проектирования, BSI
  4. ↑ BS EN ISO 8501-1: 2007 Подготовка стальных поверхностей перед нанесением красок и сопутствующих продуктов. Визуальная оценка чистоты поверхности. Степени ржавчины и степени подготовки стальных поверхностей без покрытия и поверхностей после полного удаления предыдущих покрытий, ISO

Ресурсы

  • Хенди, Ч.Р.; Айлс, округ Колумбия (2015) Группа стальных мостов: Руководящие указания по передовой практике строительства стальных мостов (6-й выпуск). (стр. 185). SCI
    • Руководство 8.01 Подготовка к эффективной защите от коррозии
    • Руководство 8.02 Защитная обработка крепежных изделий
    • Руководство 8.03 Горячее цинкование погружением
    • Руководство 8.04 Металлические покрытия, полученные термическим напылением
    • Руководство 8.05 Высокоэффективные лакокрасочные покрытия
    • Руководство 8.06 Проверка подготовки поверхности и обработки покрытий
  • Стальные здания, 2003 г. , Британская ассоциация строительных металлоконструкций, ООО.
    • Глава 12 – Защита от коррозии

[наверх]Дополнительная литература

  • Д.Дикон и Р.Хадсон (2012 г.), Руководство по проектированию металлоконструкций (7-е издание), глава 36 – Коррозия и предотвращение коррозии, Институт стальных конструкций.
  • Д.А. Bayliss & D.H.Deacon (2002), Steelwork Corrosion Control (2-е издание), Spon Press

[вверху] См. также

  • Коррозия конструкционной стали
  • Влияние конструкции на коррозию
  • Подготовка поверхности
  • Лакокрасочные покрытия
  • Стандартные системы защиты зданий от коррозии
  • Металлические покрытия
  • Соответствующие спецификации
  • Инспекция и контроль качества

[наверх]Внешние ссылки

  • Британская федерация покрытий
  • Ассоциация гальванистов
  • Ассоциация исследования красок
  • Ассоциация термического напыления и обработки поверхностей
  • ИКАТС
  • Корродор
  • Защита от коррозии

Защита от коррозии — SteelConstruction.

info

Экономичная защита от коррозии стальных конструкций не вызовет затруднений для обычных применений и сред, если с самого начала будут определены факторы, влияющие на долговечность.

Многие стальные конструкции успешно эксплуатируются в течение многих лет даже в неблагоприятных условиях. Первое крупное железное сооружение, мост в Коулбрукдейле, Великобритания, просуществовало более 200 лет, в то время как о железнодорожном мосту Форт, которому более 100 лет, ходят легенды.
Сегодня доступны современные прочные защитные покрытия, которые при правильном использовании позволяют увеличить интервалы обслуживания и повысить производительность.

Ключ к успеху заключается в распознавании коррозионной активности окружающей среды, воздействию которой будет подвергаться конструкция, и в определении четких и подходящих спецификаций покрытия. Там, где сталь находится в сухом отапливаемом помещении, риск коррозии незначителен, и защитное покрытие не требуется. И наоборот, стальная конструкция, подвергающаяся воздействию агрессивной среды, должна быть защищена высокоэффективной обработкой и, возможно, должна быть спроектирована с учетом технического обслуживания, если требуется продление срока службы.

Оптимальная защитная обработка, которая сочетает в себе соответствующую подготовку поверхности, подходящие материалы покрытия, требуемую долговечность и минимальную стоимость, достигается с помощью современной технологии обработки поверхности.

Содержание

  • 1 Коррозия конструкционной стали
  • 2 Влияние конструкции на коррозию
  • 3 Подготовка поверхности
  • 4 Лакокрасочные покрытия
  • 5 Металлические покрытия
    • 5.1 Горячее цинкование
    • 5.2 Металлические покрытия, полученные термическим напылением
  • 6 Соответствующие спецификации
  • 7 Инспекция и контроль качества
  • 8 Каталожные номера
  • 9 Ресурсы
  • 10 Дальнейшее чтение
  • 11 См. также
  • 12 Внешние ссылки
  • 13 CPD

[вверх]Коррозия конструкционной стали

Основная статья: Коррозия конструкционной стали

 

Схематическое изображение механизма коррозии стали

Коррозия конструкционной стали представляет собой электрохимический процесс, требующий одновременного присутствия влаги и кислорода. При отсутствии того и другого коррозия не возникает. По сути, железо в стали окисляется с образованием ржавчины, которая занимает примерно в 6 раз больше объема исходного материала, потребляемого в процессе. Здесь показан общий процесс коррозии.

Наряду с общей коррозией могут возникать различные виды локальной коррозии; биметаллическая коррозия, точечная коррозия и щелевая коррозия. Однако они, как правило, не имеют существенного значения для металлоконструкций.

Скорость, с которой развивается процесс коррозии, зависит от ряда факторов, связанных с «микроклиматом», непосредственно окружающим конструкцию, в основном от времени увлажнения и уровня загрязнения атмосферы. Из-за изменений в атмосферных условиях данные о скорости коррозии не могут быть обобщены. Тем не менее, среды можно классифицировать в широком смысле, и соответствующие измеренные скорости коррозии стали дают полезный показатель вероятной скорости коррозии. Дополнительную информацию можно найти в BS EN ISO 129. 44-2 [1] и БС ЕН ИСО 9223 [2] .

Категории атмосферной коррозионной активности и примеры типичных сред (BS EN ISO 12944-2 [1] )
Категория коррозионной активности Низкоуглеродистая сталь Потеря толщины (мкм) a Примеры типичных сред (только для справки)
Внешний вид Интерьер
C1
очень низкий
≤ 1,3 Отапливаемые здания с чистой атмосферой, напр. офисы, магазины, школы, гостиницы
C2
низкий
> 1,3 до 25 Атмосферы с низким уровнем загрязнения: преимущественно сельские районы Неотапливаемые здания, в которых может образовываться конденсат, напр. склады, спортивные залы
C3
средний
> 25 до 50 Городская и промышленная атмосфера, умеренное загрязнение двуокисью серы; прибрежная зона с низкой соленостью Производственные помещения с повышенной влажностью и некоторым загрязнением воздуха, напр. предприятия пищевой промышленности, прачечные, пивоварни, молокозаводы
C4
высокий
> от 50 до 80 Промышленные зоны и прибрежные районы с умеренным уровнем засоления Химические заводы, плавательные бассейны, прибрежные суда и верфи
C5
очень высокий
> 80 до 200 Промышленные зоны с повышенной влажностью и агрессивной атмосферой и прибрежные зоны с повышенной соленостью Здания или зоны с почти постоянной конденсацией и высоким уровнем загрязнения
CX
экстремальный
> 200 до 700 Морские районы с высокой соленостью и промышленные районы с повышенной влажностью и агрессивной атмосферой, субтропической и тропической атмосферой Промышленные зоны с повышенной влажностью и агрессивной атмосферой

Примечания:

  • 1 мкм (1 микрон) = 0,001 мм
  • a Значения потери толщины даны после первого года воздействия. Убытки могут уменьшиться в последующие годы.
  • Значения потерь, используемые для категорий коррозионной активности, идентичны значениям, указанным в BS EN ISO 9223 [2] .

[вверх] Влияние конструкции на коррозию

Основная статья: Влияние конструкции на коррозию

Конструкция и детали конструкции могут влиять на долговечность любого нанесенного на нее защитного покрытия. Конструкции, спроектированные с большим количеством мелких конструктивных элементов и крепежных элементов, труднее защитить, чем конструкции с большими плоскими поверхностями. Ключевые вопросы, которые необходимо рассмотреть, включают:

  • Доступ для нанесения покрытия и обслуживания
  • Избегание ловушек для влаги и мусора
  • Предотвращение или герметизация щелей
  • Дренаж и вентиляция для минимизации времени увлажнения
  • Тщательное управление контактом с другими материалами

Общие указания по предотвращению коррозии за счет надлежащей детализации конструкции можно найти в BS EN ISO 12944-3 [3] , а также некоторые типичные рекомендации и запреты для стальных каркасов. здания показаны ниже.

 

Примеры детализации зданий

[вверх]Подготовка поверхности

Основная статья: Подготовка поверхности

 

Стальная балка, выходящая из установки автоматической пескоструйной очистки

Подготовка поверхности — это необходимая первая стадия обработки стальной подложки перед нанесением любого покрытия, которая обычно считается наиболее важным фактором, влияющим на общий успех защиты от коррозии система.

Характеристики покрытия в значительной степени зависят от его способности должным образом прилипать к материалу подложки. Исходное состояние поверхности стали может варьироваться в зависимости от количества остаточной прокатной окалины и степени начальной ржавчины. Однако, как правило, это неудовлетворительная основа для нанесения современных высокоэффективных защитных покрытий. Существует ряд методов подготовки и степеней чистоты, но, безусловно, наиболее важным и важным методом, используемым для тщательной очистки поверхностей от прокатной окалины и ржавчины, является абразивоструйная очистка. Стандартные степени чистоты для абразивоструйной очистки в соответствии с ISO 8501-1 [4] являются:

  • Sa 1 – Легкая пескоструйная очистка
  • Sa 2 – Тщательная пескоструйная очистка
  • Sa 2½ – Очень тщательная пескоструйная очистка
  • Sa 3 – Дробеструйная очистка до визуально чистой стали

Ручная пескоструйная очистка
(Видео предоставлено Corrodere/MPI)

Процесс подготовки поверхности не только очищает сталь, но также обеспечивает подходящий профиль и амплитуду поверхности для нанесения защитного покрытия. Толстослойные лакокрасочные покрытия и металлические покрытия, полученные термическим напылением, требуют грубого угловатого профиля поверхности для обеспечения механического ключа. Это достигается за счет использования абразивных материалов. Дробеструйные абразивы используются для тонкопленочных лакокрасочных покрытий, таких как заводские грунтовки. Разница между дробью и дробью и соответствующими профилями поверхности показана ниже на трехмерных диаграммах, полученных с помощью оборудования для бесконтактного определения характеристик поверхности.

  • Абразивная дробь

  • Зернистый абразив

После абразивоструйной очистки можно проверить дефекты поверхности и изменения поверхности, возникшие в процессе изготовления, например, сварка. Некоторые поверхностные дефекты, появившиеся во время первоначальной обработки стали, могут не оказывать отрицательного влияния на эксплуатационные характеристики покрытия, особенно для конструкций в категориях окружающей среды с относительно низким уровнем риска. Однако, в зависимости от конкретных требований к конструкции, может потребоваться дополнительная обработка поверхности для удаления поверхностных дефектов на сварных швах и кромках реза, а также растворимых солей, чтобы обеспечить приемлемое состояние поверхности для окраски.

[вверх]Лакокрасочные покрытия

Основная статья: Лакокрасочные покрытия

 

Поперечное сечение многослойной системы окраски

Лакокрасочные покрытия для стальных конструкций разрабатывались на протяжении многих лет в соответствии с промышленным законодательством по защите окружающей среды и в ответ на требования владельцев мостов и сооружений о повышении долговечности. Краска состоит из пигмента, диспергированного в связующем и растворенного в растворителе. Наиболее распространены методы классификации красок либо по их пигментации, либо по типу связующего вещества.

Современная система окраски обычно включает последовательное нанесение красок или, альтернативно, красок, наносимых поверх металлических покрытий, для образования «дуплексной» системы покрытия. Защитные лакокрасочные системы обычно состоят из грунтовки, промежуточных/сборочных слоев и финишных слоев. Каждый «слой» покрытия в любой защитной системе выполняет определенную функцию, и различные типы наносятся в определенной последовательности: грунтовка, промежуточные/сборочные слои в цеху и, наконец, финишное покрытие (или верхнее покрытие) либо в цехе. или на месте.

Предварительные грунтовки используются на металлоконструкциях сразу после пескоструйной очистки, чтобы сохранить реактивно очищенную поверхность в состоянии отсутствия ржавчины в процессе изготовления до тех пор, пока не будет проведена окончательная покраска. Эти типы грунтовки не используются перед нанесением термического напыления покрытий.

Способ нанесения систем окраски и условия нанесения оказывают существенное влияние на качество и долговечность покрытия. Стандартные методы, используемые для нанесения красок на стальные конструкции, включают нанесение кистью, валиком, обычным воздушным распылением и безвоздушным распылением/электростатическим безвоздушным распылением.

Безвоздушное распыление стало наиболее часто используемым методом нанесения лакокрасочных покрытий на стальные конструкции в контролируемых заводских условиях. нанесение кистью и валиком чаще используется для нанесения на месте, хотя также используются методы распыления. Покрытия «полосатые», наносимые на кромки и острые углы, обычно наносятся кистью.

  • Безвоздушное распыление на стальные балки моста

Основными условиями, влияющими на нанесение лакокрасочных покрытий, являются температура стали и окружающей среды, а также влажность. Их легче контролировать в условиях магазина, чем на месте. С появлением современных высокоэффективных покрытий правильное нанесение становится все более важным для достижения намеченных характеристик. Промышленность признала это и ввела схему обучения и сертификации специалистов по нанесению красок (ICATS — Схема обучения специалистов по нанесению покрытий). Регистрация ICATS (или эквивалентная схема, например, Trainthepainter) впоследствии стала обязательным требованием для работы на мостах Highways England и сооружениях Network Rail.

Безвоздушное распыление краски
(Видео предоставлено Corrodere/MPI)

[вверх]Металлические покрытия

Основная статья: Металлические покрытия

Существует четыре широко используемых метода нанесения металлического покрытия на стальные поверхности. Это горячее цинкование, термическое напыление, гальваническое покрытие и шерардизация. Последние два процесса не используются для металлоконструкций, но используются для фитингов, крепежных изделий и других мелких предметов. В целом защита от коррозии, обеспечиваемая металлическими покрытиями, в значительной степени зависит от выбора металла покрытия и его толщины и не сильно зависит от способа нанесения.

[вверх]Горячее цинкование

 

Стальные элементы, извлекаемые из обычной ванны для горячего цинкования

Горячее цинкование — это процесс, который включает погружение стального компонента, подлежащего покрытию, в ванну с расплавленным цинком (при температуре около 450 °C) после травления и флюсования, а затем отзыв его. Погруженные поверхности равномерно покрыты цинковым сплавом и слоями цинка, образующими металлургическую связь с подложкой. Полученное покрытие является прочным, прочным, устойчивым к истиранию и обеспечивает катодную (жертвенную) защиту любых небольших поврежденных участков на стальной основе. Типичная минимальная средняя толщина покрытия для стальных конструкций составляет 85 мкм.

 

Поперечное сечение горячеоцинкованного покрытия

[вверх] Металлические покрытия термическим напылением

 

Поперечный разрез термически напыленного алюминиевого покрытия

Термически напыленные покрытия из цинка, алюминия и цинко-алюминиевых сплавов могут обеспечить долговременную защиту от коррозии стальных конструкций, подвергающихся воздействию агрессивных сред. Металл в виде порошка или проволоки подается через специальный пистолет-распылитель, содержащий источник тепла, которым может быть кислородное пламя или электрическая дуга. Капли расплавленного металла выдуваются струей сжатого воздуха на предварительно очищенную пескоструйным методом стальную поверхность. Легирования не происходит, покрытие состоит из перекрывающихся пластин металла и является пористым. Затем поры герметизируются путем нанесения тонкого органического покрытия, проникающего вглубь поверхности. Важно, чтобы герметик полностью заполнил все поры в металлическом покрытии.

Адгезия напыленных металлических покрытий к стальным поверхностям считается в основном механической по своей природе. Поэтому необходимо наносить покрытие на чистую шероховатую поверхность, и обычно рекомендуется пескоструйная очистка крупнозернистым абразивом.

Дуговое напыление
(Видео предоставлено Metallisation)

[наверх]Подходящие спецификации

Основная статья: Подходящие спецификации

Общий успех схемы защитного покрытия начинается с хорошо подготовленной спецификации. Это важный документ, предназначенный для предоставления подрядчику четких и точных инструкций о том, что и как следует делать. Спецификация должна быть составлена ​​кем-то с соответствующими техническими знаниями, и в ней должно быть ясно, что требуется, а что является практичным и достижимым.
Он должен быть написан в логической последовательности, начиная с подготовки поверхности, проходя через каждую наносимую краску или металлическое покрытие и, наконец, касаясь конкретных областей, например. сварные швы. Он также должен быть максимально кратким, согласующимся с предоставлением всей необходимой информации. Наиболее важными элементами спецификации являются следующие:

  • Обработка металла для удаления острых краев, выступов и т. д., а также стальных загрязнений.
  • Требуемый метод подготовки поверхности и стандарт.
  • Максимальный интервал между подготовкой поверхности и последующим грунтованием или металлическим покрытием.
  • Типы используемых красок или металлических покрытий, поддерживаемые соответствующими стандартами.
  • Используемый(е) метод(ы) применения.
  • Количество наносимых слоев и интервал между слоями.
  • Толщина влажной и сухой пленки для каждого слоя.
  • Место нанесения каждого слоя (т. е. магазины или строительная площадка) и требуемые условия нанесения с точки зрения температуры, влажности и т. д.
  • Детали для обработки сварных швов, болтовых соединений и т. д.
  • Процедуры устранения повреждений и т. д.

Большинство стальных мостов защищены в соответствии с требованиями Highways England и стандартными спецификациями Network Rail. Для других мостов могут быть указаны альтернативные системы и методы покрытия, но должны применяться те же стандарты и принципы надлежащей практики покрытия.

[вверх]Инспекция и контроль качества

Основная статья: Инспекция и контроль качества

 

Ассортимент инструментов для испытаний и контроля

Контроль является неотъемлемой частью контроля качества. Его целью является проверка соблюдения требований спецификации и предоставление клиенту отчета с надлежащими записями. Одним из самых больших преимуществ для инспектора по покрытиям является четкая письменная спецификация, на которую можно без сомнений ссылаться.

Назначение стороннего инспектора с соответствующей квалификацией следует рассматривать как инвестиции в качество, а не просто как дополнительные расходы. Проверка процессов, процедур и материалов, необходимых для нанесения защитного покрытия на стальные конструкции, имеет жизненно важное значение, поскольку серьезную ошибку даже в одной операции нельзя легко обнаружить после выполнения следующей операции, и если ее не исправить немедленно, это может значительно снизить ожидаемые срок службы до первого технического обслуживания.

[наверх]Ссылки

  1. 1.0 1.1 BS EN ISO 12944-2: 2017, Краски и лаки. Защита стальных конструкций от коррозии защитными системами окраски. Часть 2. Классификация сред, BSI
  2. 2.0 2.1 BS EN ISO 9223: 2012, Коррозия металлов и сплавов. Коррозионная активность атмосферы. Классификация, определение и оценка BSI
  3. ↑ BS EN ISO 12944-3: 2017, Краски и лаки. Защита стальных конструкций от коррозии защитными системами окраски. Часть 3. Вопросы проектирования, BSI
  4. ↑ BS EN ISO 8501-1: 2007 Подготовка стальных поверхностей перед нанесением красок и сопутствующих продуктов. Визуальная оценка чистоты поверхности. Степени ржавчины и степени подготовки стальных поверхностей без покрытия и поверхностей после полного удаления предыдущих покрытий, ISO

Ресурсы

  • Хенди, Ч.Р.; Айлс, округ Колумбия (2015) Группа стальных мостов: Руководящие указания по передовой практике строительства стальных мостов (6-й выпуск). (стр. 185). SCI
    • Руководство 8.01 Подготовка к эффективной защите от коррозии
    • Руководство 8.02 Защитная обработка крепежных изделий
    • Руководство 8.03 Горячее цинкование погружением
    • Руководство 8.04 Металлические покрытия, полученные термическим напылением
    • Руководство 8.05 Высокоэффективные лакокрасочные покрытия
    • Руководство 8.06 Проверка подготовки поверхности и обработки покрытий
  • Стальные здания, 2003 г. , Британская ассоциация строительных металлоконструкций, ООО.
    • Глава 12 – Защита от коррозии

[наверх]Дополнительная литература

  • Д.Дикон и Р.Хадсон (2012 г.), Руководство по проектированию металлоконструкций (7-е издание), глава 36 – Коррозия и предотвращение коррозии, Институт стальных конструкций.
  • Д.А. Bayliss & D.H.Deacon (2002), Steelwork Corrosion Control (2-е издание), Spon Press

[вверху] См. также

  • Коррозия конструкционной стали
  • Влияние конструкции на коррозию
  • Подготовка поверхности
  • Лакокрасочные покрытия
  • Стандартные системы защиты зданий от коррозии
  • Металлические покрытия
  • Соответствующие спецификации
  • Инспекция и контроль качества

[наверх]Внешние ссылки

  • Британская федерация покрытий
  • Ассоциация гальванистов
  • Ассоциация исследования красок
  • Ассоциация термического напыления и обработки поверхностей
  • ИКАТС
  • Корродор
  • Защита от коррозии

Защита от коррозии | Piping Technology & Products, Inc.

Защита от коррозии

В этом техническом бюллетене рассматриваются четыре метода защиты компонентов опор труб из углеродистой стали от коррозии; покраска, цинкование, горячее цинкование погружением и их комбинации. Покраска имеет преимущество, когда важен внешний вид и выбор цвета. Современные системы окраски могут быть подходящей защитой в определенных условиях. Краска обеспечивает «барьерную» защиту металлической поверхности. Способность цинка обеспечивать катодную защиту углеродистой стали в дополнение к барьерной защите является фундаментальным преимуществом. В большинстве случаев снижение стоимости жизненного цикла оправдывает небольшие дополнительные затраты на цинкование. Действительно, покраска и цинкование вместе могут обеспечить синергетический эффект, который в некоторых случаях может быть оправдан.

Использование цинка и цинкование имеет долгую историю. Первые патенты на горячее цинкование погружением были выданы во Франции и Англии в 1836 и 1837 годах. Эта технология была быстро принята и широко использовалась в конце 1800-х годов. В Соединенных Штатах у нас есть мосты, которым более 100 лет, с оцинкованными конструкциями. Кроме того, у нас есть опоры ЛЭП и конструкции подстанций, которым более 70 лет. Изучена трубная эстакада нефтехимического завода под Хьюстоном после 28 лет эксплуатации. Измерения оставшейся толщины цинка дали прогноз еще на 60 лет службы. Целлюлозно-бумажные комбинаты используют оцинкованные материалы в большинстве своих критических сред. Важно понимать основы, которые делают эту «старую» технологию такой рентабельной в столь широком спектре приложений.

Электрохимия цинка и углеродистой стали

Коррозия — это электрохимический процесс, происходящий в присутствии четырех элементов; анод, который отдает электроны, катод, который получает электроны, электролит (который обычно представляет собой водный раствор кислот, оснований или солей) и металлический путь тока. Скорость, с которой происходит коррозия, зависит от электрического потенциала между анодной и катодной областями, pH электролита, температуры, воды и кислорода, доступных для химических реакций.

На рис. 1 показано, как коррозия повреждает углеродистую сталь. Обратите внимание, что область с ямками справа является анодной и отдает электроны, в то время как катодная область слева (где присутствуют вода и кислород из воздуха) является местом появления ржавчины. Язвенная область, где углеродистая сталь ослаблена, не является местом появления ржавчины.

Влияние коррозии на цинк и углеродистую сталь

Цинк имеет большую склонность отдавать электроны, чем углеродистая сталь, поэтому, когда оба присутствуют, цинк становится анодом и защищает углеродистую сталь. На рис. 2 показана коррозия, при которой цинк отдает электроны и покрывается ямками, а углеродистая сталь остается неповрежденной. Из этого мы видим, что цинковое покрытие будет защищать углеродистую сталь, «жертвуя» собой до тех пор, пока цинк не истощится. Скорость истощения цинка относительно низка, когда рН электролита составляет от 4 до 13.

Горячее цинкование погружением имеет два преимущества перед цинковым покрытием. Во время цинкования расплавленный цинк вступает в реакцию с углеродистой сталью, образуя слои цинково-железных сплавов. На рисунке 3 показана оцинкованная поверхность с 5 слоями, верхний слой из 100% цинка, а нижний слой из углеродистой стали. Слои сплава между ними имеют повышенную твердость, чтобы обеспечить механическую (барьерную) защиту, и из-за содержания в них цинка они также являются анодными по сравнению с углеродистой сталью. Твердость этих слоев сплава обеспечивает гораздо большую защиту от царапин, чем может обеспечить краска. Это важно для большинства применений опор труб.

  • Эта-слой 100: Zn 70, твердость DPN
  • Слой Zeta 94 % Zn 6 % Fe 179 Твердость DPN
  • Дельта-слой 90% Zn 10% Fe 224 Твердость DPN
  • Гамма-слой 75 Zn 25% Fe
  • Углеродистая сталь, твердость 159 DPN

Любое покрытие, которое создает барьер для влаги и кислорода в воздухе, поможет защитить углеродистую сталь от коррозии. Правильно окрашенная поверхность обеспечит барьер, но она может поцарапаться от контакта с твердыми предметами. Рисунок 4 иллюстрирует, как ржавчина может расти и повреждать окрашенную поверхность, когда коррозия начинается из-за того, что лакокрасочный барьер нарушается царапиной.

Рисунок 4

На рисунке 5 показана катодная защита, обеспечиваемая при царапании оцинкованной поверхности.

Дуплексные системы обычно требуют окраски поверх цинкования. Некоторые из наших клиентов указали дуплексную систему. Это дороже, но может быть оправдано для определенных агрессивных сред или для внешнего вида. Американская ассоциация цинкования предлагает следующее «эмпирическое правило» для оценки срока службы дуплексной системы.

(Срок службы дуплексной системы) = 1,5* (Срок службы: только HDG) + (Срок службы: только краска)
* Синергетический множитель 1,5 основан на барьерной защите, которую краска обеспечивает для оцинкованной поверхности.

Многие клиенты компании Piping Technology and Products Inc. возвращали окрашенные регулируемые и постоянные пружинные опоры, которые больше не могли функционировать из-за коррозии. Затраты должны учитываться при спецификации покрытий для трубных опор. Владелец и оператор объекта должны учитывать затраты на протяжении жизненного цикла. Опоры труб обычно составляют относительно небольшой процент от общей стоимости установки и эксплуатации электростанции, нефтехимического завода, бумажной фабрики или другого крупного объекта. Небольшие дополнительные затраты на горячее цинкование компонентов трубных опор из углеродистой стали всегда являются разумным вложением.

Для получения дополнительной информации вы можете связаться со следующей организацией:

Американская ассоциация гальванистов-AGA
12200 E. Illif #204 Aurora, CO 80014
тел. 800-468-7732

Национальная ассоциация инженеров-коррозионистов NACE
1440 S. Creek Dr. Houston, Tx 77084
ph 713-492-0535

Защита стали от коррозии | Американская ассоциация гальванистов

Дом »
Горячее цинкование (HDG) »
Почему именно цинкование? »
Защита от коррозии для стали

Экстремальная коррозия Сталь

— распространенный и эффективный строительный материал, дающий разработчикам свободу проектирования. Однако для проектов, подверженных воздействию атмосферы и других агрессивных сред, очень важно нанести на сталь покрытие для защиты от коррозии. Часто крупные строительные проекты рассчитаны на расчетный срок службы 50-100 лет, что подчеркивает необходимость надежной и долговечной защиты от коррозии. Существует бесчисленное множество примеров, демонстрирующих проверенную защиту горячего цинкования в самых суровых условиях.

Причиной широкого применения горячего цинкования (HDG) является тройной защитный характер покрытия. В качестве барьерного покрытия он обеспечивает прочное металлургически связанное цинковое покрытие, которое полностью покрывает стальную поверхность и изолирует сталь от коррозионного воздействия окружающей среды. Кроме того, жертвенное поведение цинка защищает сталь даже в случае повреждения или незначительного разрыва покрытия. Наконец, естественное выветривание покрытия приводит к образованию на поверхности дополнительного защитного слоя.

Барьерная защита

Барьерная защита, пожалуй, самый старый и наиболее широко используемый метод защиты от коррозии. Он действует путем изоляции основного металла от окружающей среды. Как и краски, покрытие методом горячего цинкования обеспечивает барьерную защиту стали. Пока барьер не поврежден, сталь защищена и коррозии не произойдет. Однако если барьер будет нарушен, начнется коррозия.

Поскольку для обеспечения коррозионной стойкости барьер должен оставаться неповрежденным, двумя важными свойствами барьерной защиты являются адгезия к основному металлу и стойкость к истиранию. Плотно связанная, непроницаемая природа цинка делает цинкование очень хорошим барьерным покрытием. более толстая стальная деталь. Покрытия, такие как краска с точечными отверстиями, восприимчивы к проникновению элементов, вызывающих быстрое распространение коррозии под пленкой.

Катодная защита

Гальваническая серия металлов (справа) перечисляет металлы и сплавы в порядке убывания электрической активности

Катодная защита является более эффективным методом защиты от коррозии. Это требует замены элемента коррозионной цепи путем введения нового коррозионного элемента, таким образом гарантируя, что основной металл станет катодным элементом цепи.

Горячее цинкование обеспечивает катодную защиту стали аналогично методу расходуемого анода. В основном, металл (цинк), анодированный по отношению к основному металлу (стали), помещается в цепь для коррозии вместо основного металла. Гальваническая серия металлов представляет собой список металлов, расположенных в порядке электрохимической активности в морской воде (электролите). Такое расположение металлов определяет, какой металл будет анодом и катодом, когда они будут помещены в электролитическую ячейку. Металлы выше в списке являются анодными по отношению к металлам ниже, что означает, что они обеспечивают катодную или жертвенную защиту, когда они соединены.

Из списка видно, что в случае горячего цинкования цинк предпочтительнее защищает от коррозии основную стальную основу. Фактически, катодная защита HDG гарантирует, что даже если покрытие повреждено до такой степени, что обнажается голая сталь (до ¼ дюйма в диаметре), коррозия не начнется до тех пор, пока не будет израсходован весь окружающий цинк.

Цинк горячеоцинкованного покрытия будет жертвовать собой, чтобы защитить нижележащую стальную основу до тех пор, пока весь окружающий цинк не будет израсходован.

Цинковая патина

В отличие от барьерной и катодной защиты, которые препятствуют коррозии самой стали, цинковая патина защищает цинковое покрытие. Цинк, как и все металлы, начинает подвергаться коррозии при воздействии атмосферы. Таким образом, свежеоцинкованная сталь проходит процесс естественного выветривания при воздействии влажных и сухих циклов в окружающей среде.

Когда гальванизированные покрытия подвергаются воздействию свободного потока воздуха, образование цинковой патины начинается с тонкого слоя оксидов цинка. Затем, когда деталь подвергается воздействию влаги (дождь, роса, сырость), частицы оксида цинка реагируют с водой, образуя пористый студенистый гидроксид цинка. Затем во время циклов сушки углекислый газ вступает в реакцию с гидроксидом цинка и превращается в тонкий, компактный и плотно прилегающий слой карбоната цинка. Скорость образования патины варьируется в зависимости от условий окружающей среды, но обычно для ее полного развития требуется примерно 6–12 месяцев.

Полностью проявленная патина представляет собой пассивную, стабильную пленку, которая прилипает к цинковой поверхности и не растворяется в воде, поэтому не смывается дождем или снегом. Из-за этого патина цинка подвергается коррозии очень медленно и защищает оцинкованное покрытие под ним, замедляя скорость коррозии примерно до 1/30 скорости коррозии стали в той же среде. По мере образования цинковой патины оцинкованное покрытие приобретает матово-серый цвет.

Образование цинковой патины имеет решающее значение для долговременной коррозионной стойкости при горячем цинковании. Поскольку образование патины зависит от естественных циклов увлажнения и высыхания в окружающей среде, результаты испытаний в соляном тумане, основанные на постоянном воздействии влаги, не позволяют точно предсказать срок службы оцинкованных покрытий в реальных условиях.

Защита от коррозии – Руководство по борьбе с коррозией, часть 2

После того, как мы рассмотрели различные типы коррозии в первой части руководства по коррозии, во второй статье мы поговорим о возможностях предотвращения коррозионных повреждений.

Защита от коррозии включает все меры, помогающие избежать коррозионного повреждения металлических компонентов. Помимо антикоррозионных материалов, существует множество покрытий, повышающих уровень защиты от коррозии. Рассмотрим эти варианты подробнее:​​​​​​​

 

Выбор сырья

Сырье, предотвращающее коррозию, включает, например, цветные металлы и коррозионно- и кислотостойкие стали. Последние также обычно называют «нержавеющими сталями». К коррозионностойким материалам для винтов относятся, среди прочего, коррозионностойкие нержавеющие стали в соответствии с по DIN EN 3506 и допуском национального строительного управления Z-30. 3-6.

Нержавеющие стали образуют самовосстанавливающийся поверхностный слой, пассивное покрытие. Это защищает основной материал от коррозии. Для создания пассивного покрытия необходима достаточная концентрация кислорода.

В крепежной технике используются различные виды нержавеющей стали в зависимости от области применения. Особенно часто используются следующие марки нержавеющей стали:
​​​​​​​​​

  • Нержавеющая сталь типа A2 (V2A) и A4 (V4A)
    Стали характеризуются хорошей коррозионной стойкостью в умеренно агрессивные атмосферы (например, влажный соленый воздух в прибрежных районах).
  • Нержавеющая сталь типа HCR (например, 1.4529)
    Обладают чрезвычайно высокой коррозионной стойкостью в области нержавеющих сталей и подходят для очень агрессивных сред (например, хлорированная вода в плавательных бассейнах).

Таким образом, использование коррозионно-стойкого сырья является одним из способов уменьшения коррозионного повреждения.
​​​​​

Примечание по сочетанию различных сырьевых материалов

При комбинировании коррозионно-стойких сырьевых материалов следует обратить особое внимание на биметаллическую коррозию, так как не все сырьевые материалы совместимы друг с другом. В таблице I перечислены типичные конструкционные материалы, которые можно комбинировать с крепежными элементами из коррозионностойких нержавеющих сталей.

Выбор покрытия

При наличии подходящего покрытия поверхность считается «защищенной от коррозии». Использование такого покрытия является еще одним способом уменьшения коррозионного повреждения.

Поверхностные покрытия для винтов предназначены для неметаллических и металлических поверхностей.
Так называемые гальванически наносимые покрытия или цинковые пластинчатые покрытия обычно используются для защиты металлических поверхностей с целью повышения защиты от коррозии:​​​​​​
​​​​​

Гальваническое цинкование

Наиболее распространенным металлическим покрытием крепежных изделий является гальваническое цинкование (5–10 мкм) с последующей пассивацией. Для цинкования заготовки погружаются в цинковый электролит и происходят химические и электрохимические процессы. На последующем этапе пассивации на металле создается дополнительный защитный слой, предотвращающий или значительно замедляющий коррозию.
 

Базовые знания
​​​​​​​Пассивация — это хромсодержащее оксидное покрытие, доступное в различных вариантах. Версия с оксидом хрома (VI) оказалась очень коррозионностойкой, но токсичной, поэтому этот процесс необходимо исключить. В соответствии со спецификациями директивы REACH, EJOT использует только покрытия и пассивации, не содержащие хрома(VI). Директива REACH считается одним из самых строгих законов о химических веществах в мире. Он предусматривает, что для использования опасных веществ требуются разрешения на получение разрешений. Оксид хрома (VI) нельзя использовать без соответствующего разрешения с 2017 г.

Последующее покрытие так называемым финишным покрытием защищает цинковый слой от коррозии белой ржавчиной и дополнительно повышает защиту от коррозии.

Обзор характеристик и преимуществ:

  • Универсальность применения
  • Экономичный процесс
  • Устойчивость к воздействию окружающей среды
  • Защита от повреждений при транспортировке, установке и обслуживании
  • 5 Высокая коррозионная стойкость0016

  • Отличная дальнейшая обработка

Цинковое ламельное покрытие

Цинковое ламельное покрытие представляет собой неэлектролитическое покрытие, состоящее из так называемого неорганического базового слоя и финишного покрытия.

Покрытие b​​​​​asecoat может представлять собой покрытие из пластин цинка, состоящее преимущественно из пластин цинка и алюминия. Наносится непосредственно на металлическую часть. Это базовое покрытие определяет антикоррозионные свойства. Содержащийся в нем цинк обеспечивает высокий уровень катодной защиты от коррозии. верхнее покрытие (герметизирующее) дополнительно дополняет свойства базового покрытия. Помимо защиты от коррозии, это финишное покрытие защищает от химических и механических воздействий и отвечает, например, за атмосферостойкость и внешний вид. Их комбинация называется Duplex-coating .

Обзор характеристик и преимуществ:

  • Долговременная защита от коррозии при циклических нагрузках
  • Замедленное образование красной и белой ржавчины и гальваническая коррозия
  • Отсутствие водородного охрупчивания
  • Химическая стойкость
  • Возможна тонкая толщина покрытия (6–25 мкм)
  • Термостойкость (180–300 °C в зависимости от продукта)

​​​
Этот процесс используется везде, где отличная защита от коррозии должна сочетаться с другими функциональными и декоративными свойствами.

Защита от коррозии с помощью цинковых ламелей изначально была разработана как альтернатива гальваническому цинкованию, не содержащая хром VI. Он зарекомендовал себя благодаря широкому спектру возможных применений для самых разных приложений.