Электросхема сварочного инвертора: Схема сварочного инвертора – принципиальная схема инверторной сварки

Содержание

Схема сварочного инвертора

До недавних пор все сварочные работы выполнялись при помощи мощных понижающих трансформаторов. Во многих случаях эти устройства были неудобными, в основном из-за сложностей с их перемещением и высокой энергоемкости. Ситуация коренным образом изменилась, когда появилась схема сварочного инвертора, созданная на основе современных технологий. Получились небольшие легкие устройства с широким набором функций. Вся их работа осуществляется благодаря наличию в конструкции импульсного преобразователя, способного производить высокочастотные токи. Именно они обеспечивают быстрое зажигание сварочной дуги, поддерживают ее стабильное состояние в течение всего периода работы.

Содержание

Отличительные черты инверторов

Любое инверторное устройство по своей сути является блоком питания, внутри которого происходят физические процессы преобразования электроэнергии.

В сварочных инверторных устройствах они протекают по следующей схеме:

  • На начальном этапе выполняется преобразование входного переменного напряжения (220 В, 50 Гц) в постоянный ток.
  • На втором этапе осуществляется обратное превращение тока с постоянной синусоидой в переменный ток с высокой частотой.
  • Затем созданное напряжение понижается, осуществляется окончательное выпрямление тока с сохранением требуемых высокочастотных показателей. Этот порядок нужно знать, если требуется собрать сварочный инвертор своими руками.

Именно такой порядок действий дал возможность для снижения размеров и веса инверторных устройств. Старая сварочная аппаратура функционировала совсем по другому принципу. Здесь снижение напряжения на первичной обмотке, приводило к росту силы тока во вторичной трансформаторной обмотке. Полученная таким образом сила тока огромного значения, позволила применить дуговой способ сваривания. Поэтому, на вторичной обмотке пришлось снизить количество витков, но увеличить одновременно размеры сечения проводника. Подобная схема делала конструкцию очень громоздкой и тяжелой.

Электрическая схема сварочного инвертора дала реальный шанс повысить частотные показатели рабочего тока до 60, а в некоторых моделях и до 80 кГц без увеличения массы и размеров. В схеме были использованы полевые транзисторы, взаимодействующие между собой на таких же высоких частотах. Они соединяются с трансформаторной катушкой и передают на нее ток с заданной частотой. Поскольку самой катушке не требуется повышать частоту, за счет этого она сохраняет свои миниатюрные размеры. Выходные данные получаются, как и у обычной сварки, но габариты и масса инверторного устройства существенно отличаются в сторону уменьшения.

Взаимодействие основных узлов и деталей инвертора

На входе устройства обязательно нужен постоянный сигнал. Он получается с помощью сетевого выпрямителя, превращающего напряжение 220 вольт в постоянный ток. Основой конструкции этого модуля служит стандартный диодный мост и конденсаторы, сглаживающие пульсации после выпрямления.

Под действием высоких токов даже простейший диодный мост сильно нагревается и требует постоянного охлаждения в процессе работы. Во многих моделях установлен специальный радиатор и термический предохранитель, выполняющий отключение при нагреве моста до 90 градусов.

При подключении сварки к сети происходит сильное увеличение зарядного тока конденсаторов. Возникает реальная опасность пробоя компонентов диодного моста. Защититься от этого помогает схема плавного пуска, снижающая уровень тока при включении. После выхода аппарата в нужный режим, эта схема отключается с помощью реле коммутации.

Пройдя через выпрямительный модуль, напряжение, увеличенное до 310 В, попадает на участок импульсного преобразователя с ключами – транзисторами. Данные компоненты превращают подводимое напряжение в импульсные сигналы прямоугольной формы, частотой 60-80 кГц. Ключевым транзистора во время работы также требуются радиаторы охлаждения.

Наиболее важные функции в схеме инвертора принадлежат понижающему трансформатору. Он отличается компактными размерами и незначительным весом. Кроме того, в нем дополнительно предусмотрена выходная обмотка, обеспечивающая питание схемы управления. В приемную обмотку поступают прямоугольные импульсы на 310 В и частотой 60-80 кГц. Одновременно с этим, напряжение во вторичной обмотке за счет малого количества витков понижается до 60-70 вольт, а выходной ток увеличивается до 110-130 А и окончательно выпрямляется.

С этой целью сигнал от трансформатора поступает к выходному выпрямителю. Именно здесь появляется постоянный ток, под действием которого возникает сварочная дуга. В схеме используются сдвоенные диоды, имеющие высокое быстродействие и определяющие максимальное потребление тока всего инвертора. Данные элементы также охлаждаются с помощью радиаторов.

Принципиальная схема сварочного инвертора

Одной из основных функций инверторных сварочных установок является возможность увеличения частоты тока с 50 Гц стандартного значения, до 60-80 кГц, требуемых для работы. Все регулировки на выходе устройства производятся уже с высокочастотными токами, с использованием компактных малогабаритных трансформаторов. Частота увеличивается на том участке инверторной схемы, где предусмотрено расположение контура на основе мощных силовых транзисторов. На эти транзисторы возможна подача исключительно постоянного тока, поэтому на входе и выполняется выпрямление переменного напряжения.

Принципиальная схема сварочного инвертора условно разделяется на две составляющие. Это зона силового участка и цепь со схемой управления. Основным компонентом силового участка выступает диодный мост, где выполняется превращение переменного тока в постоянный. Такое преобразование приводит к возникновению импульсов, требующих сглаживания.

Сглаживание или фильтрация этих импульсов производится электролитическими конденсаторами, установленными за диодным мостом. Следует помнить, что напряжение, выходящее из моста, приблизительно на 40% превышает его величину на входе. Из-за этого диоды выпрямителя подвергаются сильному нагреву, и их работоспособность может заметно снизиться. Защита от перегрева элементов выпрямителя осуществляется радиаторами, включенными в конструкцию. Непосредственно на диодном мосту установлен термический предохранитель, отключающий питание при нагреве свыше 80-90 градусов.

Работа преобразователя приводит к созданию высокочастотных помех, попадающих через вход в электрическую сеть. Во избежание подобных ситуаций, перед выпрямителем производится установка фильтра, обеспечивающего электромагнитную совместимость. Такой фильтр включает в себя дроссель и конденсаторы.

Сама электросхема инвертора, выполняющего преобразование постоянного тока в переменный со значительно увеличившейся частотой, включает в себя транзисторы, собранные по схеме так называемого косого моста. Они переключаются между собой с высокой частотой и формируют переменный ток с такой же частотой, в пределах десятков или даже сотен килогерц. Результатом таких преобразований является переменный ток высокой частоты с прямоугольной амплитудой.

На выходе инвертора требуется получить постоянный ток с показателями, достаточными для выполнения сварочных работ. Эта функция выполняется понижающим трансформатором, расположенным сразу же за транзисторной схемой. Окончательное получение постоянного тока на выходе производится выпрямителем высокой мощности, собранным на основе диодного моста.

Защитные компоненты и схема управления

В процессе работы сварочный инвертор постоянно подвергается потенциальной опасности из-за возможных сбоев в сети и самой системе. Исключить негативные факторы помогают защитные элементы, установленные на различных участках схемы.

Предотвратить перегрев и сгорание транзисторов во время преобразований токов возможно при помощи специальных демпфирующих цепей. Другие блоки и узлы, присутствующие в электрической схеме и работающие под большими нагрузками, защищены элементами принудительного охлаждения. К каждому из них подключены термодатчики, отключающие питание при температурах нагрева, превышающих критическую отметку. Внутри инверторной аппаратуры система охлаждения, состоящая из вентиляторов и радиаторов, занимает достаточно много места.

Каждая схема инвертора оборудуется ШИМ-контроллером, обеспечивающим управление всей электрической схемой. От него поступают сигналы к разделительному трансформатору, силовым диодам и транзисторам. Для эффективного управления всей системой самому контроллеру также требуется подача установленных электрических сигналов. Такие сигналы вырабатываются операционным усилителем, к которому на вход подается выходной ток, преобразованный в инверторе. Если его значение расходится с заданными показателями, усилитель выполняет формирование управляющего сигнала и далее передает его на контроллер. Такая схема позволяет своевременно отключить аппарат при возникновении критических ситуаций в электрической схеме.

Как устранить неисправности инвертора

В некоторых случаях нарушения правил эксплуатации могут привести к выходу из строя даже самых надежных компонентов схемы сварочного инвертора. Основными причинами являются сбои в системах охлаждения, эксплуатация устройств в условиях повышенной влажности или запыленности. Большое количество пыли, осевшей на радиаторе, создает препятствие движению воздуха и своевременному отводу тепла. Поэтому производители рекомендуют периодически чистить аппаратуру.

Поиск возможных неисправностей нужно начинать от простого к сложному, поскольку современные схемы оборудованы многоступенчатой защитой от коротких замыканий и перегревов. Следует внимательно изучить инструкцию, где подробно указаны особенности эксплуатации конкретного устройства.

Среди основных причин возможных неисправностей можно выделить следующие:

  • Напряжение в сети слишком высокое или низкое. Инвертор сохраняет свою работоспособность в пределах 170-250 вольт.
  • Использование сетевого провода слишком большой длины или с небольшим сечением. Минимальное сечение должно быть не ниже 2,5 мм2, а длина питающего кабеля – не более 30 м.
  • Длина стандартного сварочного кабеля не превышает 3 м, а сечение – 35-50 мм2. Нарушение этих параметров приводит к сбоям в работе.
  • Некачественные контактные соединения силового и питающего кабеля.

В случае обнаружения неисправности, рекомендуется не ремонтировать сварочный инвертор самостоятельно, особенно если схема слишком сложная. Лучше всего – пригласить специалиста для проведения окончательной диагностики на соответствующем оборудовании.

Плюсы и минусы сварочных инверторов

Основными преимуществами инверторных устройств являются следующие:

  • Использование современных технологий позволило снизить массу аппаратов до 5-12 кг, в зависимости от модели. Обычные сварочные агрегаты весят в среднем от 18 до 35 кг.
  • Высокий КПД инверторов – до 90%. Такой показатель достигается за счет снижения затрат на нагрев деталей и компонентов.
  • Низкое энергопотребление, примерно с 2 раза меньше, чем у обычных сварочных трансформаторов.
  • Универсальность и широкий диапазон регулировок позволяют работать с разными металлами, использовать разные технологии сварки.
  • Множество полезных дополнительных опций: плавный пуск, антизалипание, форсаж и другие.
  • Напряжение, подаваемое на дугу, отличается высокой стабильностью. С этой целью автоматика обеспечивает взаимодействие всех компонентов схемы, создавая наиболее оптимальные условия для работы.
  • Даже простой инвертор может работать с любыми типами электродов.
  • Возможность программирования и настройки некоторых моделей на определенный тип сварочных работ.

В качестве минусов отметим недостатки, не оказывающие влияния на качество работ:

  • Высокая стоимость инверторов, примерно на 20-50% превышающая цену обычной аппаратуры.
  • Транзисторы обладают повышенной уязвимостью, а их стоимость иногда составляет 60% от цены всего устройства.
  • Невозможность производить сварку инверторами в сложных условиях эксплуатации.

Электрические Схемы Сварочных Инверторов — tokzamer.ru

Причем использование последнего сейчас признается более разумным. Устанавливаются на радиатор.

Типовая схема и принцип работы инвертора

Читайте также: Подключить электричество на участок

Виды инверторных источников сварочного тока

Корпус с вентилятором системы охлаждения.

Принципиальная схема аппаратов инверторного типа Для того чтобы понимать суть работы современного сварочного агрегата, необходимо знать из каких блоков состоит принципиальная схема сварочного инвертора, который обеспечивает энергией дугу короткого замыкания при сварочном процессе.

Оно состоит из 2—4 конденсаторов и дросселя.

Эти ситуации могут происходить по причине недостаточного охлаждения силовых элементов при высокой температуре окружающего воздуха, а также при работе в условиях запылённой или слишком влажной атмосферы. Причем использование последнего сейчас признается более разумным. Как работает сварочный инвертор Формирование тока большой силы, при помощи которого создается электрическая дуга для расплавления кромок соединяемых деталей и присадочного материала, — это то, для чего предназначен любой сварочный аппарат.

Этот элемент подает на силовую часть сварочного агрегата электроток. Давайте немного подробнее разберемся с описанной схемой.

В условиях повышенной влажности могут возникать утечки, которые также могут привести к неисправности. Электрическая схема инвертора включает в себя следующие обязательные компоненты: Питающий блок.

Важным этапом является решение задачи, связанной с выбором необходимой технологии, оптимизирующей работу силовой части. В устройство входит силовой трансформатор. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.

Cхемы сварочных инверторов

Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов.

Все сварочные аппараты делятся на несколько основных групп: Для проведения электродуговой сварки при применении покрытых специальным составом электродов применяется оборудование типа ММА. Далее мы приводим блок-схему функционирования стандартного инвертора, которая наглядно демонстрирует принцип его применения. Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов.

Пайка платы.

Выводы Инвертор — сложное электронное устройство, но простое в использовании, его подключают к электрической цепи с напряжением V и без опасения проводить сварочные работы. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву.

Схемы аппаратов Сварис

Конденсаторы, установленные в фильтре, после активации зарядки способны выдавать большой силы ток, который сжигает, поэтому инвертор обеспечивается плавным пуском. Несмотря на применение схожей схемы при создании практически всех инверторов, они существенно отличаются друг от друга. Электрическая схема предполагает работу агрегата на основе импульсных преобразователей высокой частоты. Обычные выпрямительные диоды с такой задачей бы не справились — они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя.

Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп. Затем происходит выравнивание тока при наличии конденсатора и его поступление к блоку транзистора.

Принципиальная электрическая схема в деталях: составляющие

Таким образом, на первом этапе мы получаем на выходе с выпрямителя постоянный ток, имеющий значение более V. Ранее в сварочных инверторах использовались трансформаторы, очень мощные, работающие за счет обмотки трансформатора и имеющие, из-за этого, размеры и вес, делающие сварочные аппараты громоздкими и неудобными в применении. Инверторное устройство еще раз преобразовывает электроток теперь уже в переменный , увеличивая при этом его частоту.

ac%20сварка%20машина%20контур%20схема техпаспорт и указания по применению

Каталог техпаспорт MFG и тип ПДФ Теги документов
Недоступно

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

Реле аромата lr42758

Резюме: lr26550 LR42758 Aromat lr26550 LR68004 Aromat lr44444 Aromat lr26550 техническое описание lr44444 реле Aromat lR44444 E43149

Текст: Нет доступного текста файла


Оригинал

PDF

LR26550
E43149
E43149
Реле аромата LR42758
лр26550
LR42758
Аромат LR26550
LR68004
Аромат LR44444
Спецификация аромата LR26550
лр44444
Реле аромат LR44444
а0540

Аннотация: A2730

Текст: Нет доступного текста файла


OCR-сканирование

PDF

120 В переменного тока,
А0410
А0420
А0430
А0440
А0450
А0460
А0470
А0480
А0490
а0540
А2730
НФК 63210

Резюме: SCR 30A 500V IEC 269 63210 NFC 63210 22×58 63211 32A-100A CB832 20C10x38SC 14X51

Текст: Нет доступного текста файла


Оригинал

PDF

CB2258-1
CB2258-1N
CB2258-2
CB2258-3
CB2258-3N
NFC 63210
тиристор 30А 500В
МЭК 26963210
NFC 63210 22×58
63211
32А-100А
CB832
20C10x38SC
14х51
микропереключатель

Резюме: vde 0636 iec 269 neozed Protistor 660V sba6 siemens diazed gg 350SB1F1-1 vde 0636 микропереключатель 2 контакта

Текст: Нет доступного текста файла


Оригинал

PDF

108мм
110мм
микропереключатель
VDE 0636 МЭК 269
неозед
Протистор
660В
sba6
Сименс Диазед ГГ
350СБ1Ф1-1
вде 0636
микропереключатель 2 контакта
Электрическая схема от 220 В переменного тока до 12 В постоянного тока

Аннотация: Схема светодиодной лампы 220 В Схема светодиодной лампы 230 В в ваттах Схема цепи от 220 В переменного тока до 110 В переменного тока Схема светодиодной лампы Схема лампочки

Текст: Нет доступного текста файла


Оригинал

PDF

E225660
УЛ508,
Принципиальная схема 220 В переменного тока на 12 В постоянного тока
Схема светодиодной лампы 220В
Светодиодная лампа 230в в ваттах принципиальная схема
Электрическая схема 220 В переменного тока на 110 В переменного тока
схема светодиодная лампа 230в
Схема от 230 В переменного тока до 12 В постоянного тока
500 светодиодная лампа 230в электрическая схема
схема светодиода 230в
схема светодиодной лампочки 230в
Схема светодиодной лампы 24 В
2015 — Недоступно

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

9Б/18Б
наис AQZ202

Резюме: E43149 MOSFET 400 В MOSFET 400 В 16 А NAIS AQZ102 AQV252G 400 В постоянного тока E191218 aqy211 18a60v

Текст: Нет доступного текста файла


Оригинал

PDF

AQZ202
AQZ205
AQZ207
AQZ204
E43149UL508)
АПВ2111В
E191218
УЛ1577)
АПВ2121С
наис AQZ202
E43149
МОП-транзистор 400 В
МОП-транзистор 400В 16А
НАИС AQZ102
AQV252G
400 В постоянного тока
E191218
aqy211
18а60в
Электрические двухслойные конденсаторы с радиальными выводами, тип

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

31 марта 2014 г.
Электрические двухслойные конденсаторы с радиальными выводами
NFC 63210

Аннотация: 125C22X58AM

Текст: Нет доступного текста файла


Оригинал

PDF

8С14х51СК
10С14х51СК
12С14х51СК
16С14х51СК
20С14х51СК
25С14х51СК
32С14х51СК
40С14х51СК
50С14х51СК
1/660 В
NFC 63210
125C22X58AM
2004 — Преобразователь Yokogawa

Реферат: Регулирующий клапан WIKA Instrument Foxboro

Текст: Нет доступного текста файла


Оригинал

PDF

а410608

Резюме: A411506 A412402 V920103 A411205 A410508 A4108510 A410705 A41200 a410908

Текст: Нет доступного текста файла


OCR-сканирование

PDF

E82456
V920103
LR52082
4КМ08002НО
410506002НО
А410905
А412202
А410906
А412203
А410907
а410608
А411506
А412402
V920103
А411205
А410508
А4108510
А410705
А41200
а410908
сименс 5с*23 К2 400В

Реферат: Siemens 3NA3830 3Nh4430 3Nh5030 FUSE SIEMENS 3nh4030 5SB261 5SE2216 3Nh4030 3NWNS2 3NA3260

Текст: Нет доступного текста файла


Оригинал

PDF

F27SB
16Д27СБ
5Ш211
5Ш212
5Ш213
5Ш222
5Ш223
5Ш224
5Ш3032
5Ш3232
Сименс 5с*23 С2 400В
Сименс 3NA3830
3Нх4430
3Нх5030
ПРЕДОХРАНИТЕЛЬ SIEMENS 3нх4030
5СБ261
5SE2216
3Нх4030
3NWNS2
3NA3260
королевский предохранитель

Реферат: 5sb25 SIEMENS NH FUSE

Текст: Нет доступного текста файла


Оригинал

PDF

NZ01C
NZ02C
NZ03C
5Ш5002
5Ш5004
5Ш5006
5Ш5010
5Ш5020
5Ш5025
5Ш5035
королевский предохранитель
5сб25
ПРЕДОХРАНИТЕЛЬ SIEMENS NH
2007 — РАМБ36

Реферат: AC127 MULT18X18 YUV400 AC-91 AC123

Текст: Нет доступного текста файла


Оригинал

PDF

DS603
264/MPEG-4
1080i
1080i/p
РАМБ18×2,
РАМБ36
РАМБ36
AC127
МУЛЬТ18X18
ЮВ400
АС-91
AC123
Недоступно

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

10НАБ12Т4В1
E63532
Недоступно

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

34НАБ12Т4В1
Предохранители А

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

400/660В
450/660В
500/660В
550/660В
630/660В
700/660В
400SB2C0-6
450SB2C0-6
500SB2C0-6
550SB2C0-6
Предохранители А
ММФ-06D24DS

Реферат: ebm w2s107-aa01-16 CT3D55F 4124X «японский сервопривод» ebm w2s107-ab05-40 NMB 3110nl-05w-b50 ebm w2s107-aa01-40 CT3B60D3 4124-GX

Текст: Нет доступного текста файла


Оригинал

PDF

012П535П-24В
012P540
012P545
024P540
024П545
0410Н-12
0410Н-12Н
0410Н-12Л
0410Н-5
109-033УЛ
ММФ-06Д24ДС
ebm w2s107-aa01-16
CT3D55F
4124X
«японский сервопривод»
ebm w2s107-ab05-40
НМБ 3110nl-05w-b50
ebm w2s107-aa01-40
CT3B60D3
4124-GX
Недоступно

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


Оригинал

PDF

725-032013-1М
ДЖБВ24-3Р2

Аннотация: разъем h321-04 JBW05-2R0 jbw05-20r 4EU20G057 JBW75W SVH-21T-P1. 1 JBW12-12R JBW05-3R0 JBW10

Текст: Нет доступного текста файла


Оригинал

PDF

JBW10
0150 Вт
УЛ60950-1
C-УЛЕН60950-1
EMIFCC-BVCCI-BEN-55011-BEN55022-B
EN61000-3-2
JBW05-2R0
ДЖБВ12-0Р9
JBW15-0R7
ДЖБВ24-0Р5
JBW24-3R2
h321-04
JBW05-2R0
jbw05-20r
4EU20G057
JBW75W
Разъем СВХ-21Т-П1.1
ДЖБВ12-12Р
JBW05-3R0
JBW10
2008 — 150-Ф85НБД

Реферат: 150-F201NBD 150-F317NBD 150-C25NBD 150-F480NBD 150-C25NBR Устройство плавного пуска Allen-Bradley 150-C60NBD 150-C43NBD 150-F108NBD 150-F43NBD

Текст: Нет доступного текста файла


Оригинал

PDF

150-SG009D-EN-P
150-SG009C-EN-P
150-Ф85НБД
150-Ф201НБД
150-Ф317НБД
150-С25НБД
150-Ф480НБД
150-C25NBR
Устройство плавного пуска Allen-Bradley 150-C60NBD
150-С43НБД
150-Ф108НБД
150-Ф43НБД
МИП0224СИ

Реферат: 2SK1937 t201 трансформатор M51995AFP mip0224 ZUP-200 Nemic-Lambda CN d1fl20u 0134G ZUP20

Текст: Нет доступного текста файла


OCR-сканирование

PDF

ЗУП-200
1А548-79-01
Р-2-12
Р-13-14
Р-15-16
Р-17-30
ЗУП-200
РКР-9102)
МИЛ-ХДБК-217Ф.
ГЕНРАД-2503.
MIP0224SY
2SK1937
трансформатор т201
M51995AFP
мип0224
Nemic-лямбда CN
d1fl20u
0134G
ЗУП20
4812б

Реферат: sta6013 DSW-612 P-8364 Stancor ppc-22 4190A GSD-100 P-8362 P-8384 stancor трансформатор

Текст: Нет доступного текста файла


Оригинал

PDF

ЗВЕЗДА-9005
ЗВЕЗДА-9006
ЗВЕЗДА-9007
Р-6133
P-6454
СТА-4125Т
P-8638
ТГК130-230
P-8622
ТГК175-230
4812б
sta6013
ДСВ-612
P-8364
Станкор ППЦ-22
4190А
ГСД-100
P-8362
P-8384
станкор трансформатор
Недоступно

Резюме: нет абстрактного текста

Текст: Нет доступного текста файла


OCR-сканирование

PDF

500 мА
О-22К
L78M00AB
Т0-220
GQb623S

Предыдущий
1
2
3

23
24
25
Далее

Схема сварочного инвертора. Схема сварочного инвертора

В статье будет рассмотрена классическая схема сварочного инвертора. На сегодняшний день они очень популярны, цена вполне доступная. Они имеют массу положительных качеств, в частности, простоту работы и малый вес. Но, как и другие электронные устройства, сварочный аппарат может выйти из строя. А чтобы провести качественный ремонт, необходимо хотя бы в общих чертах иметь представление о его устройстве, из каких элементов состоит схема инвертора. Без этого нельзя ремонтировать сварочные аппараты, в схеме которых используются инверторные преобразователи. Поэтому, чтобы узнать об этом устройстве, нужно много теории.

Основная информация об инверторных блоках

По сути, это блок питания, принцип его работы аналогичен тому, что используется в персональных компьютерах. Преобразование электрической энергии происходит по одним и тем же принципам, несмотря на то, что размеры и функции этих устройств различны. В сварочном инверторе можно выделить несколько стадий. Первым делом необходимо преобразовать переменное напряжение, которое поступает из сети 220 В, в постоянное. О том, как это происходит, будет рассказано чуть ниже, как и электрическая схема сварочного инвертора.

Затем это напряжение преобразуется в переменное напряжение, но с более высокой частотой. Вы знаете, что частота тока в электрической сети равна 50 Гц. У инверторных сварочных аппаратов есть повышение до 80 тыс. Гц. Затем необходимо уменьшить значение напряжения с высокой частотой. На последнем этапе это низкое напряжение преобразуется с частотой около 80 000 Гц. Это краткое описание, на самом деле все этапы можно разбить на более мелкие части. Но для понимания принципа функционирования этого достаточно.

За счет чего уменьшается вес сварочного аппарата

А теперь о том, почему были выбраны схемы инверторного типа. Посмотрите на сварочные аппараты, которые использовались раньше, в том числе и самодельные. Основное их назначение – снижение переменного напряжения, поступающего от бытовой электросети, до безопасного значения, но с большим вторичным током. По этой причине первичная обмотка намотана более тонким проводом, чем вторичная обмотка. Толщина провода определяет, какой ток вы получите в обмотке. Ниже представлена ​​принципиальная схема сварочного инвертора в статье. Внимательно изучите его, чтобы иметь представление о том, какие элементы в него входят. Для сварки иногда необходимо несколько сотен ампер. В связи с тем, что мощность таких трансформаторов очень велика, и работают они только на частоте 50 Гц, кроме того, они имеют очень большие габариты. Как вы понимаете, частота входящего и исходящего тока одинакова. Другими словами, если подать на первичную обмотку 50 Гц, то со вторичной обмотки снять электрический ток с такими же параметрами.

Рабочая частота инвертора

Но благодаря инверторным сварочным аппаратам, у которых рабочая частота увеличивается примерно на восемьдесят тысяч герц, а в некоторых аппаратах и ​​более, можно во много раз уменьшить размеры трансформаторов, которые используются в преобразовании электрического тока. Если увеличить рабочую частоту, можно уменьшить трансформатор как минимум в четыре раза. Следовательно, общий вес всего сварочного аппарата будет очень мал. Стоимость этого устройства также снижается, так как происходит экономия меди и стали, которые используются при изготовлении трансформаторов. Но чтобы получить такое значение частоты, необходимо использовать инверторные схемы. Они состоят из мощных полевых транзисторов, работающих в ключевом режиме. С их помощью коммутируется ток с необходимой для работы частотой. Обратите внимание, что полевой транзистор может работать только при постоянном напряжении. Стоит отметить, что схема сварочного инвертора «Ресанта» во многом аналогична используемой в других аппаратах.

Принцип работы выпрямителя

Поэтому, прежде чем подавать на них питание, необходимо выпрямить поступающий ток. Для этого используется выпрямитель, в котором стоят мощные диоды. Они соединены мостовой схемой. После этого переменная составляющая отсекается электролитическими конденсаторами. Это происходит на первом этапе трансформации. Полевые транзисторы подключены к трансформатору. С его помощью можно снизить напряжение. Как было сказано выше, эти транзисторы производят коммутацию тока с частотой иногда даже свыше 80 тыс. Гц. Понятно, что трансформатор тоже должен быть рассчитан на работу с такими параметрами. Размеры этого аппарата очень малы, его нельзя сравнить с теми, что используются в обычных трансформаторных сварочных аппаратах. Но сила у него такая же. Понятно, что элементов, необходимых для стабильной работы сварочного аппарата, гораздо больше. А теперь подробнее о том, как работает каждый блок обычного сварочного инвертора. Он имеет две основные части — силовую и управляющую цепи.

Выпрямительный каскад

В этом блоке происходит преобразование переменного тока, поступающего от сети 220 вольт. Он имеет несколько полупроводниковых диодов большой мощности, а также электролитические конденсаторы и дроссель. Это означает, что переменный ток с рабочей частотой 50 Гц становится постоянным. Конденсаторы необходимы для отсекания переменной составляющей, которая еще остается в выпрямленном напряжении. Отметим, что существует несколько вариантов схем выпрямления напряжения. Если подключение будет осуществляться к трехфазной сети, схема полупроводниковых диодов будет несколько иной. Поэтому нужно определиться, для чего вам нужна схема сварочного инвертора. Своими руками такое устройство можно собрать достаточно просто.

Фильтры

Отметим также, что почти в полтора раза возрастает напряжение после попадания на фильтр, собранный на электролитических конденсаторах. Другими словами, если питание подается от сети 220 вольт, то на выводы конденсатора будет подаваться 310 В, если мерить. Для сглаживания пульсаций тока, во избежание высокочастотных помех, и во избежание попадания в электрическую сеть необходимо установить специальный фильтр. Обычно он собран на дросселе, который намотан на кольцевом сердечнике, а также в схему включено несколько конденсаторов.

Инверторный каскад

Обычно для реализации инвертора используются два мощных транзистора, которые работают в ключевом режиме. Стоит отметить, что они обязательно крепятся на алюминиевый радиатор. Также есть дополнительное принудительное охлаждение с вентилятором. За счет этих транзисторов происходит коммутация постоянного напряжения, которое затем подается на импульсный трансформатор. Причем переключение происходит на частоте около 80 кГц. Но есть отличие от переменного тока, который течет в бытовой электросети. Во-первых, само значение частоты во много раз превышает ее. Во-вторых, форма импульса этого переменного напряжения, вырабатываемого полевыми транзисторами, прямоугольная, а не синусоида. Для защиты транзисторов от чрезмерного перенапряжения необходимо использовать схему, состоящую из сопротивлений и конденсаторов. Стоит отметить, что базовая электрическая схема сварочного инвертора не обходится без этих элементов.

Трансформатор ВЧ

Высокочастотный трансформатор, на который подается напряжение от транзисторов, работающих в ключевом режиме, позволяет снизить его значение в среднем до 65 вольт. Но при этом ток может быть около 130 А. Можно даже провести аналогию с катушкой зажигания, которая используется в автомобилях. В сварочных инверторах на первичную обмотку подается высокое напряжение, но ток очень мал. Со вторичной обмотки снимается напряжение с меньшим значением, но увеличивается ток. Обратите внимание, что автомобильная катушка зажигания работает обратным образом. То есть на первичную обмотку подается низкое напряжение с большим током. А со вторички снимается высокое напряжение, но с меньшим значением тока.

Выходной выпрямитель

Но стоит взглянуть на то, какие компоненты компонентов еще эл. Схема сварочного инвертора. На выходе также установлен выпрямитель, который собран из мощных полупроводниковых диодов. У них очень высокая скорость, они открываются и закрываются за время, которое намного меньше 50 наносекунд. Учтите, что при проектировании сварочных инверторов необходимо подобрать эти полупроводниковые элементы таким образом, чтобы их параметры удовлетворяли режиму работы.