Физические и химические свойства меди: Ошибка 403 — доступ запрещён

Химические свойства меди

Медь

Химическая активность меди невелика. В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения.

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соответствующих солей:

2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

Кроме того, медь можно перевести в раствор действием водных растворов цианидов или аммиака:

2Cu + 8NH3·H2O + O2 = 2[Cu(NH3)4](OH)2 + 6H2O

При нагревании металла на воздухе или в кислороде образуются оксиды меди: желтый или красный Cu2O и черный CuO. Повышение температуры способствует образованию преимущественно оксида меди(I) Cu2O. В лаборатории этот оксид удобно получать восстановлением щелочного раствора соли меди(II) глюкозой, гидразином или гидроксиламином:

2CuSO4 + 2NH2OH + 4NaOH = Cu2O + N2 + 2Na2SO4 + 5H2O

Эта реакция – основа чувствительного теста Фелинга на сахара и другие восстановители. К испытываемому веществу добавляют раствор соли меди(II) в щелочном растворе. Если вещество является восстановителем, появляется характерный красный осадок.

Поскольку катион Cu+ в водном растворе неустойчив, при действии кислот на Cu2O происходит либо дисмутация, либо комплексообразование:

Cu2O + H2SO4 = Cu + CuSO4 + H2O

Cu2O + 4HCl = 2 H[CuCl2] + H2O

Оксид Cu2O заметно взаимодействует со щелочами. При этом образуется комплекс:

Cu2O + 2NaOH + H2O = 2Na[Cu(OH)2]

Оксиды меди не растворимы в воде и не реагируют с ней. Единственный гидроксид меди Cu(OH)2 обычно получают добавлением щелочи к водному раствору соли меди(II). Бледно-голубой осадок гидроксида меди(II), проявляющий амфотерные свойства (способность химических соединений проявлять либо основные, либо кислотные свойства), можно растворить не только в кислотах, но и в концентрированных щелочах. При этом образуются темно-синие растворы, содержащие частицы типа [Cu(OH)4]2–. Гидроксид меди(II) растворяется также в растворе аммиака:

Cu(OH)2 + 4NH3*H2O = [Cu(NH3)4](OH)2 + 4H2O

Гидроксид меди(II) термически неустойчив и при нагревании разлагается:

Cu(OH)2 = CuO + H2O

Большой интерес к химии оксидов меди в последние два десятилетия связан с получением высокотемпературных сверхпроводников, из которых наиболее известен YBa2Cu3O7. В 1987 было показано, что при температуре жидкого азота это соединение является сверхпроводником. Главные проблемы, препятствующие его широкомасштабному практическому применению, лежат в области обработки материала. Сейчас наиболее перспективным считается изготовление тонких пленок.

Многие из халькогенидов меди – нестехиометрические соединения. Сульфид меди(I) Cu2S образуется при сильном нагревании меди в парах серы или в среде сероводорода. При пропускании сероводорода через водные растворы, содержащие катионы Cu2+, выделяется коллоидный осадок состава CuS. Однако, CuS – не простое соединение меди(II). Оно содержит группу S2 и лучше описывается формулой CuI2CuII(S2)S. Селениды и теллуриды меди проявляют металлические свойства, а CuSe2, CuTe2, CuS и CuS2 при низких температурах являются сверхпроводниками.

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

2FeCl3 + Cu = CuCl2 + 2FeCl2

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)]2+. При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Физико-химические свойства меди обеспечивают ей широкое применение во всех отраслях промышленности.

Медь широко использовалась человеком с древних времен. Данный металл залегает в недрах земной коры в виде крупных самородков и часто применяется в чистом виде. Благодаря физико-химическим свойствам меди и простоте в обработке, она нашла применение во многих отраслях промышленности как сырье для производства готовых изделий, так и в качестве компонента, входящего в состав многих сплавов.

Физические свойства меди

Физические свойства меди приведены в таблице:



















№ поз.Наименование физического свойстваЗначение физического свойства
1Агрегатное состояние элементаТвердый, при плавлении – жидкий
2ОттенокЖелто-красный, красноватый, в зависимости от вида руды
3Показатель пластичности, влияющий на ковку металлаПовышенная пластичность, ковка производится без изменения прочностных свойств
4Значение твердости веществаДо 2,5 по шкале Мооса
5Наличие металлического блескаДа
6t плавления, оСОт 1050 до 1150
7t кипения, оСОт 2500 до 2600
8Удельный вес элемента, кг/м38890
9Показатель теплопроводности, Вт/(м*оС)390
10Показатель удельного электросопротивления, Ом*мм2/м, при температуре 20 оС0,0172, металл обладает повышенной электропроводимостью, сопротивление материала минимальное
11Наличие запахаНет
12Растворимость в водной средеНет
13Магнитные свойстваОтсутствуют
14Металлический звонЯрков выраженный
15Температурное расширение материала0,00000017
16Предел прочности на растяжение, кгс/мм222
17Модуль упругости, МПа0,7 – 2 * 105

Из таблицы видно, что физико-химические свойства меди позволяют применять металл при изготовлении сердечников кабелей для нужд электротехнической промышленности. Отсутствие магнитных свойств обеспечивает широкое применение для производства деталей высокоточных приборов.

Химические свойства меди

Медь расположена на 29 позиции в таблице Менделеева с маркировкой Cu, принадлежит к 4-му периоду. Относится к той же группе, что и благородные металлы. Элемент обладает следующими химическими свойствами:

  • Не подвержен коррозии в водной среде. При наличии в атмосфере высокой концентрации СО2 окисляется с образованием зеленоватой пленки (патины) по всей поверхности.
  • При нагревании до 350-400оС вступает в связь с кислородом, образуя оксид.
  • Высокая активность при взаимодействии с галогенами.
  • Аморфное состояние при контакте с углеродом и азотом.
  • Свойства меди не позволяют обеспечить пайку с алюминием и железом без специального припоя.
  • При контакте с концентрированной серной кислотой выделяется соль – сульфат и молекулы очищенной меди.
  • При соединении с оксидом углерода, метаном или аммиаком происходит восстановительная реакция.
  • Играет роль катализатора при получении чистого Fe при взаимодействии с солями элемента.

Помимо чистой меди, в промышленности применяются такие химические соединения, как соли (металл с кислотным остатком), а также вещества на основе аммиака.

Помимо электротехнической промышленности, медь широко используется при производстве трубок для холодильных установок, по которым движется фреон или другой хладагент. Также из данного металла изготавливаются дорогие кровли, отличающиеся повышенной долговечностью и элементы трубопроводов для обустройства отопления, водоснабжения.

3.5: Различия в материи: физические и химические свойства

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    182627
  • Цели обучения

    Отделить физические свойства от химических.

    Все вещества обладают физическими и химическими свойствами. Физические свойства — это характеристики, которые ученые могут измерить без изменения состава исследуемого образца, такие как масса, цвет и объем (объем пространства, занимаемый образцом). Химические свойства описывают характерную способность вещества реагировать с образованием новых веществ; они включают его воспламеняемость и подверженность коррозии. Все образцы чистого вещества обладают одинаковыми химическими и физическими свойствами. Например, чистая медь всегда представляет собой красновато-коричневое твердое вещество (физическое свойство) и всегда растворяется в разбавленной азотной кислоте с образованием синего раствора и коричневого газа (химическое свойство).

    Физическое свойство

    Физическое свойство — это характеристика вещества, которую можно наблюдать или измерять без изменения идентичности вещества. Серебро — это блестящий металл, который очень хорошо проводит электричество. Из него можно формовать тонкие листы, это свойство называется пластичностью. Соль тусклая и ломкая и проводит электричество, когда она растворена в воде, что она делает довольно легко. К физическим свойствам вещества относятся цвет, твердость, ковкость, растворимость, электропроводность, плотность, температура плавления и температура кипения.

    Для элементов цвет не сильно отличается от одного элемента к другому. Подавляющее большинство элементов бесцветные, серебристые или серые. Некоторые элементы имеют отличительные цвета: сера и хлор — желтые, медь (разумеется) медного цвета, а элементарный бром — красный. Однако плотность может быть очень полезным параметром для идентификации элемента. Из материалов, существующих в твердом состоянии при комнатной температуре, йод имеет очень низкую плотность по сравнению с цинком, хромом и оловом. Золото имеет очень высокую плотность, как и платина. Чистая вода, например, имеет плотность 0,998 г/см 3 при 25°C. Средние плотности некоторых распространенных веществ приведены в таблице \(\PageIndex{1}\). Обратите внимание, что кукурузное масло имеет более низкое отношение массы к объему, чем вода. Это означает, что при добавлении в воду кукурузное масло будет «плавать».

    Таблица \(\PageIndex{1}\): плотности обычных веществ
    Вещество Плотность при 25°C (г/см3)
    кровь 1,035
    жировые отложения 0,918
    цельное молоко 1,030
    масло кукурузное 0,922
    майонез 0,910
    мед 1,420

    Твердость помогает определить, как можно использовать элемент (особенно металл). Многие элементы довольно мягкие (например, серебро и золото), в то время как другие (например, титан, вольфрам и хром) намного тверже. Углерод — интересный пример твердости. В графите («грифеле» карандашей) углерод очень мягкий, в то время как углерод в алмазе примерно в семь раз твёрже.

    Рисунок \(\PageIndex{1}\): карандаш (слева) и кольцо с бриллиантом (справа). Оба являются формой углерода, но обладают очень разными физическими свойствами.

    Точки плавления и кипения являются уникальными идентификаторами, особенно для соединений. Помимо получения некоторого представления об идентичности соединения, можно получить важную информацию о чистоте материала.

    Химические свойства

    Химические свойства вещества описывают его способность подвергаться некоторым химическим изменениям или реакциям в силу своего состава. Присутствующие элементы, электроны и связи придают материи потенциал для химических изменений. Довольно сложно определить химическое свойство, не используя слово «изменение». В конце концов, после изучения химии в течение некоторого времени, вы сможете взглянуть на формулу соединения и указать некоторые химические свойства. Например, водород может воспламениться и взорваться при определенных условиях — это химическое свойство. Металлы вообще имеют химическое свойство реагировать с кислотой. Цинк реагирует с соляной кислотой с образованием газообразного водорода — это химическое свойство.

    Рисунок \(\PageIndex{2}\): Сильная ржавчина на звеньях цепи возле моста Золотые Ворота в Сан-Франциско; он постоянно подвергался воздействию влаги и солевых брызг, что приводило к разрушению поверхности, растрескиванию и отслаиванию металла. (CC BY-SA 3.0; Marlith).

    Химическим свойством железа является его способность соединяться с кислородом с образованием оксида железа, химическое название ржавчины (Рисунок \(\PageIndex{2}\)). Более общим термином для ржавчины и других подобных процессов является коррозия. Другими терминами, которые обычно используются при описании химических изменений, являются горение, гниение, взрыв, разложение и брожение. Химические свойства очень полезны при идентификации веществ. Однако, в отличие от физических свойств, химические свойства можно наблюдать только тогда, когда вещество находится в процессе превращения в другое вещество.

    Таблица \(\PageIndex{2}\): Сравнение физических и химических свойств
    Физические свойства Химические свойства
    Металлический галлий плавится при 30 o C. Железный металл ржавеет.
    Ртуть — очень плотная жидкость. Зеленый банан при созревании становится желтым.
    Золото блестит. Горит сухой лист бумаги.
    Пример \(\PageIndex{1}\)

    Какое из следующих химических свойств железа?

    1. Железо разъедает во влажном воздухе.
    2. Плотность = 7,874 г/см 3
    3. Железо в чистом виде мягкое.
    4. Железо плавится при 1808 К.

    Раствор

    «Железо разъедает во влажном воздухе» — единственное химическое свойство железа из списка.

    Упражнение \(\PageIndex{1A}\)

    Какое из перечисленных ниже физических свойств материи?

    1. коррозионная активность
    2. рН (кислотность)
    3. плотность
    4. воспламеняемость
    Ответить
    с
    Упражнение \(\PageIndex{1B}\)

    Какое из следующих свойств является химическим?

    1. воспламеняемость
    2. температура плавления
    3. точка кипения
    4. плотность
    Ответить
    и

    Резюме

    Физическое свойство – это характеристика вещества, которую можно наблюдать или измерять без изменения свойств вещества. Физические свойства включают цвет, плотность, твердость, температуры плавления и кипения. Химическое свойство описывает способность вещества подвергаться определенному химическому изменению. Чтобы идентифицировать химическое свойство, мы ищем химическое изменение. Химическое изменение всегда производит один или несколько типов материи, которые отличаются от материи, существовавшей до изменения. Образование ржавчины — это химическое изменение, потому что ржавчина — это вещество, отличное от железа, кислорода и воды, существовавших до образования ржавчины.


    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или Страница
        Лицензия
        CC BY-NC-SA
        Версия лицензии
        4,0
        Показать страницу TOC
        № на стр.
        Включено
        да
      2. Теги
        1. химическое свойство
        2. физическое имущество
        3. источник-хим-47458

      3.02: Физические и химические свойства

      1. Последнее обновление
      2. Сохранить как PDF
    2. Идентификатор страницы
      178121
    3.  

      Цели обучения

      Отделить физические свойства от химических.

      Все материи обладают физическими и химическими свойствами. Физические свойства — это характеристики, которые ученые могут измерить без изменения состава исследуемого образца, такие как масса, цвет и объем (объем пространства, занимаемый образцом). Химические свойства описывают характерную способность вещества реагировать с образованием новых веществ; они включают его воспламеняемость и подверженность коррозии. Все образцы чистого вещества обладают одинаковыми химическими и физическими свойствами. Например, чистая медь всегда представляет собой красновато-коричневое твердое вещество (физическое свойство) и всегда растворяется в разбавленной азотной кислоте с образованием синего раствора и коричневого газа (химическое свойство).

      Физическое свойство

      Физическое свойство — это характеристика вещества, которую можно наблюдать или измерять без изменения идентичности вещества. Серебро — это блестящий металл, который очень хорошо проводит электричество. Из него можно формовать тонкие листы, это свойство называется ковкостью. Соль тусклая и ломкая и проводит электричество, когда она растворена в воде, что она делает довольно легко. Физические свойства вещества включают цвет, твердость, ковкость, растворимость, электропроводность, плотность, температуры плавления и температуры кипения.

      Для элементов цвет не сильно отличается от одного элемента к другому. Подавляющее большинство элементов бесцветные, серебристые или серые. Некоторые элементы имеют отличительные цвета: сера и хлор — желтые, медь (разумеется) медного цвета, а элементарный бром — красный. Однако плотность может быть очень полезным параметром для идентификации элемента. Из материалов, существующих в твердом состоянии при комнатной температуре, йод имеет очень низкую плотность по сравнению с цинком, хромом и оловом. Золото имеет очень высокую плотность, как и платина. Чистая вода, например, имеет плотность 0,998 г/см 3 при 25°C. Средние плотности некоторых распространенных веществ приведены в таблице \(\PageIndex{1}\). Обратите внимание, что кукурузное масло имеет более низкое отношение массы к объему, чем вода. Это означает, что при добавлении в воду кукурузное масло будет «плавать».

      Таблица \(\PageIndex{1}\): Плотности обычных веществ
      Вещество Плотность при 25°C (г/см3)
      кровь 1,035
      жировые отложения 0,918
      цельное молоко 1,030
      масло кукурузное 0,922
      майонез 0,910
      мед 1,420
      • Твердость помогает определить, как можно использовать элемент (особенно металл). Многие элементы довольно мягкие (например, серебро и золото), в то время как другие (например, титан, вольфрам и хром) намного тверже. Углерод — интересный пример твердости. В графите («грифеле» карандашей) углерод очень мягкий, в то время как углерод в алмазе примерно в семь раз твёрже.

      Рисунок \(\PageIndex{1}\): карандаш (слева) и кольцо с бриллиантом (справа). Оба являются формой углерода, но обладают очень разными физическими свойствами.

      Точки плавления и кипения являются уникальными идентификаторами, особенно для соединений. Помимо получения некоторого представления об идентичности соединения, можно получить важную информацию о чистоте материала.

      Химические свойства

      Химические свойства вещества описывает его «потенциал» подвергаться некоторым химическим изменениям или реакциям в силу своего состава. Какие элементы, электроны и связи присутствуют, чтобы дать потенциал для химических изменений. Довольно сложно определить химическое свойство, не используя слово «изменение». В конце концов вы сможете взглянуть на формулу соединения и указать некоторые химические свойства. В настоящее время это очень трудно сделать, и от вас не ожидается, что вы сможете это сделать. Например, водород может воспламениться и взорваться при определенных условиях — это химическое свойство. Металлы вообще имеют химическое свойство реагировать с кислотой. Цинк реагирует с соляной кислотой с образованием газообразного водорода — это химическое свойство.

      Рисунок \(\PageIndex{2}\): Сильная ржавчина на звеньях цепи возле моста Золотые Ворота в Сан-Франциско; он постоянно подвергался воздействию влаги и солевых брызг, что приводило к разрушению поверхности, растрескиванию и отслаиванию металла. Изображение использовано с разрешения (CC BY-SA 3.0; Marlith).

      Химическое свойство железа заключается в том, что оно способно соединяться с кислородом с образованием оксида железа, химическое название ржавчины (Рисунок \(\PageIndex{2}\)). Более общим термином для ржавчины и других подобных процессов является коррозия. Другими терминами, которые обычно используются при описании химических изменений, являются горение, гниение, взрыв, разложение и брожение. Химические свойства очень полезны при идентификации веществ. Однако, в отличие от физических свойств, химические свойства можно наблюдать только тогда, когда вещество находится в процессе превращения в другое вещество.

      Таблица \(\PageIndex{2}\): Контрастные физические и химические свойства
      Физическая собственность Химические свойства
      Металлический галлий плавится при 30 o C Железный металл ржавеет.
      Ртуть — очень плотная жидкость. Зеленый банан при созревании становится желтым.
      Золото блестит. Горит сухой лист бумаги.

      Пример \(\PageIndex{1}\)

      Какое из следующих химических свойств железа?

      1. Железо разъедает во влажном воздухе
      2. Плотность = 7,874 г/см 3
      3. Железо в чистом виде мягкое.
      4. Железо плавится при 1808 К.

      РАСТВОР

      Железо разъедается на воздухе — единственное химическое свойство железа из списка.

      Упражнение \(\PageIndex{1A}\)

      Какое из перечисленных ниже физических свойств материи?

      1. коррозионная активность
      2. рН (кислотность)
      3. плотность
      4. воспламеняемость
      Ответ:
      с

      Упражнение \(\PageIndex{1B}\)

      Какое из следующих свойств является химическим?

      1. воспламеняемость
      2. температура плавления
      3. точка кипения
      4. плотность
      Ответ:
      и

      Резюме

      Физическое свойство – это характеристика вещества, которую можно наблюдать или измерять без изменения свойств вещества. Физические свойства включают цвет, плотность, твердость, температуры плавления и кипения. Химическое свойство описывает способность вещества подвергаться определенному химическому изменению. Чтобы идентифицировать химическое свойство, мы ищем химическое изменение. Химическое изменение всегда производит один или несколько типов материи, которые отличаются от материи, существовавшей до изменения. Образование ржавчины — это химическое изменение, потому что ржавчина — это вещество, отличное от железа, кислорода и воды, существовавших до образования ржавчины.

      Авторы

      • Мариса Альвиар-Агню (Городской колледж Сакраменто)

      • Генри Эгнью (Калифорнийский университет в Дэвисе)


      1. Наверх
        • Была ли эта статья полезной?
        1. Тип изделия
          Раздел или страница
          Лицензия
          CC BY-NC-SA
          Версия лицензии
          4,0
          Показать страницу TOC
          № на стр.