Медь магнитные свойства: Магнитные свойства меди — ответ на Uchi.ru
Содержание
У алюмината меди нашли необычные магнитные свойства
Ученые Уральского федерального университета при поддержке Российского научного фонда провели исследование, в ходе которого установили, что алюминат меди CuAl2O4 обладает необычными магнитными свойствами и структурой в силу существенного спин-орбитального взаимодействия. Процесс и результаты исследований ученые описали в статье, опубликованной в журнале Physical Review B.
Известно, что спин-орбитальное взаимодействие (которое возникает за счет электромагнитного взаимодействия спина электрона с магнитным моментом, вызванным вращением электрона вокруг ядра) существенно для 4d и 5d систем, основу которых составляют элементы пятой и шестой групп в периодической таблице Менделеева — от иттрия до кадмия и от гафния до ртути соответственно. CuAl2O4 же является 3d системой, так как медь относится к 3d элементам (в таблице Менделеева — от скандия до цинка), для которых спин-орбитальное взаимодействие, как правило, не так важно.
Однако оказалось, что в случае c CuAl2O4 оно является определяющим. Именно спин-орбитальное взаимодействие не только обусловливает магнитные свойства, но и задает кристаллическую структуру данного материала.
Дело в том, что кристаллическая структура практически всех известных оксидов меди (включая как высокотемпературные сверхпроводники на основе Cu, так и всем известный медный купорос — CuSO4•5H2O) сильно искажена. А вот тетраэдры из атомов кислорода, окружающие ионы меди, в CuAl2O4 остаются идеальными вплоть до самых низких температур. Этот факт был обнаружен в 2017 году южнокорейскими и американскими исследователями, но объяснить его удалось лишь сейчас, в результате исследований с участием екатеринбургских ученых.
«Появление искажений в оксидах меди вызвано одним из наиболее фундаментальных физических явлений — эффектом Яна — Теллера. Это, по сути, очень простое явление: физические системы, как и люди, не любят неопределенности и пытаются избежать ситуации, когда электроны имеют возможность занять не строго определенный уровень энергии, а выбирают из того, что имеется.
Лишить электроны этой свободы просто — нужно лишь сдвинуть атомы из высокосимметричных положений, исказив тем самым кристаллическую решетку», — поясняет соавтор работы Сергей Стрельцов, доктор физико-математических наук, профессор, заведующий лабораторией электронного и ядерного резонанса УрФУ и лабораторией теории низкоразмерных спиновых систем Института физики металлов Уральского отделения РАН.
Однако в CuAl2O4 такой «фокус» не проходит — мешает спин-орбитальное взаимодействие. Именно оно определяет, по каким орбитам вращаются и какие энергии имеют электроны.
Интересно отметить, что спин-орбитальное взаимодействие не только сохраняет симметричную решетку в CuAl2O4, но и оказывает влияние на его магнитные свойства. Теоретические расчеты показывают, что спин-орбитальное взаимодействие способствует «закручиванию» спинов. В результате в идеальном образце CuAl2O4 в области предельно низких температур спины не выстраиваются вдоль одного направления, как, например, в обычном железе, а должны образовывать так называемую «спиновую спираль».
«Такую магнитную структуру проще всего описать на примере цепочки, состоящей из спинов, — комментирует Сергей Стрельцов. — Если спины выстроить параллельно, то получим ферромагнетик, если антипараллельно (то есть по очереди: вверх-вниз-вверх-вниз и так далее), то антиферромагнетик, а если каждый спин постепенно отклонять на один и тот же угол по отношению к предыдущему, то образуется спиновая спираль. Именно такой тип магнитного упорядочения и ожидается в идеальном образце CuAl2O4».
Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.
Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес [email protected].
Немагнитные металлы физики ненадолго превратили в магниты // Смотрим
Профиль
Избранное
Материаловедение и новые материалы
6 августа 2015, 16:03
6 августа 2015, 17:03
6 августа 2015, 18:03
6 августа 2015, 19:03
6 августа 2015, 20:03
6 августа 2015, 21:03
6 августа 2015, 22:03
6 августа 2015, 23:03
7 августа 2015, 00:03
7 августа 2015, 01:03
7 августа 2015, 02:03
- Ася Горина
(иллюстрация University of Leeds).

В обычной жизни медь и марганец не обладают магнитными свойствами. Однако в рамках нового исследования команда физиков заставила тонкие плёнки этих материалов вести себя как магнитные железо, кобальт или никель.
Два распространённых металла, которые не обладают магнитными свойствами — медь и марганец — физики в рамках нового исследования наделили таковыми. Недолго тонкие плёнки этих материалов вели себя словно магнитные железо, кобальт или никель. Методика превращения немагнитного материала в магнитный включает в себя создание тончайших пластов и внедрение в них молекул на основе углерода.
Постоянные магниты на основе железа обладают своими свойствами благодаря спинам электронов, которые химический элемент имеет в своём составе. Спин, по сути, означает, что каждый электрон создает своё собственное магнитное поле.
Большинство электронов составляют пары так, что спины уничтожают эффект друг друга.
Но некоторые непарные спины выстраиваются по внешнему магнитному полю и остаются в том же положении даже тогда, когда это поле удалено.
Совместный эффект этих крошечных унифицированных магнитных полей как раз и делает некоторые металлы, такие как железо, кобальт и никель магнитными материалами при комнатной температуре.
Как рассказывается в пресс-релизе, в рамках своего эксперимента учёные заставили немагнитные медь и марганец вести себя точно таким же образом и проявить магнитные свойства. Учёные выстроили на подложке бутерброд из тонких плёнок металлов (2,5 нанометра) и слоёв из фуллеренов (15 нм) — похожих на клетку молекул из 60 атомов углерода. Фуллерены отличаются тем, что они особенно эффективно оттягивают на себя электроны, отвечающие за электрическую проводимость металлов.
В результате изменения электронной структуры образцов физики получили довольно слабые и чрезвычайно тонкие, но всё же магнитные пласты меди и марганца. Когда их подвергли воздействию внешнего магнитного поля, а затем удалили его, 10% от индуцированного магнитного поля осталось действующим.
Чтобы проверить, что за проявление эффекта отвечает именно переход электронов на границе металл-фуллерен, учёные проложили алюминий между слоями. Магнитные свойства образцов, как и ожидалось, пропали.
Ведущий автор работы Оскар Сеспедес (Oscar Cespedes) и его коллеги из Университета Лидса надеются, что инновационная технология поможет создать более безопасный для окружающей среды и человека аналог контрастному веществу гадолинию. Он на сегодняшний день широко используется в магнитно-резонансной томографии.
Технология также может использоваться в ветровых турбинах, содержащих электрические генераторы с магнитными материалами, которые должны сохранять свою поляризацию, поглощая большое количество энергии. В настоящее время турбины содержат железо, кобальт и никель, смешанные с редкоземельными элементами, но все они слишком дорого стоят и трудно добываются.
Сеспедес и его команда уверены, что технологию предстоит ещё довольно долго дорабатывать. Прежде всего, физики хотят сосредоточиться на том, чтобы заставить эффект «искусственного» магнетизма длиться дольше (сейчас он держится всего несколько часов) и сделать его более ощутимым.
Однако тот факт, что эксперимент был успешно проведён с марганцем даже при комнатной температуре, уже является большим успехом.
Данное открытие может привести к созданию новых видов гибридных металлорганических магнитов, которые могут быть полезны, к примеру, в рентгенографии. Об этом исследователи рассказали в статье, опубликованной в журнале Nature.
Наблюдаемый эффект может быть использован в спинтронике, а также в квантовых компьютерах будущего.
новости
Весь эфир
Магнетизм меди | Природа
Магнетизм меди
Скачать PDF
Ваша статья скачана
Карусель с тремя слайдами одновременно. Используйте кнопки «Назад» и «Далее» для перехода по трем слайдам за раз или кнопки с точками в конце для перехода по трем слайдам за раз.
Скачать PDF
- Опубликовано:
- С. РАМАЧАНДРА РАО 1
Природа
том 136 , страница 436 (1935)Цитировать эту статью
1891 Доступ
2 Цитаты
Сведения о показателях
Abstract
Недавно было выдвинуто БОЛЬШОЕ количество экспериментальных данных, показывающих, что коллоидализация некоторых металлов сопровождается большими изменениями их магнитной восприимчивости 1 .
Я высказал некоторые предварительные предположения о том, что увеличенная площадь поверхности металла при коллоидализации может быть ответственна за наблюдаемые магнитные изменения. Хонда и Симидзу 2,3 недавно высказали более определенное мнение, что в случае олова постоянная решетки в поверхностном слое несколько больше, чем во внутреннем, и что, следовательно, парамагнитная составляющая, обусловленная свободными электронами, уменьшается, а диамагнитная составляющая за счет связанных электронов возрастает, так что коллоидные порошки становятся более диамагнитными, чем массивный металл. По их мнению, коллоидирование металла имеет тот же эффект, что и холодная обработка, в том, что касается магнитных свойств.
Каталожные номера
ПРИРОДА , 134 , 288; 1934 г.; Проц. Инд. акад. науч. , 1 , 123; 1934.
ПРИРОДА , 135 , 108; 1935.

Артикул
ОБЪЯВЛЕНИЯGoogle ученый
ПРИРОДА , 132 , 565; 1933.
Сведберг, ” Образование коллоидов », с. 28.
Ind. J. Phys. , 6 , 241; 1931.
Ind. J. Phys. , 7 , 35; 1932.
Download references
Author information
Authors and Affiliations
Annamalai University, Annamalainagar, S. India
S. RAMACHANDRA RAO
Authors
- S. RAMACHANDRA RAO
View author публикации
Вы также можете искать этого автора в
PubMed Google Scholar
Права и разрешения
Перепечатка и разрешения
Об этой статье
Эта статья цитируется
Иммобилизованные частицы меди на феррите никеля (NiFe2O4@Cu): многоразовый магнитный нанокатализатор для однореакторного и быстрого восстановительного ацетилирования нитроаренов в N-арилацетамиды
- Бехзад Зейнизаде
- Захра Шокри
- Иман Мохаммадзаде
Журнал Иранского химического общества (2020)
Комментарии
Отправляя комментарий, вы соглашаетесь соблюдать наши Условия и Правила сообщества.
Если вы обнаружите что-то оскорбительное или не соответствующее нашим условиям или правилам, отметьте это как неприемлемое.
Краткое руководство по магнитам, магнитным и немагнитным металлам
Первые магниты были обнаружены древними цивилизациями 2500 лет назад. Магнитные компасы широко использовались для навигации в Европе и Китае в XII и XIII веках нашей эры.
Магниты играют важную роль в современной технике. Рынок магнитов продолжает расти из-за растущего спроса на детали магнитных цепей, широко используемые в промышленном, автомобильном, научном и бытовом оборудовании.
Магнетизм: что это такое?
Магнетизм можно описать как силу, которая притягивает и отталкивает магнитные объекты. Эта сила опосредована магнитными полями, проникающими в различные среды.
Некоторые материалы естественным образом обладают магнетизмом по умолчанию. Однако некоторые материалы могут быть намагничены или размагничены в соответствии с требованиями.
Что создает магнетизм в металлах?
Магнетизм вызван движением электронов. Это похоже на электрический ток. Когда электроны вращаются, они создают небольшой диполь.
Чистая сила этих вращений может быть незначительной, если вращения сбалансированы. С другой стороны, если неспаренных элементов много, то магнитный момент может стать очень большим. В результате этого процесса вокруг металлов создаются магнитные поля.
Электрические токи также могут создавать магнитные поля. Электрический ток, проходящий по проводнику, создает круговое магнитное поле. Магнитное поле, создаваемое электрическим током вблизи проводника питания, также можно использовать для создания электрических токов.
Это привело к открытию многих инновационных устройств и приложений, использующих магнетизм и электричество. Электромагнитные теории объясняют так много современного технического прогресса.
Доступные магниты
Существует множество типов магнитов.
Магнитный металл можно отличить по тому, как долго его свойства остаются активными. В результате магниты можно разделить на следующие категории:
- Постоянные
- Временные
- Электромагниты
Постоянные магниты
Постоянные магниты приходят на ум, когда говорят о магнитах. Магнитное поле может быть создано путем намагничивания этих объектов. В качестве прекрасного примера можно привести магнит на холодильник, который обычно вешает записки на дверцу холодильника.
Большинство постоянных магнитов содержат железо, никель или кобальт.
Постоянные магниты изготавливаются двух типов: «жесткие» и «мягкие» магниты. Магнитные металлы, которые являются «твердыми», имеют тенденцию оставаться намагниченными в течение длительного времени. Ниже приведены некоторые распространенные примеры
- Alnico – это сплав алюминия, никеля и кобальта. Сильный постоянный магнит можно изготовить из сплавов алнико. Они широко используются в бытовой электронике и промышленных приложениях.
Этот материал используется, например, в больших электродвигателях, микрофонах, громкоговорителях, звукоснимателях для электрогитар и микроволновых печах. - Феррит представляет собой керамическое соединение, состоящее из оксида железа и других элементов (стронция или бария). Среди применений ферритов — магниты для холодильников и небольшие электродвигатели.
- Неодимовый магнит (NdFeB) представляет собой редкоземельный магнит, состоящий из сплавов неодима, железа и бора. General Motors и Sumitomo Special Metals изобрели их в 1982 году. Самыми сильными постоянными магнитами, доступными в настоящее время, являются неодимовые магниты. Среди их применений — беспроводные инструменты, жесткие диски и магнитные застежки.
- Самарий Кобальтовые сплавы также являются редкоземельными магнитами, часто используемыми в специальных приложениях, таких как аэрокосмическая промышленность.
Намагничивание магнитомягких металлов возможно, но они быстро теряют свой магнетизм.
Типичные примеры включают сплавы железо-кремний и сплавы никель-железо. Подобные материалы обычно используются в электронике, например, в трансформаторах и магнитном экранировании.
Внутренняя структура постоянных магнитов создает магнитные поля. Обычно они не склонны легко терять свой магнетизм. Ферромагнитные металлы можно превратить в постоянные магниты, не теряющие своего магнитного поля независимо от внешних воздействий. Они могут выдерживать силы размагничивания и, таким образом, стабильны.
Внутренняя структура магнитных материалов является ключом к пониманию постоянных магнитов. Когда домены материала выстраиваются в одном направлении, они проявляют магнитные свойства. Домены — это крошечные магнитные источники в структуре материала.
Домены ферромагнитного материала выровнены в сильных магнитах.
Ядро Земли ведет себя как постоянный магнит из-за схожих условий внутри него. Но обратите внимание, что географический Северный полюс Земли на самом деле является Магнитным Южным полюсом.
Временные магниты
Временный магнит — это магнит, который действует как постоянный магнит, когда находится в магнитном поле, но теряет свои магнитные свойства, когда находится вне магнитного поля. При определенных условиях временные магниты сохраняют свои магнитные свойства. Если этих условий больше не существует, магнитные поля исчезнут.
Примеры временных магнитов включают мягкие материалы с низкими магнитными свойствами, такие как отожженное железо и сталь. В присутствии сильного магнитного поля они становятся магнитными. Сила принуждения у них низкая.
Если вы когда-нибудь видели слипшиеся скрепки, когда поблизости находится постоянный магнит, то вы знаете, как это работает.
Магнитные поля могут привести к тому, что скрепки станут временными магнитами, притягивающими другие скрепки. В отсутствие постоянного магнита скрепки теряют свои магнитные свойства.
Электромагниты
Магнитные поля генерируются электромагнитами при прохождении через них электрического тока.
Их применение разнообразно. Например, двигатели, генераторы, реле, наушники и т. д. используют электромагниты.
Электромагниты имеют ферромагнитный сердечник, окруженный катушкой из проволоки. При подключении провода к источнику электричества создается сильное магнитное поле. Он дополнительно усиливается ферромагнитным материалом. В зависимости от электрического тока электромагниты могут быть чрезвычайно мощными.
Магнитная сила также может включаться и выключаться нажатием кнопки. Магнитная сила обладает рядом особых свойств, которые мы можем использовать в наших приложениях благодаря этому особому свойству.
Из чего сделаны магниты
Магниты изготавливаются из группы металлов, называемых ферромагнитными металлами. Никель и железо являются примерами этих металлов. Такие металлы уникальны своей способностью намагничиваться равномерно. Говоря о том, как работает магнит, мы имеем в виду, как магнитное поле магнита действует на объект. Очень интересно узнать ответ.
Каждый материал содержит несколько небольших магнитных полей, называемых доменами. Обычно эти домены независимы друг от друга и обращены в разные стороны. Однако магнитные домены всех ферромагнитных металлов могут выравниваться при приложении сильного магнитного поля, создавая более сильное магнитное поле. Большинство магнитов сделаны таким образом.
Магнитная сила
Какие магниты самые сильные?
Магниты из редкоземельных металлов являются самыми мощными магнитами, доступными сегодня. Самыми сильными среди редкоземельных магнитов являются неодимовые магниты. Пока магнитная цепь находится в хорошем состоянии, самариево-кобальтовые магниты могут превзойти неомагниты при повышенных температурах (примерно 150 ° C и выше).
Что может повлиять на силу магнита?
Прочность магнита может быть затронут рядом факторов, в том числе:
температуры
Радиация
Внешние магнитные поля, такие как высокие течения
A Magnet Rose Forething Reteshette Matherets Rose Forte.
)Коррозия — некоторые магниты нуждаются в защитном покрытии, необходимом для предотвращения коррозии при высокой влажности (например, магниты NdFeB)
В современных магнитных материалах удары и вибрации не действуют, если только удары или вибрации не являются достаточно сильными, чтобы повредить магнит.
Может ли магнит сохранять свою силу вечно?
Пока магнит хранится вдали от факторов, отрицательно влияющих на его магнетизм, таких как линии электропередач, другие магниты, высокие температуры и т. д., он теоретически сохранит свой магнетизм навсегда.
Какие металлы обладают магнитными свойствами?
Магнитные поля могут взаимодействовать с металлом несколькими способами. Все зависит от внутренней структуры материала. Существует три основных типа металлов, взаимодействующих с магнитными полями, включая:
- Ферромагнитные
- Парамагнитные
- Диамагнитные
Магниты сильно притягиваются к ферромагнитным металлам, а остальные нет.
Парамагнитные металлы также привлекают внимание к магнитам, хотя и очень слабо. С другой стороны, диамагнетики демонстрируют слабое отталкивание, если их поместить рядом с магнитом. Только ферромагнитные металлы считаются действительно магнитными.
Изображение — Магнитные металлы и немагнитные металлы (обратите внимание, что алюминий и медь взаимодействуют с изменяющимися магнитными полями)
Список магнитных металлов
Вот некоторые из наиболее известных магнитных металлов. Некоторые из них всегда магнитятся. Однако некоторые материалы, такие как нержавеющая сталь, не проявляют магнитных свойств, если они не имеют определенного химического состава.
Железо
Ферромагнитные металлы, такие как железо, очень хорошо известны. Фактически, это сильнейший ферромагнитный металл. Наша планета получает от него свои магнитные свойства, и он составляет существенную часть ее ядра. Таким образом, Земля сама по себе действует как постоянный магнит.
Есть много факторов, влияющих на магнетизм железа. В дополнение к его электронному спину на атомном уровне, его кристаллическая структура также играет важную роль. Без этого железо было бы немагнитным металлом.
В зависимости от кристаллической структуры железо имеет разные свойства.
Альфа-FE структура объемно-центрированной кубической (ОЦК) структуры железа делает его ферромагнитным. Между тем, он не проявляет магнетизма в гранецентрированных кубических (ГЦК) структурах гамма-Fe. Структура бета-Fe, например, проявляет парамагнитные свойства.
Рисунок. Железные опилки в магнитном поле
Никель
Никель также является популярным магнитным металлом с ферромагнитными свойствами. Его соединения также находятся в ядре Земли. Никель исторически использовался для изготовления монет. Сегодня никель используется в батареях, покрытиях, кухонном оборудовании, телефонах, зданиях, транспорте и ювелирных изделиях.
Ферроникель, ключевой компонент нержавеющей стали, производится из никеля.
Никель также входит в состав магнитов Alnico (сделанных из алюминия, никеля и кобальта).
Кобальт
Кобальт является ферромагнитным металлом. За последние 100 лет кобальт широко использовался из-за его превосходных магнитных свойств.
Кобальт можно использовать для изготовления как мягких, так и твердых магнитов. По сравнению с другими мягкими магнитами магниты на основе кобальта имеют ряд преимуществ. В частности, у них высокая точка насыщения, температура Кюри находится в пределах 950…990°С. Поэтому их можно использовать в условиях высоких температур (до 500°C).
Сплавы кобальта используются в жестких дисках, ветряных турбинах, аппаратах МРТ, двигателях, приводах и датчиках.
Сталь
Благодаря содержанию железа сталь также обладает ферромагнитными свойствами. В большинстве случаев сталь притягивается к магнитам. Также возможно создание постоянных магнитов из стали.
Например, сталь марки EN C15D содержит от 98,81 до 99,26% железа. Эта марка стали содержит высокий процент железа. В результате ферромагнитные свойства железа передаются стали.
Нержавеющая сталь
Некоторые нержавеющие стали являются магнитными, а некоторые нет. Легированная сталь становится нержавеющей сталью при добавлении в сплав хрома. Состав и молекулярная структура приводят к тому, что ферритные и мартенситные нержавеющие стали являются магнитными.
Аустенитные стали, с другой стороны, не проявляют ферромагнитных свойств из-за своей молекулярной структуры. В результате его можно использовать в аппаратах МРТ.
Именно количество никеля является основной причиной магнитной разницы. Упрочнение оксидного слоя улучшает защиту от коррозии, но также изменяет структуру нержавеющей стали.
Редкоземельные металлы
Помимо упомянутых выше металлов, некоторые соединения редкоземельных элементов также являются ферромагнитными.
Гадолиний, самарий и неодим — все это магнитные редкоземельные металлы.
Возможно изготовление магнитов с различными свойствами из вышеперечисленных металлов в сочетании с железом, никелем и кобальтом. Такие магниты обладают особыми свойствами, необходимыми для определенных приложений.
Например, самариево-кобальтовые магниты используются в турбомашинах и высокопроизводительных электродвигателях.
Какие металлы не магнитятся?
В таблице Менделеева только несколько металлов обладают магнитными свойствами. Другие распространенные металлы немагнитны. Вот несколько из них.
Список немагнитных металлов
Алюминий
Кристаллическая структура алюминия, как и у лития и магния, делает его немагнитным. Все эти три материала являются примерами парамагнитных металлов.
Несмотря на то, что коррозия алюминия может происходить различными путями, он известен своей устойчивостью к агрессивным средам.
В сочетании с его легким весом это делает его полезным металлом во многих отраслях промышленности.
Золото
Золото является диамагнитным металлом, как и большинство металлов. Все диамагнитные металлы, в том числе и золото, обладают слабым магнитным притяжением к магнитам в чистом виде.
Серебро
Другим немагнитным металлом является серебро. Диамагнетизм делает этот металл немагнитным.
Известно, что такой металл, как серебро, обладает самой сильной электропроводностью, теплопроводностью и отражательной способностью. При нагревании становится очень мягким и податливым. Кроме того, он известен своей высокой коррозионной стойкостью.
Сегодня он широко используется в производстве ювелирных изделий и валюты. Он также используется в производстве солнечных батарей и фильтров для воды.
Медь
Сама по себе медь не обладает магнитными свойствами, но каким-то образом взаимодействует с магнитами (например, вихревые токи).


Этот материал используется, например, в больших электродвигателях, микрофонах, громкоговорителях, звукоснимателях для электрогитар и микроволновых печах.
)