Проволока для сварочного полуавтомата: Сварочная проволока для полуавтоматической сварки – купить по выгодной цене в магазинах «Всё для сварки»

Виды сварочной проволоки для полуавтомата: типы и классификация

Сварочная проволока является одним из основных присадочных материалов, которые используются во время газовой сварки, а также для дуговой в среде защитных газов, которой является аргонодуговая сварка. Главной особенностью ее является то, что она не имеет покрытия. Таким образом, для получения качественного результата сваривания необходимо использовать дополнительную защиту, которой зачастую выступает газ. Благодаря своему широкому распространению расходный материал используется для сварки самых разнообразных металлов. Это обеспечивает то, что существуют различные виды сварочной проволоки, каждый из которых предназначен для своего рода процедур.

Сварочная проволока для полуавтомата

Данный материал применяется как для ручной сварки, так и для автоматической и полуавтоматической. Благодаря тому, что товар поставляется в катушках, можно осуществлять непрерывную подачу присадочной проволоки во время автоматического сваривания. Специально для таких случаев выпускают порошковые разновидности, которые дают эффект наилучшего качества, хотя могут применяться и другие виды. При выборе стараются больше ориентироваться на состав, так как чем ближе он к основному металлу, тем лучше получится шов. Поэтому, производители выпускают все под определенные марки металла, с которыми чаще всего проводится работа. Производится продукция согласно ГОСТ 2246-70.

Сварочная проволока согласно ГОСТ 2246-70

Преимущества

  • Проволока отлично подходит для работы с автоматическими системами, так как они настраиваются на подачу со скоростью равной скорости плавления;
  • Мотки составляют несколько метров, благодаря чему ими удобно пользоваться в производственной сфере;
  • Отсутствие покрытия уменьшает вероятность появления брака из-за недостаточной просушки, вкраплений в составе и прочих негативных факторов;
  • Существует множество моделей отличающихся только по толщине, что помогает удобно подобрать марку для работы с той или иной толщиной заготовки;
  • Здесь наблюдается минимальный процент образования шлака, что не только улучшает качество соединения, но и убирает множество последующих процедур по зачистке готового результата и так далее.

Недостатки

  • Проволока требует постоянной защиты, что повышает себестоимость процесса соединения металла;
  • Хранить большие мотки далеко не всегда удобно, тем более что для этого требуются специальные условия, которые не всегда возможно обеспечить;
  • Большие мотки также неудобно использовать в частной сфере, если требуется относительно небольшое количество процедур;
  • При покупке проволоки в мотках достаточно сложно подобрать универсальный диаметр, так что нужно иметь в запасе одновременно несколько вариантов для разных типов заготовок;
  • Практически всегда требуется использовать дополнительно флюс.

Классификация

Рассматривая виды сварочной проволоки, стоит понимать, для каких именно процедур они предназначены и какими свойствами обладают. Для этого есть несколько систем классификации. В первую очередь следует выделить основные группы, которые касаются содержания легирующих элементов в составе:

  • С низким содержанием углерода в присадочном материале;
  • Незначительное количество легирующих веществ в составе;
  • Высоколегированная сварочная проволока.

Отдельно стоит выделить порошковую проволоку, которая преимущественно используются для автоматической сварки и дает отличный результат качества. Она представляет собой трубку, сделанную из малоуглеродистой стали, которая наполняется раскислительными порошками, стабилизаторами, которые предназначены для улучшения горения сварочной дуги, а также шлакообразующими веществами.

Порошковая проволока для сварки полуавтоматом

Классификация сварочной проволоки еще касается материалов ее изготовления. Классы распределяются согласно основному металлу, который занимает больше всего места в составе, тогда как остальное является мелким вкраплением для улучшения свойств сваривания. Выделяют такие разновидности как:

  • Алюминиевая;
  • Медная;
  • Нержавеющая;
  • Стальная;
  • Стальная омедненная.

Помимо этого, каждая марка разделяется на несколько типов по размеру. Как правило, шаг увеличения диаметра составляет от 0,5 до 1 мм.

Сварочная проволока диаметром 1 мм

Для сварки стали

Типы сварочной проволоки для соединения стали являются достаточно распространенными, так как с этим металлом и его сплавами очень часто приходится встречаться.

МаркаХарактеристики
Св-08Г1CОмедненный материал, который применяется для сварки автоматом и полуавтоматом. Хорошо взаимодействует с углеродистыми сталями и металлами с низким содержанием легирующих элементов. Работает в чистом CO2 или смеси (Ar-80%, CO2-20%).
Св-08Г1НМАОмедненный материал, который применяется для сварки автоматом и полуавтоматом. Хорошо взаимодействует с углеродистыми сталями и металлами с низким содержанием легирующих элементов, которые обладают высокой прочностью. Работает под флюсом
Св-08Г2CОмедненный материал, который применяется для сварки автоматом и полуавтоматом. Хорошо взаимодействует с углеродистыми сталями и металлами с низким содержанием легирующих элементов. Работает в чистом CO2 или смеси (Ar-80%, CO2-20%).
Св-08ГМОмедненный материал, который применяется для сварки автоматом и полуавтоматом. Хорошо взаимодействует с углеродистыми сталями и металлами с низким содержанием легирующих элементов. Работает смеси (Ar-80%, CO2-20%).
Св-08ГНМОмедненный материал, который применяется для сварки автоматом и полуавтоматом. Хорошо взаимодействует с углеродистыми сталями и металлами с низким содержанием легирующих элементов. Работает смеси (Ar-80%, CO2-20%).
Св-08ГСМТОмедненный материал, который применяется для сварки автоматом и полуавтоматом. Хорошо взаимодействует с углеродистыми сталями и металлами с низким содержанием легирующих элементов. Работает в смеси (Ar-80%, CO2-20%).

Для сварки нержавейки

Марки сварочной проволоки, которые предназначаются для сваривания нержавейки, имеют много нюансов в составе, так как это очень капризный металл, сваривание которого сложно на техническом и физической уровне. Ведь при сварке нержавейки металл ведет подобно воде и сильно растекается, не говоря уже о том, что к проволоке выдвигаются особые требования.

МаркаХарактеристики
Св-04Х19Н11М3Материал стойкий к коррозии. Может подойти для автоматической сварки. Используется для сваривания нержавеющих сталей, в состав которых входит хром – 19%, никель – 11% и молибдена – 3%. Для сварки требуется защитный газ
Св-06Х19Н9ТМатериал стойкий к коррозии. Может подойти для автоматической сварки. Используется для сваривания нержавеющих сталей 19-9. Для сварки требуется защитный газ
Св-07Х25Н13Материал стойкий к коррозии. Может подойти для автоматической сварки. Используется для сваривания нержавеющих сталей с содержанием никеля и хрома. Для сварки требуется защитный газ
Св-08Х20Н9Г7ТМатериал стойкий к коррозии. Может подойти для автоматической сварки. Используется для сваривания аустелитных нержавеющих сталей. Для сварки требуется защитный газ
Св-10Х16Н25АМ6Материал стойкий к коррозии. Может подойти для автоматической сварки. Используется для сваривания нержавеющих сталей. Для сварки требуется защитный газ

Для сварки алюминия

Алюминий также является сложным в сварке металлом, который требует особого присадочного материала для качественного проведения работы. Сварка алюминия проводится с помощью следующих основных марок проволоки:

МаркаХарактеристики
Д16Создается на основе сплава алюминия, меди и магния.
В92ЦСоздается на основе сплава алюминия, магния и цинка.
АК4В составе присутствует алюминий, марганец, медь, железо и никель.
ВАД23В составе присутствует алюминий, марганец, медь и прочие элементы.
Для сварки меди

Медная проволока является достаточно востребованной и имеет множество марок. Многие виды сварочной проволоки для полуавтомата делаются именно из этого материала. Здесь приведены только несколько из них.

Марка материалаХарактеристики материала
OK Autrod 19.12Применяется для сварки чистой меди и ее сплавов.
OK Autrod 19.30Применяется для низколегированной меди и бронзы. Хорошо подходит для сваривания оцинкованных деталей.
OK Autrod 19.40Применяется для сварки литого проката из меди, алюминия и бронзы. Швы получаются прочными и износостойкими. Может использоваться для наплавки поверхности подшипников.
Проволока для чугуна и сплавов никеля

Чугун является специфическим металлом, так как обладает высокой хрупкостью, несмотря на большую твердость. Отсутствие пластичности выдвигает свои требования к сварке.

Марка материалаХарактеристики материала
ПП-АНЧ-1Используется без подогрева. Твердость до 300 НВ.
ПП-АНЧ-2Используется с подогревом до температуры 350 градусов Цельсия. Твердость до 190 НВ.
ПП-АНЧ-3Используется с подогревом до температуры 600 градусов Цельсия. Твердость до 210 НВ.
Размеры сварочной проволоки
Диаметр, ммСила тока, А
2120
3160
4210
5250
6290
7330
8350
9370
10400

Сварочная проволока для полуавтомата .

Выбор сварочной проволоки.

Материалы

Содержание

 

Если ты собираешься приобрести сварочный полуавтомат, или он у тебя уже есть, тогда ты сталкивался с вопросом: какую выбрать сварочную проволоку?

 

Сегодня на рынке большой ассортимент данной продукции и новичку очень трудно сделать свой первый выбор. Так давайте разбираться.

 

Проволока, так же как и сварочные электроды выбираются в зависимости от марки стали которую будут варить. Диаметр проволоки зависит от толщины металла, формы и особенности сварки, а также от возможности вашего сварочного полуавтомата.

 

Для сварки низкоуглеродистых сталей применяют проволоку марки Св-08ГА, Св-10Г2.

 

Для сварки низко- и среднеуглеродистых сталей применяют проволоку марки Св-08Г2С-О. Данную марку проволоки я назову «хитом продаж». Она очень часто применяется как в быту, так и на больших предприятиях. Если вы варите металлоконструкцию из стали Ст3, Ст10 и 08Г2, то эта проволока отлично подойдёт для сварки этих сталей. Мне неоднократно приходилось использовать её, и она не когда меня не подвела. Единственный минус — это большое количество китайских подделок. Будьте внимательны, покупайте только у проверенного продавца.

 

Для сварки высокоуглеродистых сталей я порекомендую проволоку марки Св-06Х19Н9Т. Эта проволока всегда выручала меня, даже в тех случаях, когда я варил высоколегированную сталь, марку которой не знал. Для сварки «нержавейки» она не заменима.  Единственный минус — её цена.

 

Пример обозначения сварочной проволоки

 

Для примера рассмотрим проволоку 1,2 Св-08Г2С-О ГОСТ 2246-70, где:

  • 1,2 — диаметр проволоки в мм;
  • Св- проволока сварочная;
  • 08- содержание углерода 0,08%;
  • Г2- содержание марганца 2,0%;
  • С- содержание кремния до 1,0%;
  • О- проволока омеднённая.

 

Сварочная проволока в зависимости от марки выпускается диаметром от 0,3 до 12 мм в бобинах массой от 0,5 до 50 кг.

 

Выбор сварочной проволоки

 

Проволока для сварки низко-, среднелегированной стали должна иметь омеднённое покрытие. Такая проволока в конце обозначения имеет индекс «О». Омеднённое покрытие предотвращает окисление проволоки и  препятствует прилипании её внутри канала сварочной горелки.

Проволока для сварки высоколегированных сталей, выпускается без омеднённого покрытия.

Проволока Св-08Г2С-О и 06Х19Н9Т применяется в сварке в защитных газах СО2 и аргона. Единственный минус использование стальной сварочной проволоки — это большое разбрызгивание металла.

 

Как я выше говорил, существует большой выбор стальной сварочной проволоки. Большинство марок сварочной проволоки вам не понадобится в быту, так как скорее всего вам не придётся варить спецстали. Проволоку марки, которые я привёл, хватит вам на 100% для сварки труб, швеллеров, металлопроката любой толщины из стали Ст3. Для этой цели, не вижу смысла плодить информацию по другим сварочным проволокам, всё это вы сможете найти всемирной сети.

Меткисварочная проволока

    Дуговая сварка металлическим электродом в среде защитного газа (GMAW / -MIG-)

    В процессе дуговой сварки металлическим электродом в среде защитного газа (GMAW / «MIG») используется электрическая дуга, возникающая между расходуемым проволочным электродом и заготовкой. GMAW может быть реализован как ручной, полуавтоматический или автоматический процесс, а гибкость, обеспечиваемая различными вариантами процесса, является преимуществом во многих приложениях. GMAW обеспечивает значительное увеличение скорости наплавки металла сварного шва по сравнению с GTAW или SMAW, а при реализации полуавтоматического процесса обычно требуется меньше навыков сварщика. Однако оборудование GMAW является более сложным, менее портативным и обычно требует более регулярного обслуживания, чем для процессов GTAW и SMAW. GMAW является наиболее распространенным процессом сварки коррозионно-стойких сплавов и выполнения сварных швов толстого сечения. Однако GMAW не подходит для сварки корневого шва сплавов на основе Ni/Co, и GTAW следует использовать для всех корневых швов.

    В GMAW механизм, с помощью которого расплавленный металл на конце проволочного электрода переносится на заготовку, оказывает значительное влияние на характеристики сварного шва. С GMAW возможны три режима переноса металла: перенос с коротким замыканием, шаровидный перенос и перенос распылением. Кроме того, существует вариант режима переноса распыления, называемый импульсным распылением.

    Электрическая полярность для GMAW сплавов HASTELLOY® и HAYNES® должна быть положительной электродом постоянного тока (DCEP / «обратная полярность»). Типичные параметры для различных режимов переноса GMAW приведены в таблице 2 для сварки в плоском положении. Поскольку различные источники питания GMAW сильно различаются по конструкции, работе и системам управления, параметры следует рассматривать как ориентировочный диапазон для достижения надлежащих характеристик сварки с конкретным сварочным оборудованием. Скорость перемещения GMAW обычно составляет от 6 до 10 дюймов в минуту (дюйм/мин) / от 150 до 250 мм/мин.

    Перенос короткого замыкания происходит в самых низких диапазонах тока и напряжения, что приводит к низкому подводу тепла при сварке. Обычно он используется с присадочной проволокой меньшего диаметра и позволяет получить относительно небольшую и легко контролируемую сварочную ванну, которая хорошо подходит для сварки в нестандартном положении и соединения тонких профилей. Однако низкое тепловложение делает перенос с коротким замыканием восприимчивым к дефектам непровара (холодный нахлест), особенно при сварке толстых профилей или при многопроходной сварке.

    Шаровидный перенос происходит при более высоких уровнях тока и напряжения, чем короткое замыкание, и характеризуется большими каплями расплавленного металла неправильной формы. Теоретически глобулярный режим переноса можно использовать для сварки сплавов на основе Ni/Co, но он используется редко, поскольку создает неравномерное проплавление и неровный контур наплавленного валика, что способствует образованию дефектов. Поскольку сила тяжести имеет решающее значение для отрыва и переноса капли, шаровидный перенос обычно ограничивается сваркой в ​​плоском положении.

    Распылительный перенос происходит при самых высоких уровнях тока и напряжения и характеризуется остронаправленным потоком мелких металлических капель. Это процесс с высоким подводом тепла и относительно высокой скоростью наплавки, который наиболее эффективен для сварки толстых секций материала. Однако в основном он полезен только в плоском положении, а его высокое тепловложение способствует горячему растрескиванию сварного шва и образованию вторичных фаз в микроструктуре, что может ухудшить эксплуатационные характеристики.

    Импульсный струйный перенос — это строго контролируемый вариант струйного переноса, при котором сварочный ток чередуется между высоким пиковым током, при котором происходит перенос струйным распылением, и более низким фоновым током. Это обеспечивает стабильный процесс с низким уровнем разбрызгивания при среднем сварочном токе, значительно более низком, чем при переносе струей. Импульсное распыление обеспечивает более низкое тепловложение по сравнению с переносом распылением, но менее подвержено дефектам неполного сплавления, которые являются общими для переноса с коротким замыканием. Это полезно во всех положениях сварки и для широкого диапазона толщины материала. В большинстве случаев компания Haynes International настоятельно рекомендует использовать импульсный распылительный перенос для GMAW сплавов HASTELLOY® и HAYNES®. Использование современного источника питания с синергетическим управлением и возможностью регулировки формы сигнала («адаптивный импульс») очень выгодно для импульсного переноса распыления. Эти передовые технологии упростили использование импульсного струйного переноса, при котором параметры импульса, такие как ток импульса, длительность импульса, фоновый ток и частота импульса, включены в систему управления и связаны со скоростью подачи проволоки.

    Выбор защитного газа имеет решающее значение для разработки процедуры GMAW. Для сплавов на основе Ni/Co защитная газовая среда обычно обеспечивается аргоном или смесью аргона с гелием. Относительно низкая энергия ионизации аргона способствует лучшему зажиганию/стабильности дуги, а его низкая теплопроводность обеспечивает более глубокое пальцеобразное проплавление. Если использовать отдельно, гелий создает неустойчивую дугу, чрезмерное разбрызгивание и сварочную ванну, которая может стать чрезмерно жидкой, но при добавлении к аргону он обеспечивает более жидкую сварочную ванну, которая улучшает смачивание и создает более плоский сварочный валик. При сварке сплавов на основе Ni/Co следует избегать добавок кислорода или углекислого газа, которые обычно используются с другими металлами. Эти добавки создают сильно окисленную поверхность и способствуют пористости металла сварного шва, неровной поверхности валика и дефектам неполного сплавления. Оптимальная смесь защитного газа зависит от многих факторов, включая конструкцию/геометрию сварного шва, положение сварки и желаемый профиль проплавления. В большинстве случаев предлагается смесь 75% Ar и 25% He; хорошие результаты были получены при содержании гелия от 15 до 30%. При переносе методом короткого замыкания добавление гелия к аргону помогает избежать чрезмерно выпуклых валиков сварного шва, которые могут привести к дефектам непровара. Для распылительного переноса хорошие результаты можно получить с использованием чистого аргона или смесей аргона и гелия. Добавление гелия обычно требуется для импульсного распыления, так как это значительно увеличивает смачивание.

    Поскольку аргон и гелий являются инертными газами, поверхность сварного шва после наплавки должна быть яркой и блестящей с минимальным окислением. При этом при многопроходной сварке притирка между проходами не обязательна. Однако на поверхности сварного шва могут быть отмечены некоторое окисление или «копоть». В этом случае рекомендуется интенсивная обработка проволочной щеткой и/или легкая шлифовка/кондиционирование (зернистость 80) между проходами сварки, чтобы удалить окисленную поверхность и обеспечить надежное наплавление последующих сварных швов. Расход защитного газа обычно должен находиться в диапазоне от 25 до 45 CFH (от 12 до 21 л/мин). Слишком низкая скорость потока не обеспечивает адекватной защиты сварного шва, а чрезмерно высокая скорость потока может повлиять на стабильность дуги. Как и в случае с GTAW, рекомендуется защита обратной продувкой, чтобы корневая сторона сварного соединения не подвергалась сильному окислению. Если защита с обратной продувкой невозможна, корневую сторону сварного соединения следует зашлифовать после сварки, чтобы удалить весь окисленный металл сварного шва и любые дефекты сварки. Затем сварной шов может быть заполнен с обеих сторон по мере необходимости.

    Во время GMAW сварочную горелку следует держать перпендикулярно к заготовке под рабочим углом и углом перемещения приблизительно 0°. Для видимости может потребоваться очень небольшое отклонение от перпендикуляра. Если горелка расположена слишком далеко от перпендикуляра, кислород из атмосферы может попасть в зону сварки и загрязнить расплавленную сварочную ванну. Сварочный пистолет с водяным охлаждением всегда рекомендуется для сварки струйным переносом и всегда, когда используются более высокие сварочные токи.

    Следует признать, что некоторые части оборудования GMAW, такие как контактный наконечник и кабелепровод/лайнер для присадочной проволоки, подвержены сильному износу и должны периодически заменяться. Изношенная или грязная направляющая может вызвать неравномерную подачу проволоки, что приведет к нестабильности дуги или к заклиниванию присадочной проволоки, что известно как «птичье гнездо». Рекомендуется свести к минимуму резкие изгибы кабеля пистолета. Если возможно, механизм подачи проволоки следует расположить так, чтобы во время сварки кабель горелки был почти прямым.

    Потрясающие времена | Один из самых популярных методов сварки без компа

    Дуговая сварка с флюсовой проволокой (FCAW) представляет собой полуавтоматический или полностью автоматический метод дуговой сварки, при котором непрерывно подаваемый плавящийся электрод содержит флюс с использованием постоянного напряжения или сварочный источник постоянного тока.

    Сварка FCAW использует внешний защитный газ и защищает газ от атмосферных газов, которые защищают его.

    Развитие

    FCAW, разработанный на основе дуговой сварки защищенным металлом (SMAW), является одним из наиболее гибких и широко используемых методов дуговой сварки. SMAW использует электрическую дугу, горящую между стержневым электродом в оболочке и основным металлом. Плавящийся электрод в оболочке образует защитный газ, защищающий расплав, а это означает, что SMAW не нуждается во внешнем источнике защитных газов.

    SMAW стал популярным, потому что требования к оборудованию просты; он портативный, простой в использовании на открытом воздухе и хорошо работает с металлами различной толщины. Однако есть существенные недостатки к использованию SMAW в промышленных масштабах, ограничивающие его рост, в том числе

    • Не такая производительная, как непрерывный проволочный процесс
    • Депонирование некоторого количества металла может быть более дорогостоящим
    • Частые остановки для смены электрода
    • Относительно высокие потери металла (короткие электроды)
    • Пределы тока ниже, чем для непрерывных или автоматических процессов (снижает скорость осаждения)

    Стержневые электроды, используемые в SMAW, не нужны для метода FCAW. По этой причине, в сочетании с перечисленными выше недостатками, FCAW стала предпочтительной альтернативой SMAW.

    Типы FCAW

    Существует два основных типа FCAW :

    Без защитного газа

    Электрод с флюсовой сердцевиной, используемый в FCAW, вырабатывает собственный защитный газ для защиты сварного шва. Таким образом, FCAW часто можно выполнять без дополнительного защитного газа без ущерба для качества сварки. Это устраняет затраты и настройку, связанные с отдельной системой защитного газа. FCAW без защитного газа эффективен для более тонких, плоских металлов. Отсутствие защитного газа также позволяет этому процессу быть эффективным на открытом воздухе или в ветреной среде, которая рассеивает защитный газ.

    С защитным газом

    Для сварки более толстых, смещенных металлов, особенно сварки конструкционной стали, FCAW можно использовать с защитным газом для повышения качества и согласованности. Эту сварку часто называют «дуэльной защитой», поскольку для защиты сварного шва используются и защитный газ, и флюс. Этот процесс лучше использовать в контролируемой среде, такой как производственный цех, где ветер не мешает защитному газу. Защитным газом обычно является двуокись углерода (CO2) или смесь аргона и двуокиси углерода, такая как C-25, которая содержит 75 % аргона и 25 % двуокиси углерода.

    Флюс в Flux-Core

    Важным элементом процесса FCAW является сварочный флюс. Сварочный флюс – это химический очищающий агент  , предотвращающий соединение сварного шва с окружающими материалами, присутствующими во время сварки.

    Основной функцией сварочного флюса является окисление основного и присадочного материалов в процессе сварки. Сварочный флюс — это вещество, которое почти инертно при средней комнатной температуре, но может сильно восстанавливаться при воздействии более высоких температур, чтобы предотвратить образование оксидов металлов. Флюс растворяет оксиды на поверхности металла, что облегчает смачивание расплавленного металла, действует как барьер для кислорода и минимизирует окисление. Флюсы используются для создания поверхности для смачивания припоя. Однако флюс может содержать бром и хлор и оставаться коррозионно-активным после процесса пайки, впоследствии вызывая коррозию поверхности в процессе производства или эксплуатации. Поэтому были разработаны методы тестирования и очистки, чтобы гарантировать, что поверхность останется неагрессивной после процесса. Наиболее распространенные тесты предназначены для определения коррозионных свойств остатков флюса в экстремальных условиях. Таблетка припоя расплавляется во время испытаний, когда она вступает в контакт с флюсом над металлическим листом. После этого припой подвергается воздействию различных уровней влажности. Образовавшуюся коррозию затем оценивают визуально.

    Флюс также напрямую влияет на прочность сварного шва. Чем меньше кислорода присутствует в сварном шве, тем прочнее сварной шов.

    A краткий обзор флюса :

    Выбор материала флюса зависит от используемых металлов. Помимо предотвращения образования оксидов, сварочный флюс также:

    • Создает защитный слой шлака на расплавленном металле
    • Удаляет загрязнения с металла мотеля
    • Уменьшает разбрызгивание
    • Предотвращает затвердевание за счет замедления времени охлаждения и т. д.

    Флюсы находят применение в дуговой сварке защищенным металлом (SMAW), дуговой сварке порошковой проволокой (FCAW) и дуговой сварке под флюсом (SAW).

    FCAW Process

    FCAW не использует внешние защитные газы, а полагается на саму защиту электрода с флюсовым сердечником. Этот электрод обеспечивает защиту от газов и даже создает шлак, окружающий расплавленный металл сварного шва, поддерживая его.

    Сердечник присадочной проволоки содержит флюсы, образующие шлак, и материалы, содержащие защитные газы, выгорающие под действием тепла сварочной дуги. Защитный флюс позволяет проводить сварку снаружи, даже при сильном ветре, без дополнительного защитного газа.

    Weldnotes.com публикует пятиминутное видео с описанием FCAW.

    Промышленное использование FCAW

    Сварка флюсом хорошо подходит для более толстых соединений благодаря более глубокому проплавлению. Сварщик может сваривать во всех направлениях, держа горелку под разными углами. Эти два факта, а также отсутствие необходимости в высоких навыках, делают FCAW хорошо подходящим для судостроения, капитального ремонта, подводной сварки, сварки трубопроводов и других производственных процессов.

    Школа сварщиков г. Талса объясняет еще одно преимущество использования FCAW в промышленных целях:

    Скорость отложения присадочного материала при сварке с флюсовой проволокой является самой высокой по сравнению с любым другим методом. В то время как сварщик MIG может наплавлять до 8 фунтов проволоки в час, сварочный аппарат с флюсовой проволокой может производить до 25 фунтов в час. Для крупных проектов со сжатыми сроками сварка с флюсовой сердцевиной может стать спасением, особенно в промышленных производственных и ремонтных учреждениях, где обрабатываются крупные заказы.

    Преимущества FCAW

    FCAW обладает уникальными свойствами, которые дают ему некоторые преимущества по сравнению с другими методами сварки. Дополнительный бак с защитным газом не требует повышения подвижности. Однако было бы лучше взвесить мобильность над дымом: FCAW создает больше дыма, чем сварка MIG, что требует хорошо вентилируемой рабочей зоны или просто сварки на открытом воздухе. Поскольку проволока экранирует флюс от условий окружающей среды, ветер не оказывает негативного влияния на качество сварки.

    Другие преимущества:

    • Высокая скорость наплавки, то есть скорость нанесения присадочного металла
    • Может использоваться во всех положениях с правильным присадочным металлом
    • Подходит для сварки на открытом воздухе или в цехе
    • Относительно прост в освоении по сравнению с другими процессами сварки
    • Более устойчивы к ржавчине, окалине и другим загрязнениям из недрагоценных металлов
    • Сварочная дуга имеет хорошую видимость
    • Обеспечивает отличное проплавление сварного шва
    • Обеспечивает высокую производительность сварки

    FCAW Недостатки

    Как и у всего, что имеет преимущества, есть и недостатки:

    • Высокий уровень вредных паров необходимо вентилировать
    • Более высокая стоимость электродной проволоки по сравнению со сплошной электродной проволокой
    • Более дорогое оборудование, чем многие другие сварочные процессы
    • Менее портативное оборудование, чем SMAW или GTAW
    • Шлак, покрывающий сварной шов, должен быть удален
    • Механические проблемы могут привести к расплавлению контактных наконечников, неравномерной подаче проволоки или пористости сварного шва
    • Подходит не для всех типов металлов

    In Sum

    Эксперты по сварке считают FCAW наиболее гибким из всех процессов дуговой сварки, предлагая различные материалы и конфигурации сварки.