Реле времени для точечной сварки схема: Реле времени для точечной сварки схема
Содержание
Микроконтроллерный таймер для споттера своими руками
Микроконтроллерный таймер для споттера своими руками
Под термином «споттер» в данной статье понимается установка точечной контактной сварки, используемая в первую очередь автомобилистами и кузовщиками, для быстрой точечной приварки к кузову различных вспомогательных элементов, таких как шайбы, крючки, проволока и прочее, для последующей вытяжки и выравнивания поверхности.
Точечная сварка основана на принципе выделения тепла на переходном сопротивлении соприкасающихся свариваемых элементов. Поэтому задачей споттера является подача в место свариваемого контакта мощного импульса тока (I=800..1200А, U=5В) при нажатии соответствующей кнопки на «пистолете». При точечной сварке необходимо контролировать длительность импульса (обычно она не превышает 0,5 с). Далее в статье будут рассмотрен принцип работы силовой схемы, схема и принцип работы таймера.
Довольно распространенной схемой силовой части самодельного трансформаторного споттера является схема, приведенная на рисунке 1.
Рисунок 1 — Схема силовой части.
Как видно по схеме, коммутация производится тиристором на стороне первичной обмотки силового трансформатора. Можно использовать и симистор, тогда отпадет необходимость в диодном мосте. Для задания длительности импульса тока на выходе необходимо поддерживать напряжение на управляющем электроде тиристора в течение соответствующего времени (длительности выходного импульса). Но следует иметь ввиду, что даже если управляющее напряжение уже снято, обычный незапираемый тиристор не закроется пока ток, проходящий через него, не упадет ниже тока удержания (в данной схеме ток достигает нуля 100 раз в секунду). Самый простой способ управления тиристором — RC-цепочка с регулировочным резистором (для изменения постоянной времени) и подзарядкой конденсатора от дополнительного источника низкого напряжения. Но этот способ далее не рассматривается.
Для более точного задания длительности разработан простой таймер на базе контроллера ATtiny2313.
Длительность импульса регулируется двумя кнопками и может принималь значения от 0,01с до 0,5с с дискретостью 0,01с. На 7-сегментном индикаторе отображаются цифры, соответствующие заданной длительности в сотых долях секунды. Но, благодаря описанному выше свойству незапираемых тиристоров, реальная длительность выходного импульса может отличаться от заданой на время до 10мс (один полупериод). Схема споттера с микроконтроллерным управлением представлена на рисунке 2.
Рисунок 2 — Полная схема споттера.
Элементы, помеченные * на ноге Reset не обязательны, но их желательно ставить для снижения вероятности ложных сбросов из-за возможных наводок на этой ноге. Так как разводка плат выполнена для однослойного текстолита, некоторые аноды одноименных сегментов двух цифр LED-индикатора соединены перемычками со стороны дорожек.
Схема работает следующим образом. При подаче питания на схему управления выполнение программы контроллером начинается с момента, когда конденсатор на ноге Reset зарядится до напряжения логической единицы.
После запуска контроллер выполняет функции динамической индикации и опроса кнопок. Опрос кнопок происходит по таймеру примерно 4 раза в секунду. При нажатии на кнопку подачи импульса на «пистолете» (обозначена пунктиром), на ноге PD2 появляется логическая единица (5В), единица снимается через заданное время, которое отображается на светодиодном индикаторе в виде сотых долей секунды. Сигнал с вывода микроконтроллера усиливается по току повторителем на КТ972, так как для управления используемым оптотиристором ТО142-80 необходимо подавать ток не менее 120 мА на его внутренний светодиод. Оптронный тип тиристора выбран из простоты организации гальванической развязки цепей управления от силовых. В прошивке контроллера реализованы два режима работы: импульсный (по умолчанию) и непрерывный. Выбор режима, установка длительности (больше/меньше) осуществляется тремя кнопками. В непрерывном режиме длительность подачи сигнала управления тиристором зависит от длительности нажатия кнопки на пистолете.
Для пояснения работы силовой части на рисунке 3 приведена упрощенная схема. На рисунке 4 изображена временная диаграмма работы силовой схемы с активной нагрузкой и идеальным тиристором (время включения =0, падение напряжения в открытом состоянии =0).
Рисунок 3 — Схема силовой части.
Рисунок 4 — Временная диаграмма работы прерывателя.
Рисунок 5 — Модель прерывателя в Proteus’е.
Рисунок 6 — Фьюзы tiny2313 в PonyProg.
spotter_002.zip (35,8 кб) — печатные платы в формате SprintLayout, прошивка для tiny2313, модель в Proteus’е.
Видео:
Источник: whitearc.ru
Точечная(контактная) сварка своими руками — делаем споттер в домашних условия
Хочу поделиться своим опытом создания аппарата точечной сварки своими руками.
Как и большинство подобных самоделок, исходниками послужили трансформатор микроволной печи и медный кабель для стартера.
Для включения я использовал полупроводниковое реле Fotek SSR-40DA DC. Первое с чего нам нужно начать, это извлечь трансформатор из микроволновой печи и заменить вторичную обмотку.
Итак микроволновая печь (около 1050 Вт потребляемая мощность) препарирована. В дополнение к трансформатору(слева), я получил еще несколько полезных в хозяйстве вещей.
Вторичная обмотка распилена. На фото вы видите еще одну(красная) я ее удалю позже. После распила старая обмотка легко удаляется зубилом, но будьте осторожны, не повредите сердечник.
Скажу на перед, первоначальные испытания с использованием 700 Вт 12 V автомобильного кабеля не дали удовлетворительных сварных швов. Основную толщину там составляет не медь(как может показаться по фото) а изоляция.
Возможно, мне стоило поискать другой кабель, но я решил обходиться тем что есть под рукой и просто удалил большую часть изоляции.
Минимизация резистивных потерь для нас является ключевым фактором.
После доработки, мой кабель удалось обернуть еще в несколько витков. Это увеличило напряжение и уменьшило резистивные потери. При тестировании я получил 4.6v на вторичке.
Один конец вторичного кабеля уходит на корпус, где он будет заземлен на теле сварщика, а затем переходит к неподвижной части. Верхняя часть клещей подвижна. Для уменьшения износа вторичного кабеля он закручен в форме спирали. Пластиковая ручка изолирует рабочую часть от пользователя.
Вид споттера с другой стороны. Я не нашел медных трубок, которые бы идеально подходили, поэтому это не идеальное решение. Кабель идет внутри трубок почти по все длине для уменьшения потерь. Для использования я рекомендую продумать установку сменных медных электродов.
Установлен 230 V AC вентилятор для охлаждения. Работает на выдув.
Я хотел автоматизировать время сварки, поэтому я сделал простую регулировку длительности импульса из некоторых компонентов, которые уже были у меня в наличии.
Список деталей:
- Резистор 1 кОм (R4)
- Резистор 9 кОм (R1)
- Резистор 40 кОм (R2)
- Переменный резистор 10 кОм (VR1)
- 3x Конденсатор 10 V 10 мкФ (можно поставить дополнительную конденсатор параллельно с С2, чтобы сделать импульс больше) (C1, C2)
- CD4093BC Триггер Шмидта с двумя логическими входами
Переменный резистор VR1 контролирует тайминги. Высокое разрешение резистора необходимо для больших импульсов сварки, при которых VR1 близко к R2. R1 и R2 используются для настройки диапазона делителя напряжения. Конденсатор С2 также заряжается через R1. Диапазон делителя напряжения должны быть такими, чтобы на максимуме, сварка работала непрерывно (удерживая кнопку нажатой) и на минимуме давала самый коротки импульс, который нужен. Если получаемые короткие импульсы сварки слишком большие, емкость конденсатора С2 можно увеличить. Это также позволит делать очень длинные импульсы, если нужно. Удвоение емкости должны удвоить время.
Грубое выражение, как напряжение на конденсаторе С2 поднимается после нажатия кнопки в момент времени t = 0 определяется по формуле:
где R сопротивление и С емкость элемента. RVR1 является номинальным сопротивлением переменного резистора, а не текущим значением. Первая половина переменного сопротивления VR1 и вторая половина VR1 + резистор R2 выступать в качестве делителя напряжения, который питает разделенный VC2 на триггер Шмитта(который номинально 3,3 V) для окончания импульса.
Первоначальная версия схемы требовала около секунды, чтобы восстановиться для следующего импульса. Резистор R4 был добавлен, чтобы исправить эту ситуацию. Это быстро разряжает конденсаторы, когда кнопка отключает цепь от источника питания.
Для безопасности схема получает питание через кнопку. Это позволяет контролировать работу, даже если IC или другая часть схемы выйдет из строя. Шум в схеме может быть проблемой для длительных импульсов, где может влиять на время сварки. Таймер не синхронизирован с AC, так что время импульса может также изменяться под воздействием работы твердотельного реле.
Сборка продолжается. Подумав, я заземлил все открытые участи корпуса.
Добавлено управляющее реле(справа) и блок питания на 5V.
Сварочный аппарат готов. Добавлю, что для качественной сварки нагрузка на свариваемые детали должна быть ~70кг + необходимо предусмотреть использование сменных сварных электродов. Но для не регулярного использования результат меня вполне устроил.
Плата управления реле времени аппарата для точечной сварки.
Отзывы покупателей
- 5 звезд0 (0%)
- 4 звезды0 (0%)
- 3 звезды0 (0%)
- 2 звезды0 (0%)
- 1 звезда0 (0%)
Написать отзыв
Получите двойные баллы за обзор, если вы один из первых 3 опубликованных отзывов!
- Все отзывы (0)
- Изображение (0)
- Видео (0)
Все звезды
- All Star (0)
- 5 звезд (0)
- 4 звезды (0)
- 3 звезды (0)
- 2 звезды (0)
- 1 звезда (0)
Сортировать по:
Лучший обзор
- Лучший обзор
- Самый полезный
- Самые последние
Отзывы только из вашей страны (США)
|
Показать оригинал
» data-show-translate=»Review can be auto-translated.»> Часть обзора переведена автоматически.В настоящее время нет отзывов. Первые 3 отзыва получают двойные баллы.
Всего 0 страниц
Перейти на страницу
Перейти
Вас может заинтересовать
рекомендация для вас
Basic Switch: Причины контактной сварки | Часто задаваемые вопросы | Австралия
Компания Omron использует файлы cookie для улучшения вашего опыта на этом веб-сайте. Продолжая использовать веб-сайт, вы тем самым соглашаетесь с нашей Политикой конфиденциальности и использования файлов cookie
.
Ведущий контент
FAQ № FAQ02182
Основное содержание
Вопрос
Что вызывает контактную сварку и что с этим делать?
Ответить
Причины:
Перегрузка, не соответствующая коммутационной способности контактов
Пусковой ток выше номинального
Ток отключения выше номинального
Частота коммутации превышает допустимую рабочую частоту
Использование в местах, подверженных постоянной вибрации
Контрмеры:
Переключение нагрузки с помощью реле или контактора.
Защитная цепь необходима для правильного использования таких нагрузок, как реле, двигатели, лампы накаливания и соленоиды.
Причина:
Перегрузка, не соответствующая коммутационной способности контактов
Контрмеры:
Переключение нагрузки с помощью реле или контактора.
Вставьте схему защиты контактов.
Типичные примеры цепей защиты от перенапряжения (ограничители перенапряжения)
| Circuit example | Applicable current | Feature | Element selection | ||||
| AC | Постоянный ток | ||||||
| CR цепь | * Условный | Применимо | C: от 0,5 до 1 мкФ на ток переключения (1 А) R: от 0,5 до 1 Ом на напряжение переключения (1 В) Значения могут меняться в зависимости от характеристик нагрузки. Конденсатор подавляет искровой разряд тока при разомкнутых контактах. Резистор ограничивает пусковой ток при повторном замыкании контактов. Рассмотрите роль конденсатора и резистора и экспериментально определите идеальные значения емкости и сопротивления. Используйте конденсатор с диэлектрической прочностью от 200 до 300 В. При переключении переменного тока убедитесь, что конденсатор не имеет полярности. Однако, если возможность управления дугой между контактами является проблемой для высокого напряжения постоянного тока, может быть более эффективным подключение конденсатора и резистора между контактами через нагрузку. Проверьте результаты, протестировав их в реальном приложении. | ||||
| Применимо | Применимо | Время работы увеличится, если нагрузкой является реле или соленоид. Эффективно подключение цепи CR параллельно нагрузке при напряжении питания 24 или 48 В и параллельно контактам при напряжении питания от 100 до 200 В. ![]() | Не применимо к | Применимо | Энергия, накопленная в катушке, преобразуется в ток с помощью диода, подключенного параллельно нагрузке. Затем потребляется ток, протекающий по катушке, и выделяется джоулево тепло сопротивлением индуктивной нагрузки. Время задержки сброса в этом методе больше, чем в методе CR. | Диод должен выдерживать пиковое обратное напряжение, в 10 раз превышающее напряжение цепи, и прямой ток, равный или превышающий ток нагрузки. | |
| Диод и Стабилитрон Диод Метод | Не применимо к | Напряжение стабилитрона для стабилитрона должно быть примерно в 1,2 раза выше, чем у источника питания, так как при некоторых обстоятельствах нагрузка может не работать. | |||||
| Метод варистора | Применимо | Применимо | В этом методе используется характеристика постоянного напряжения варистора, поэтому на контакты не воздействует высокое напряжение. Этот метод вызывает большую или меньшую задержку времени сброса. Эффективно подключение варистора параллельно нагрузке при напряжении питания от 24 до 48 В и параллельно контактам при напряжении питания от 100 до 200 В. | Выберите варистор так, чтобы выполнялось следующее условие для напряжение отключения Vc. Для токов переменного тока значение необходимо умножить на √2. Vc > (Current Voltage × 1,5) Если Vc установлено слишком высокое, отключение напряжения для высоких напряжений больше не будет эффективным, уменьшая эффект. | |||
Не применяйте схему защиты контактов, как показано ниже.
| Эта схема эффективно подавляет дуги, когда контакты разомкнуты. Однако емкость будет заряжена, когда контакты разомкнуты. Следовательно, когда контакты снова замкнуты, ток короткого замыкания от емкости может привести к сварке контактов. | |
Эта схема эффективно подавляет дуги, когда контакты разомкнуты.
|

Этот метод вызывает большую или меньшую задержку времени сброса. Эффективно подключение варистора параллельно нагрузке при напряжении питания от 24 до 48 В и параллельно контактам при напряжении питания от 100 до 200 В.