Сетка для кладки газосиликатных блоков на клей: Кладочная сетка для газобетонных блоков — что это такое? Армирование: базальтовой или пластмассовой сеткой

Содержание

Сетка для кладки блоков: характеристики, виды и особенности

Содержание:

  • 1 Применение, свойства и характеристики газосиликатного материала
  • 2 Для чего необходимо армирование кладки из газосиликатных блоков
  • 3 В каких участках применяется сетка для кладки газосиликатных блоков и арматура
  • 4 Армирование газосиликатных блоков сеткой: технология армирования
  • 5 Вертикальное усиление строительных конструкций из газосиликатных блоков
  • 6 Подводим итоги

Для возведения домов широко применяются изделия из пористого бетона, в том числе газосиликатные блоки. Они уверенно конкурируют с кирпичом и камнем, которые имеют высокую стоимость, но при этом не обеспечивают надежную теплоизоляцию и выход из помещения паров. Газосиликат обладает высокими эксплуатационными характеристиками, но имеет серьезный недостаток – растрескивается при изгибе. Осуществляя строительство стены или возведение перегородок, важно обеспечить прочность конструкции. Армирование кладки из газосиликатных блоков позволяет решить указанную задачу.

Применение, свойства и характеристики газосиликатного материала

Планируя строить частный дом или дачу из газосиликатного композита, следует тщательно изучить характеристики стройматериала и ознакомиться с его свойствами. Блоки производятся из цементно-песчаной смеси с добавлением воды, извести и алюминиевого порошка. При контактировании пудры алюминия с известью происходит реакция газообразования. Газосиликатная смесь заливается в формы, где она увеличивается в объеме. Заформованные блоки твердеют в автоклавах, в которых поддерживается увеличенная температура и повышенное давление. Готовые изделия имеют ячеистую структуру.

Газосиликатные блоки-обладают повышенными теплоизоляционными свойствами

В зависимости от концентрации воздушных ячеек изменяется плотность газосиликата, влияющая на область его применения:

  • легкие газосиликатные блоки с удельным весом до 0,2 т/м3 используются в качестве теплоизолятора;
  • изделия плотностью до 0,4 т/м3 востребованы при возведении капитальных стен и внутренних перегородок малоэтажных зданий;
  • газосиликатный стройматериал с плотностью 0,5-0,7 т/м3 используется при возведении нагруженных конструкций.

Технологический процесс, согласно которому осуществляется изготовление газосиликатных блоков, и пористая структура композитного массива влияют на свойства и характеристики материала. Газосиликатные блоки не только современный строительный материал, обладающий повышенными теплоизоляционными свойствами. Стены из газосиликата позволяют поддерживать комфортную температуру в помещении, снижая потери тепла и уменьшая затраты на отопление.

Кроме этого, блочный материал обладает комплексом других преимуществ:

  • звукоизоляционными свойствами. Поры, равномерно распределенные внутри газосиликатного композита, эффективно поглощают уличные шумы;
  • морозостойкостью. Газосиликатный композит сохраняет целостность структуры при резком охлаждении с дальнейшим оттаиванием;
  • безвредностью для окружающих. Благодаря применению экологически чистого сырья для изготовления блоков, не происходит выделения вредных веществ;
  • легкостью механической обработки. Используя стандартный инструмент, несложно придать нужную форму блочным изделиям;
  • небольшой массой. Благодаря уменьшенной плотности материала стены не оказывают дополнительной нагрузки на фундаментную основу;
  • продолжительным периодом эксплуатации. Долговечность стройматериала обусловлена особенностями структуры композита и устойчивостью к гниению;

Благодаря своим достоинствам газосиликатный материал востребован в строительстве

  • повышенной огнестойкостью. Газосиликат не разрушается при воздействии температуры до +450 градусов Цельсия на протяжении четырех часов;
  • правильной геометрической формой. Четкая форма блоков позволяет выполнять их кладку с использованием клея. Тонкий слой связующего состава не позволяет образовываться перемычкам холода и позволяет экономить тепло;
  • доступной ценой. Используя недорогой строительный материал, несложно уменьшить объем сметных затрат по возведению стен здания.

Наряду с достоинствами, газосиликатные блоки имеют также слабые стороны:

  • пониженную прочность. Блоки восприимчивы к воздействию изгибающих усилий. Блочный материал требует усиления стальной арматурой или с помощью металлических кладочных сеток;
  • повышенную гигроскопичность. По капиллярным каналам влага проникает внутрь газосиликатного массива через незащищенную поверхность блоков, которая нуждается в дополнительной защите.

Газосиликатный материал востребован в области жилищного строительства благодаря комплексу достоинств. Имеются проверенные решения по устранению недостатков. Защита газосиликата от влаги обеспечивается путем оштукатуривания.

Повышение прочности достигается за счет усиления конструкций кладочной сеткой или с помощью прута арматуры.

Для чего необходимо армирование кладки из газосиликатных блоков

Несмотря на способность газосиликата воспринимать сжимающие нагрузки, материал восприимчив к влиянию изгибающих моментов и растяжению. Коробка строения, возведенная из газосиликатных блоков, подвергается воздействию отрицательных факторов.

Армирование газосиликатных блоков предотвратит воздействие отрицательных факторов

Главные негативные моменты, вызывающие нарушение целостности газосиликата:

  • усадка строения. Она возникает не только на проблемных грунтах, но также и при ослаблении фундаментной основы. В результате усадочных деформаций действуют усилия, направленные в горизонтальной плоскости. Возникают трещины в газосиликатном материале, не усиленном арматурой или сеткой;
  • температурные колебания. Под воздействием перепадов температуры газосиликатные блоки увеличиваются или уменьшаются в объеме. Температурные скачки вызывают объемные деформации блоков. Для их усиления используется базальтовая кладочная сетка или сетка из металла.

На возникновение объемных деформаций, нарушающих целостность газосиликатных блоков, влияют также следующие факторы:

  • крутящие моменты и растягивающие нагрузки;
  • склонность материала к поглощению влаги;
  • недостаточная жесткость фундаментного основания;
  • морозное пучение проблемного грунта;
  • близкое расположение водоносных слоев.

Противостоять воздействию отрицательных факторов позволяет армирование газосиликатных блоков, выполняемое при возведении стен здания. Осуществляется усиление газосиликата сеткой с небольшими ячейками, а также рифленой арматурой, которую необходимо укладывать в специально подготовленные пазы.

Армирование кладки из газосиликатных блоков необходимо выполнять для решения следующих задач:

  • обеспечения устойчивости коробки здания;
  • компенсации усилий от стропильной конструкции;
  • предотвращения растрескивания стен;
  • равномерного распределения нагрузок;
  • сохранения целостности проемов;
  • повышения запаса прочности блоков под нагрузкой;
  • строительства газосиликатных зданий в сейсмозонах;
  • недопущения объемных деформаций.

Повысить прочность стен помогут арматурные элементы в виде металлических сеток

Арматурные элементы в виде металлических сеток используются не только при строительстве стен из газосиликатных блоков. Сетчатое армирование позволяет также повысить прочность стен из керамзитобетонных и газобетонных блоков.

В каких участках применяется сетка для кладки газосиликатных блоков и арматура

Армирующая сетка и стальные прутки применяются для усиления следующих участков строения:

  • нижнего ряда блоков, укладываемых на фундаментное основание. Под блоками укладываются элементы усиления. Они позволяют равномерно распределить нагрузку на фундамент и повысить нагрузочные характеристики первого ряда кладки;
  • опорных поверхностей блоков с интервалом в 3-4 ряда кладки. Равномерное распределение армирующих элементов по всей высоте капитальных стен обеспечивает повышенную устойчивость коробки строения к воздействию различных нагрузок;
  • зон расположения перемычек в области оконных и дверных проемов. Места опирания железобетонных перемычек на газосиликатные блоки требуют дополнительного усиления с помощью стальной арматуры, уложенной в предварительно подготовленные каналы;
  • заключительного ряда газосиликатной кладки, который воспринимает вес от стропильной конструкции. С помощью стальных прутков формируется мощный армопояс по периметру коробки, равномерно передающий нагрузки на несущие стены.

Армирование газосиликатных блоков сеткой и арматурой обеспечивает надежность возводимых конструкций, повышает прочность, способствуя продлению периода эксплуатации строения.

Армирование газосиликатных блоков сеткой начинается с нижнего ряда блоков

Армирование газосиликатных блоков сеткой: технология армирования

Армирование стен из газосиликатных блоков осуществляется в соответствии с требованиями технологического процесса.

Согласно технологии, усиление газосиликатной кладки осуществляется различными методами с применением следующих стройматериалов:

  • рифленой арматуры из стали А-III с размером сечения 0,8-1 см. Укладка металлических стержней для армирования газосиликата осуществляется в специальные каналы, размеры которых соответствует сечению арматуры. Специфика укладки прутков предусматривает обеспыливание пазов с последующим увлажнением. Арматурные стержни после укладки покрываются связующей смесью, после застывания которой повышаются прочностные характеристики кладки. Для усиления угловых участков арматурные стержни выгибают по радиусу и укладывают в соответствующие полости;
  • сетки из стальной проволоки. Диаметр проволоки, применяемой для изготовления сетки, составляет 0,3-0,5 см. После точечной сварки из проволочных заготовок формируется сетка с размером ячейки 4-5 см. Процесс укладки сетки значительно легче по сравнению с монтажом арматуры, так как отсутствует необходимость формирования пазов. Сетка ложится на газосиликатную поверхность и затем полностью покрывается связующим раствором. Важно правильно уложить арматурную сетку и обеспечить невозможность коррозионного разрушения проволоки из-за доступа влаги.

Наряду со стальной арматурой и проволочной сеткой для усиления газосиликатных конструкций также применяются сварные каркасы. Для их изготовления используется проволока с диаметром до 5 мм. Каркас представляет собой конструкцию из двух параллельно расположенных в каналах стальных прутков, сваренных проволочными перемычками.

Для усиления газосиликатных конструкций вместо сетки можно применять сварные каркасы

Общий алгоритм усиления кладки и проемов арматурой предусматривает:

  1. Разметку поверхности.
  2. Выполнение пазов.
  3. Очистку и увлажнение канавок.
  4. Нарезку арматуры.
  5. Укладку прутков.
  6. Сваривание элементов.
  7. Заполнение каналов раствором.

Последовательность действий при сеточном армировании достаточно простая:

  1. Разрежьте сетку на сегменты, ширина которых соответствует толщине стен.
  2. Уложите нарезанную сетку на поверхность газосиликатных блоков.
  3. Распределите равномерным слоем по сетке рабочий раствор.
  4. Производите укладку следующего ряда блоков.

Важно соблюдать технологию при выполнении арматурных работ.

Вертикальное усиление строительных конструкций из газосиликатных блоков

Необходимость усиления в вертикальной плоскости газосиликатных стен обусловлена следующими факторами:

  • повышенной величиной боковых нагрузок;
  • применением газосиликата с небольшой плотностью;
  • увеличенной массой стропильной конструкции.

Технология вертикального армирования позволяет:

  • обеспечить повышенную прочность колонн из газосиликатных блоков;
  • усилить в вертикальной плоскости небольшие простенки и дверные проемы;
  • предотвратить растрескивание газосиликата при вертикальных нагрузках.

Процесс вертикального армирования аналогичен технологии горизонтального усиления с помощью сварных каркасов. Для вертикального усиления газосиликатных стен необходимо предварительно подготовленный арматурный каркас уложить в полость с последующей заливкой связующим раствором. Для соединения элементов армирующей решетки используют сварку или соединяют прутки вязальной проволокой.

Подводим итоги

Армирование кладки из газосиликатных блоков – ответственная операция, значительно повышающая прочность возводимых строительных конструкций. Газосиликатные стены, усиленные сеткой или арматурой, обладают повышенной устойчивостью к образованию трещин и обеспечивают продолжительный период эксплуатации строения.

Кладочная сетка для газобетонных блоков: размеры и цены

Известно, что все здания через 2-3 месяца после возведения дают усадку, в результате чего возникает угроза растрескивания кладки. Для того чтоб предотвратить этот негативный процесс и укрепить определенные зоны, имеющие большие нагрузки, используется кладочная сетка.

Оглавление:

  1. Разновидности полотен
  2. Какую сетку лучше выбрать?
  3. Особенности технологии армирования
  4. Стоимость

К конструкциям, нуждающимся в усилении, относятся первый ряд кирпичей после фундамента, области под оконными и дверными проемами, некоторые стыковочные места. Обязательное армирование выполняется и в том случае, если высота помещений здания превышает 3 метра. Все вышесказанное относится и к кладке стены из газобетона. Хотя существует мнение производителей блоков, что именно этот строительный материал за счет высокой адгезии и механической прочности в данном этапе не нуждается.

Нормативными документами это решение не поддерживается, поэтому усиление стенок предусматривается в каждом проекте. Так как крепость и способность к высокому сцеплению не могут спасти от появления щелей в кладочных швах. А этот процесс вызывает трещины в стеновом ограждении, способные повлиять на качество строительства и срок эксплуатации сооружения.

Сетка для армирования кладки газоблоков выполняет защитные функции:

  • повышает ударную стойкость сооружения;
  • снижает влияние внешних и внутренних воздействий;
  • защищает гидроизоляционный слой.

При возведении построек из газоблоков часто пользуются стальными полотнами из проволоки диаметром 3 или 4 мм, а также пластиковыми и композитными. Две последних производят из базальто- и стеклопластиковых стержней, которые соединяются между собой перпендикулярно металлическими хомутами или клеем.

Самый распространенный материал – это металлическая оцинкованная сетка. Ее популярность объясняется:

  • Высокой прочностью, позволяющей выдерживать большие нагрузки. Этот параметр напрямую связан с размером ячеек: чем они меньше, тем крепость выше.
  • Долговечностью, не менее 15 лет.
  • Небольшим весом, облегчающим транспортировку и кладку. Здесь также прослеживается прямо пропорциональная зависимость от прочности. Большой вес материала выдерживает большие нагрузки.
  • Доступной стоимостью и абсолютной не дефицитностью.

Металлическая сетка изготавливается из прутьев, соединяемых точечной сваркой с дальнейшим погружением в электролиз. В результате стальная проволока покрывается тончайшим, в 8 мкм, цинковым слоем. Для гарантированного сцепления с раствором на изделия наносят насечки. Но даже это не спасает от ржавчины, которая образуется из-за взаимодействия металла с клеящими составами, которые используются для сцепления с газобетонными блоками.

Поэтому достойную конкуренцию металлической кладочной сетки составили пластиковые решетки из непрерывного базальтового полотна или пропилена. Их достоинство заключается в первую очередь в антикоррозионной способности. А также им присуще преимущества:

  • Особая долговечность, характерная для пластиковых материалов. Их разрушение длится несколько веков.
  • Простота в использовании, не требующая никаких усилий в монтаже. Легко режется, может принимать любую конфигурацию.
  • Прекрасная эластичность, способность выдерживать высокие изгибающие нагрузки.
  • Отличная транспортабельность.
  • Отсутствие «мостиков холода», характерных для металлических сеток, и низкая теплопроводность.
  • Небольшой вес, меньше металлических аналогов в 7 раз.
  • Способствует надежной связи между газоблоками. Не позволяет раствору заполнять пустоты, тем самым поддерживает теплоизоляционные возможности.
  • Классный диэлектрик.
  • Невысокая стоимость, значительно ниже цен на металлические сетки.

При таком значительном списке достоинств у пластиковых полотен для газобетона имеется один существенный недостаток: низкая механическая прочность.

Какую сетку лучше использовать для армирования?

Передовые технологии при возведении зданий требуют соблюдения точной геометрии конструкций (особенно для газоблоков) и аккуратности в размерах при сооружении ограждений. Толщина же металлического полотна не позволяет выдерживать кладочный шов менее чем 6 мм.

В часто встречающемся методе одновременного армирования различных по типоразмерам кладочных материалов возможно использование только мягких решеток. При этом сами они увеличивают теплоэффективность ограждения.

Металлические полотна неудобны в работе не только из-за своего большого веса, но и потому что при транспортировке они «пружинят», имеют способность спутываться, вклиниваться друг в друга, что часто является причиной их деформации. И при этом их острые концы весьма травмоопасны для работников. Поэтому металлическую сетку часто заменяют удачным эквивалентом, но это зависит от условий строительства.

Тонкости армирования

Как было сказано ранее, возведение практически любого стенового ограждения из газобетона требует дополнительного укрепления. Чаще всего это применяется для усиления межкомнатных стен, так как у них нет такой толщины, как у внешних.

При кладке газобетонных блоков усиление сеткой обязательно в следующих случаях:

  • на каждом 4-м ряду, который выполняется из 2-х газовых кирпичей, размеры которых превышают 200 мм;
  • если используются крупногабаритные элементы, которые одновременно облицовываются кирпичом;
  • на каждом 3-м ряду, если применяются изделия 3-й категории прочности В2,0.

Но эти методики требуют выполнения определенных условий монтажа армирующей сетки. Суть их заключается в создании небольших углублений в газобетоне для закрепления арматурной решетки. Штробирование проводится углошлифовальной машиной или штроборезом.

Для этого при кладке используется полотно шириной не менее 4,7 и не больше 6,2 мм с закрепленными продольными и поперечными стержнями проволокой или сваркой. Эти места соединения являются ориентиром при создании канавок. Их габариты зависят от размеров квадратов в решетках: чем они крупнее, тем меньше нужно канавок.

Расположив сетку, необходимо места скрепления плотно уложить в готовых штробах и закрыть бетонным раствором. Излишки нужно сравнять с поверхностью газобетона. В некоторых случаях, если позволяет шовная разметка, канавки прорезаются и между блоками.

Вопрос стоимости

В настоящее время полотно для армирования газоблоков не является дефицитным строительным материалом. Купить его можно везде без ограничений по вполне разумной цене. Производитель формирует цены, ориентируясь на длину и ширину карты или рулона, размеры ячейки, диаметр проволоки и материал, ее покрывающий. В Московской области приобрести эти изделия можно по ценам, представленным в таблице.

Размеры ячеек и диаметр проволокиСтоимость 1 м2Ширина и длина рулонаВес 1 м2
Сетка сварная из проволоки ВР-1 в картах
50х50х377,00,35х 2; 0,5х2; 1х2;

2х3

2,22
50х50х4135,00,35х 2; 0,5х2; 1х2;

2х3

3,76
50х75х495,00,38х 2; 0,5х22,89
50х50х5185,000,5х2; 1х2; 2х35,76
100х100х342,001х2; 1,5х2; 2х31,10
100х100х5110,01х2; 1,5х2; 2х3; 2х63,06
Сетка пластиковая
Все ячейки80,0Высота до 1,5м20мп
Все ячейки84,0Высота 1,5м и более20мп

Натриево-силикатные клеи

ТЕГИ:  Водоразбавляемые клеи      Герметики    

Эта статья была впервые опубликована в 2006 г. и переработана в 2021 г.

Растворимые силикаты натрия, широко известные как «жидкое стекло», представляют собой бесцветные недорогие неорганические материалы. При использовании в качестве клея жидкие силикаты предлагают:

  • Значительно низкая стоимость
  • Универсальность и
  • Простота обращения

Их основное применение – склеивание пористых оснований , таких как бумага и картон, где требуется недорогой, быстродействующий клей.

Другие области применения силикатов натрия включают приклеивание дерева, металлической фольги или стекла к пористым субстратам, приклеивание изоляции из стекловолокна, а также изготовление литейных форм и абразивных кругов. Из-за своей неорганической природы силикаты натрия могут быть включены в состав промышленных цементов с исключительно высокой устойчивостью к температурам и химическим веществам.

Клеи на основе силиката натрия обычно поставляются в виде вязкого водного раствора . Адгезионная связь образуется за счет:

  • испарения воды и/или
  • Химическая реакция

Водные растворы силиката натрия часто используются непосредственно в качестве немодифицированного клея , но их также можно смешивать с полимерными добавками для улучшения конкретных свойств, таких как ударная вязкость. Силикаты натрия также могут использоваться в качестве недорогой модифицирующей добавки в других клеях на водной основе .
Эти клеи демонстрируют умеренную степень липкости , и необходимо прикладывать удерживающее усилие до тех пор, пока соединение не станет достаточно сухим. К счастью, растворы силиката натрия быстро высыхают, и в результате их можно использовать во многих операциях, требующих высокой скорости машины.

Хотя сухой клей, как правило, устойчив к высоким температурам и химическим воздействиям, он хрупкий и в некоторой степени чувствителен к воде, если только он полностью не обезвожен или не подвергся химической реакции. Водостойкость можно улучшить путем взаимодействия силикатов натрия с различными кислотными соединениями или соединениями тяжелых металлов.
Добавление сахара, глицерина и других материалов способствует удержанию влаги в пленке и повышает ее гибкость, липкость и прочность. Каолиновую глину часто добавляют в повышают вязкость и предотвращают чрезмерное проникновение в пористые подложки.

Основные преимущества клеев на основе силиката натрия:

  • Относительно низкая стоимость
  • Общее сопротивление горению и
  • Пригодность для быстрого нанесения покрытий на водной основе на многие пористые подложки

Силикаты натрия производятся из легкодоступного недорогого сырья и, следовательно, имеют низкую стоимость по сравнению с большинством клеев на основе синтетических органических полимеров. Клеи на основе силиката натрия также очень устойчивы к экстремально высоким температурам. Некоторые из них могут выдерживать температуру до 1100°C. Из-за своей неорганической природы они считаются полностью огнестойкий и устойчивый к микробам или нападению животных, поэтому клеи на основе силиката натрия часто используются в строительстве.

Давайте углубимся, чтобы узнать о производстве силикатов натрия, а также об их основных свойствах, областях применения и проблемах безопасности.

Силикаты натрия – процесс производства и формы

Силикаты натрия доступны либо в виде жидких водных растворов (от 1 до 10 пуаз), либо в виде твердых порошков, подходящих для использования в сухих клеевых смесях. Их изготавливают путем сплавления различных пропорций песка или диоксида кремния (SiO 2 ) и кальцинированной соды или оксида натрия (Na 2 O), как показано на рисунке ниже. Полученное стекло затем растворяют в воде или измельчают в мелкую сетку.




Процесс производства силиката натрия 1

Варьируя соотношение SiO 2 к Na 2 O и содержание твердых веществ, можно получить клеевые растворы силиката натрия, обладающие значительно различными свойствами для конкретных промышленных применений. SiO 9Отношение 0071 2 к Na 2 O обычно варьируется от 1,6 до 3,3, а содержание твердых веществ обычно находится в диапазоне от 25 до 65%. В таблице ниже показаны характеристики различных сортов силиката натрия, имеющихся в продаже, а также их общее применение.

Жидкие растворы силиката натрия
Весовое соотношение (SiO 2 /Na 2 O) Содержание твердых веществ, вес.% Вязкость при 20°C сП Плотность, фунт/галлон

Заявление 

3,25 39,2 8300 11,8 Обмотка труб, картон, ДВП, стеновые панели, ламинирование фанеры, огнеупорный цемент
3,22 37,6 1800 11,6
3,22 38,7 4000 11,8 Герметик для намотки труб, бетона и металлических отливок (разбавленный)
2,88 42,7 9600 12,3 Намотка труб, запайка картона (раствор обладает большей липкостью, чем другие)
2,84 43,1 700 12,3 Герметик для литья металлов
Порошкообразный силикат натрия
Весовое соотношение (SiO 2 /Na 2 O) Na 2 O, вес. % SiO 2 , вес. % H 2 O, вес. % Плотность, фунт/фут 2 Размер порошка
3,22 23,1 74,4 0 88 Через 65 ячеек
3,22 19,2 61,8 18,5 44 Через 100 меш
2,40 23,8 57,2 17,5 38 Через 100 меш
2,00 27,0 54 18,0 46 Через 100 меш


Типичные свойства жидких и порошкообразных силикатов натрия 1,2


Вязкость жидких силикатов
может варьироваться от очень жидких до относительно густых продуктов с незначительной текучестью. Как правило, для клеевых продуктов используют растворы силикатов натрия с более высоким соотношением SiO 2 /Na 2 O (2,8-3,3). Они легко доступны наливом или в бочках от производителей, таких как PQ Corporation и Occidental Chemical Corporation. Растворы следует хранить при комнатной температуре, чтобы предотвратить замерзание и обеспечить лучшее смачивание субстрата.


Порошки марки
различаются по составу, размеру частиц и степени гидратации. Различные порошки силиката натрия будут различаться по скорости растворения в зависимости от этих свойств. Время полного решения может варьироваться от минут до часов. Гидратированные порошки были специально разработаны для быстрого растворения в воде при комнатной температуре. Эти продукты часто используются в качестве редиспергируемых клеев или сухих смесей для полевых цементов.

Силикаты калия (SiO 9смеси 0071 2 /K 2 O) также коммерчески доступны из тех же источников, которые производят силикаты натрия. Эти решения имеют схожие свойства применения и настройки. Однако силикаты калия обладают свойствами (например, более высоким электрическим сопротивлением), которые больше подходят для определенных применений. Силикаты калия не используются так широко, как клеи на основе силиката натрия, поскольку они имеют более высокую стоимость.

Механизм схватывания и образования связи

Жидкие растворы силиката натрия превращаются в твердые клеевые соединения за счет потери воды или химического механизма отверждения. Эти механизмы могут применяться по отдельности или в комбинации в зависимости от требований приложения.

  • Потеря воды происходит либо путем испарения, либо путем сорбции через пористые материалы субстрата.
  • Химическое отверждение часто используется для улучшения свойств конечной клейкой пленки, таких как раннее развитие прочности, влагостойкость и предельная прочность сцепления.

Жидкие продукты из силиката натрия слегка липкие, но они имеют лишь умеренную липкость по сравнению со многими органическими клеями , чувствительными к давлению . По мере испарения воды жидкие силикаты становятся все более липкими и вязкими. Как правило, только небольшая часть воды (несколько процентов по весу) должна испариться, прежде чем клей проявит хорошую прочность при обработке. Поэтому клеи на основе силиката натрия часто используются в приложениях, требующих высоких скоростей машин и характеристики быстрой настройки . Влияние испарения воды на вязкость некоторых жидких продуктов из силиката натрия показано в таблице ниже.

Соотношение веса
SiO 2 /Na 2 O
Вязкость при 20°C (Пуаз) Потеря веса для исходного набора, %
Начальный Потеря веса 6% 12% Потеря веса
3,22 1,8 20 2300 13,6
3,22 4,0 120 20000 11,2
2,88 9,6 150 10000 12,0

Влияние испарения на вязкость жидких растворов силиката натрия 2

Для эквивалентной вязкости системы с более высоким содержанием кремния (с более высоким соотношением SiO 2 /Na 2 O) имеют более быстрое время высыхания на воздухе, чем системы с более низким соотношением и более щелочными сортами. Однако марки с более низким соотношением обычно имеют большую липкость и более высокую смачивающую способность. Для марок с более низким соотношением может потребоваться нагрев для сушки или обработка химическими отвердителями для достижения практических скоростей нанесения. Поскольку клеевые растворы силиката натрия с низким содержанием имеют тенденцию удерживать больше воды, их высушенные пленки обычно менее хрупкие, чем у их аналогов.

Значение pH жидких клеев на основе силиката натрия довольно постоянно, поскольку оно мало меняется, когда содержание твердых веществ в растворе силиката натрия превышает 10%. Для клейких продуктов pH будет находиться в диапазоне примерно от 11 для продуктов с высоким соотношением до 13 для продуктов с более низким соотношением (более щелочных).

Термическое отверждение или химическая реакция рекомендуются для применений, где требуется водостойкость. После обезвоживания путем отверждения при нагревании пленка силиката натрия имеет умеренно хорошую устойчивость к влаге. Термическое отверждение должно выполняться поэтапно, чтобы предотвратить образование пара внутри клеевой пленки. Обычно температуру постепенно повышают до 100-105°С для медленного удаления воды и набора вязкости. Окончательное отверждение затем достигается при температуре 150-200°С.

Химические реакции обеспечивают максимальную водонепроницаемость и водонепроницаемость. Силикаты натрия могут вступать в реакцию с кислотными соединениями или соединениями тяжелых металлов с образованием твердых нерастворимых связей. Эти соединения обычно добавляют непосредственно в жидкий раствор силиката натрия перед применением. Тем не менее, они также могут быть добавлены к основанию в качестве грунтовки или предварительной обработки, или они могут быть нанесены на готовое соединение в качестве последующей обработки.

Например, влагостойкость может быть значительно улучшена путем нанесения подходящих солей алюминия на такие подложки, как бумага, перед склеиванием. Использование оксида цинка в качестве химического отвердителя особенно желательно, так как после отверждения при 100-105°С он образует пленку, способную фактически отделять воду. 3

Водостойкость клеев на растворе силиката натрия также может быть улучшена путем добавления мелкодисперсных порошков, таких как оксид цинка или аморфный карбонат кальция . Эти добавки будут медленно реагировать с силикатом с образованием нерастворимой массы. Сочетание силиката с кислотными материалами, такими как сульфат алюминия, приведет к нейтрализации щелочного силиката, что вызовет гелеобразование и прочную полимеризованную форму компонента кремнезема. Различные механизмы химического отверждения приведены в таблице ниже.

Добавка  Характеристики
Кислотные материалы (например, сульфат алюминия, минеральные и органические кислоты), бикарбонат натрия и монофосфат натрия, углекислый газ. Нерастворимые связи образуются при нейтрализации щелочного силиката и последующем гелеобразовании.
Соединения поливалентных металлов (например, хлорид кальция, сульфат магния, бура и метаборат натрия). Реагировать с силикатными растворами с образованием покрытий или клеевых соединений путем осаждения нерастворимых силикатных соединений. Обычно используется в концентрациях 5-10% по весу в расчете на жидкий силикат.
Мелкодисперсный оксид цинка или кремнефторид натрия. Обеспечивают более длительное время работы и хорошую водостойкость. Они используются в концентрации около 7% по весу в расчете на жидкий силикат. Кремнийфторид особенно эффективен при отверждении при температуре окружающей среды; оксид цинка обычно используется при температуре отверждения 100-110°C.


Добавки, используемые для химического отверждения клеев на основе силиката натрия 2

Стоимость клеев на основе силиката натрия

Основными факторами использования клеев на основе силиката натрия являются их доступность, общая простота нанесения, относительно быстрое схватывание, стабильные свойства и отсутствие выделения летучих веществ. Они также представляют собой полностью неорганический (негорючий) материал. Соединение прочное, жесткое и во многих случаях термостойкое и водостойкое. Преимущества, недостатки и типичные области применения клеев на основе силиката натрия приведены в таблице ниже.

Преимущества Недостатки Примеры применения
  • Низкая стоимость
  • негорючий
  • Экологически чистый
  • Устойчив к нападению животных и росту микробов
  • Устойчив к температурам выше 1000°C
  • Устойчив ко многим химическим веществам
  • Без запаха и нетоксичный
  • Может приклеиваться ко многим пористым (например, бумаге, дереву, стеклянной изоляции) и непористым (например, металлической фольге, стеклу) материалам
  • Высокая прочность на растяжение
  • Быстрое развитие прочности при обработке
  • Жесткие и относительно хрупкие (в зависимости от содержания влаги)
  • Чувствителен к влаге (в зависимости от степени обезвоживания и способа отверждения)
  • Едкая природа растворов требует осторожности при обращении
  • Клей для гофрированного картона, бумажных трубок, волокнистых барабанов и т. д.
  • Ламинирование фольги на бумагу
  • Герметизация кирпичной кладки
  • Наполнитель для латексных клеев и покрытий
  • Связующие для волокнистых материалов (изоляция, стеновые панели и т. д.)
  • Связующие для укладки на поддоны
  • Цементы для высокотемпературных, химически стойких промышленных применений
  • Герметик для пористости бетона, металлических отливок и т. д.

Преимущества, недостатки и примеры применения клеев на основе силиката натрия

Быстросхватывающиеся свойства , проявляющиеся при потере лишь небольшого количества воды в жидких силикатах, идеально подходят для применений, требующих высоких скоростей машин. Эта особенность имеет особое значение для гофромашин, которые успешно работают на скоростях до 500 футов в минуту с силикатным клеем. 3

При обезвоживании до стеклообразного состояния растворимые силикаты натрия устойчивы к воздействию воды; однако продолжительное воздействие высокой влажности или водного раствора разрушит его, если только он не затвердеет химически, как описано выше. Однако при обычной относительной влажности силикатная связка может содержать до 20-50% воды. Связь становится прочнее по мере уменьшения содержания воды, как показано на рисунке ниже. Таким образом, при высокой относительной влажности клейкая пленка силиката натрия будет более гибкой, но с меньшей прочностью на растяжение, чем тот же клей, который был кондиционирован при более низкой влажности.




Силикат натрия с отношением 3,2 быстро увеличивал прочность на растяжение по мере того, как вода
содержание уменьшается

Достижение гибкости за счет добавления добавок и каучуков

Адгезивы на основе силиката натрия, даже будучи гидратированными, имеют низкую степень эластичности . Однако умеренной степени гибкости можно добиться путем добавления в силикатный раствор пластификаторов . Сахар, глицерин и сорбит обеспечивают удержание воды и, таким образом, повышают гибкость. Они обычно используются в концентрациях 1-5% по массе. Эти добавки обычно также снижают вязкость, но в то же время улучшают липкость. Крахмалы и декстрины и латекс натуральный или синтетический каучук также использовались в качестве добавок для улучшения гибкости клеев на основе силиката натрия.

Роль адгезионной прочности в связывании силиката с подложкой

Прочность на сдвиг клеев на основе силиката натрия достаточна для многих применений. Наполнители в виде хлорида натрия, глины или талька иногда добавляют к:

  • Регулировка вязкости
  • Уменьшить проникновение и
  • Еще больше снизить стоимость материалов

Однако для тонких свободных пленок были отмечены более высокие прочностные характеристики. Сила адгезии часто выше, чем у подложки (например, картона, дерева и т. д.), к которой она прикреплена. На кленовых блоках возможна прочность сцепления порядка 300 фунтов на квадратный дюйм. Сообщалось о значениях прочности до 1500 фунтов на квадратный дюйм на некоторых металлических подложках и до 1000 фунтов на квадратный дюйм на стеклянных подложках. 4

Поддержание термостойкости за счет добавления глины и органических наполнителей

Температура размягчения большинства силикатов натрия выше 650°С. Устойчивость к еще более высоким температурам может быть достигнута путем добавления в рецептуру глины или других неорганических наполнителей. Эти составы силиката натрия обеспечивают исключительную устойчивость к высоким температурам покрытий для металлов или стекла и хорошие связующие вещества для огнеупорного цемента.

Упростите процесс выбора, получив подробные сведения о наполнителях и наполнителях , их эффектах, применении и примерах составов.

Натриево-силикатные клеи – рецептуры и применение

Клей на основе силикатов натрия наиболее эффективно работает на чистых гидрофильных поверхностях. Таким образом, они способны приклеиваться ко многим пористым материалам, таким как бумага, дерево и цемент, и даже ко многим непористым подложкам, таким как металлы и стекло.

При склеивании с металлическими основаниями силикатные клеи должны хорошо смачивать основание. Таким образом, поверхностно-активное вещество часто вводят в раствор силиката натрия. Было использовано до 2% по весу таких материалов, как сульфированное касторовое масло, жирные кислоты, канифольные мыла или нафталинсульфокислоты. 3

Как правило, ограничивающим фактором при склеивании с металлом является негибкость силикатной связки и разница коэффициентов теплового расширения между силикатом и металлической подложкой. Тонкие силикатные пленки лучше всего зарекомендовали себя в этих областях, поскольку они относительно более гибкие, чем толстые покрытия.

Однако жидкие силикаты идеально подходят для пористых оснований, поскольку пропитка и механическое сцепление в первую очередь определяют адгезию . Эти подложки также можно ламинировать на металлические пленки с помощью клея на основе силиката натрия. Основным применением силиката натрия в области переработки бумаги является производство труб, стержней и волокнистых барабанов. Другое популярное применение клея на основе силиката натрия — герметизация гофрированных контейнеров перед их отправкой или хранением.

Растворы силиката натрия широко используются для изготовления многих видов цемента . К ним относятся цементы для кислотоупорного строительства, огнеупорных применений и вяжущих теплоизоляционных материалов. Цементы на основе силикатов натрия применяют для футеровки и кладки огнеупорных изделий, изготовления литейных форм и стержней, кладки кирпича в сульфитных варочных котлах для получения древесной целлюлозы, возведения кислотоупорной кладки. Цементы для печей, дымоходов, печей, коксовых печей, свечей зажигания и для соединения металла со стеклом и фарфором часто изготавливаются с использованием цементов на основе силиката натрия.

Растворы силиката натрия также использовались в качестве пропитки для металлических отливок , которые имеют тенденцию оставлять микроскопические пустоты и капилляры на границах зерен. Они особенно полезны для герметизации пор в отливках из песка. Они остаются популярными в этом приложении из-за их превосходных характеристик, низкой стоимости, а также свойств безопасности и здоровья, связанных с материалом.

Большинство пропитывающих герметиков из силиката натрия модифицированы добавками для улучшения герметизирующих характеристик. Типичные добавки:

  • Железный, медный или алюминиевый порошок
  • Каолиновая глина
  • Графитовый порошок
  • Вермикулитовый порошок
  • Загустители и суспендирующие агенты

В большинстве процессов герметизации используется вакуумная обработка для обеспечения эффективности герметизации и сокращения времени обработки.

Использование силиката натрия в качестве добавки к клеям на латексной основе

Растворимый силикат может быть включен в качестве добавки во многие клеи на латексной основе. Силикат натрия входит в состав общая концентрация твердого связующего . К преимуществам добавок силиката натрия к рецептуре относятся:

  • Значительная экономия средств
  • Повышенная огнестойкость
  • Более стабильные составы
  • Повышенная прочность сцепления
  • Повышенная устойчивость к теплу, свету, окислению и микробам
  • Обычно совместим со щелочными (рН выше 8,0) водными эмульсиями.

Силикаты натрия также используются для регулирования реологии и свойств покрытия некоторых латексных систем. Как правило, они совместимы со следующими полимерные латексные материалы :

  • Стирол-бутадиен
  • Полистирол
  • Неопрен
  • Поливинилхлорид
  • Поливинилацетат
  • Сополимер акрилонитрила
  • Акриловый полимер и сополимеры

Информация об охране окружающей среды и технике безопасности

Силикаты натрия состоят из двух самых простых элементов в мире – песка и щелочи. Таким образом, клеи на основе силиката натрия обычно считаются нетоксичными и безвредными для окружающей среды .

В зависимости от степени щелочности растворимый силикат может вызвать раздражение или ожог кожи и глаз при контакте. Необходимо соблюдать инструкции поставщика по обращению и инструкции в паспорте безопасности материала. Силикаты натрия полностью неорганические и поэтому не представляют опасности взрыва или воспламенения.

Марки силиката натрия для клея

Просмотрите все имеющиеся в продаже марки силиката натрия для клеев, проанализируйте технические характеристики каждого продукта, получите техническую поддержку или запросите образцы.

Изоляционные материалы | Министерство энергетики

Энергосбережение

Изображение

Изоляционные материалы охватывают весь спектр от объемных волокнистых материалов, таких как стекловолокно, каменная и шлаковая вата, целлюлоза и натуральные волокна, до жестких пенопластовых плит и гладкой фольги. Объемные материалы сопротивляются кондуктивному и, в меньшей степени, конвективному тепловому потоку в полости здания. Жесткие пенопластовые плиты задерживают воздух или другой газ, препятствуя тепловому потоку. Фольга с высокой отражающей способностью в лучистых барьерах и отражающих системах изоляции отражает лучистое тепло от жилых помещений, что делает их особенно полезными в прохладном климате. Также доступны другие менее распространенные материалы, такие как цементные и фенольные пены, вермикулит и перлит.

Узнайте о следующих изоляционных материалах:

  • Стекловолокно
  • Минеральная вата
  • Целлюлоза
  • Натуральные волокна
  • Полистирол
  • Полиизоцианурат
  • Полиуретан
  • Перлит
  • Цементная пена
  • Фенольная пена
  • Изоляционные покрытия

Стекловолокно

Стекловолокно состоит из очень тонких стеклянных волокон и является одним из самых распространенных изоляционных материалов. Он обычно используется во многих различных формах изоляции: одеяло (маты и рулоны), насыпной материал, а также доступен в виде жестких плит и изоляции для воздуховодов.

В настоящее время производители производят изоляционные материалы из стекловолокна средней и высокой плотности, которые имеют несколько более высокие значения R , чем стандартные войлочные материалы. Более плотные изделия предназначены для изоляции помещений с ограниченным пространством полостей, например, потолков собора.

Войлок из стекловолокна высокой плотности для каркасной стены размером 2 на 4 дюйма (51 на 102 миллиметра [мм]) имеет значение R-15 по сравнению с R-11 для типов «низкой плотности». Войлок средней плотности предлагает R-13 для той же толщины. Войлок высокой плотности для каркасной стены размером 2 на 6 дюймов (51 на 152 мм) предлагает R-21, а войлок высокой плотности для пространства 8,5 дюймов (216 мм) дает значение R-30. Также доступны пластины R-38 для 12-дюймовых (304 мм) пространств.

Изоляция из стекловолокна изготавливается из расплавленного стекла, которое формуется или выдувается в волокна. Большинство производителей используют от 40% до 60% переработанного стекла. Насыпная изоляция должна наноситься с помощью изоляционно-выдувной машины либо в приложениях с открытым дутьем (например, чердачные помещения), либо в приложениях с закрытыми полостями (например, внутри существующих стен или крытых чердачных полов). Узнайте больше о где изолировать.

Одним из вариантов насыпной изоляции из стекловолокна является Blow-In-Blanket System® (BIBS). BIBS выдувается всухую, и испытания показали, что стены, изолированные с помощью системы BIBS, заполняются значительно лучше, чем те, которые изолированы с использованием других форм изоляции из стекловолокна, таких как войлок, благодаря эффективному покрытию, полученному с помощью этого метода нанесения.

Новая система BIBS HP представляет собой экономичную гибридную систему, в которой BIBS сочетается с распыляемой полиуретановой пеной.

Изоляционные материалы из минеральной ваты

Термин «минеральная вата» обычно относится к двум типам изоляционного материала:

  • Минеральная вата, искусственный материал, состоящий из природных минералов, таких как базальт или диабаз.
  • Шлаковая вата, искусственный материал из доменного шлака (отходы, образующиеся на поверхности расплавленного металла).

Минеральная вата содержит в среднем 75% постиндустриального вторичного сырья. Для придания ему огнестойкости не требуются дополнительные химические вещества, и он обычно доступен в виде одеяла (батонов и рулонов) и насыпного утеплителя.

Целлюлозный изоляционный материал

Целлюлозная изоляция изготавливается из переработанной бумажной продукции, в основном газетной бумаги, и имеет очень высокое содержание переработанного материала, обычно от 82% до 85%. Бумагу сначала измельчают на мелкие кусочки, а затем превращают в волокна, создавая продукт, который плотно упаковывается в полости здания.

Производители добавляют минеральный борат, иногда смешанный с менее дорогим сульфатом аммония, чтобы обеспечить устойчивость к огню и насекомым. Целлюлозная изоляция, установленная с надлежащей плотностью, не может осесть в полости здания.

Целлюлозная изоляция используется как в новых, так и в существующих домах, в виде насыпного заполнения на открытых чердачных установках и плотного заполнения полостей зданий, таких как стены и сводчатые потолки. В существующих конструкциях установщики удаляют полосу внешнего сайдинга, обычно высотой примерно по пояс; просверлите ряд трехдюймовых отверстий, по одному в каждом отсеке для стоек, через обшивку стены; вставьте специальную наполнительную трубку в верхнюю часть полости стены; и взорвать изоляцию в полость здания, как правило, до плотности от 1,5 до 3,5 фунтов на кубический фут. Когда установка завершена, отверстия закрывают заглушками, а сайдинг заменяют и при необходимости подкрашивают, чтобы он соответствовал стене.

В новом строительстве целлюлоза может быть либо напылена во влажном состоянии, либо установлена ​​в сухом виде за сеткой. При влажном распылении небольшое количество влаги добавляется к кончику распылительного сопла, активируя натуральные крахмалы в продукте и заставляя его прилипать к полости. Целлюлоза, напыляемая влажным способом, обычно готова для облицовки стен в течение 24 часов после укладки. Целлюлоза также может быть высушена ветром в сетку, скрепленную скобами над полостями здания.

Целлюлозный изоляционный материал

Некоторые натуральные волокна, включая хлопок, овечью шерсть, солому и коноплю, используются в качестве изоляционных материалов.

Хлопок

Изоляция из хлопка состоит на 85 % из переработанного хлопка и на 15 % из пластиковых волокон, обработанных боратом — тем же антипиреном и репеллентом от насекомых/грызунов, что и целлюлозная изоляция. В одном продукте используются переработанные отходы производства синих джинсов. Благодаря содержанию переработанных материалов для производства этого продукта требуется минимальное количество энергии. Утеплитель из хлопка доступен в виде войлока.

Овечья шерсть

Для использования в качестве изоляции овечья шерсть также обрабатывается боратом для защиты от вредителей, огня и плесени. Войлок из овечьей шерсти для стены с каркасом из шипов размером 2 на 4 дюйма и 2 на 6 дюймов имеет значение R-13 и R-19 соответственно.

Солома

Строительство из тюков соломы, популярное 150 лет назад на Великих равнинах США, вновь привлекло к себе внимание.

Процесс сплавления соломы в доски без клея был разработан в 1930 с. Панели обычно имеют толщину от 2 до 4 дюймов (от 5 до 102 мм) и облицованы плотной крафт-бумагой с каждой стороны. Из плит также получаются эффективные звукопоглощающие панели для внутренних перегородок. Некоторые производители разработали структурные изолированные панели из многослойных панелей из прессованной соломы.

Конопля

Изоляция из конопли относительно неизвестна и редко используется в Соединенных Штатах. Его значение R аналогично другим типам волокнистой изоляции.

Полистирольные изоляционные материалы

Полистирол — бесцветный, прозрачный термопласт — обычно используется для изготовления изоляции из пенопласта или картона, изоляции из бетонных блоков и типа насыпной изоляции, состоящей из маленьких шариков полистирола.

Формованный пенополистирол (MEPS), обычно используемый для изоляции пенопластовых плит, также доступен в виде небольших шариков пенопласта. Эти шарики можно использовать в качестве изоляции для заливки бетонных блоков или других полых стеновых полостей, но они очень легкие, очень легко принимают статический электрический заряд и, как известно, трудно контролировать.

Другими изоляционными материалами из полистирола, аналогичными MEPS, являются пенополистирол (EPS) и экструдированный полистирол (XPS). EPS и XPS оба сделаны из полистирола, но EPS состоит из маленьких пластиковых шариков, которые сплавляются вместе, а XPS начинается как расплавленный материал, который выдавливается из формы в листы. XPS чаще всего используется в качестве пенопластовой изоляции. Вспененный полистирол обычно производится в виде блоков, которые можно легко разрезать, чтобы получить изоляцию из плит. И EPS, и XPS часто используются в качестве изоляции для конструкционных изоляционных панелей (SIP) и изоляционных бетонных форм (ICF). Со временем значение R для изоляции XPS может снизиться, поскольку часть газа с низкой проводимостью выходит и заменяется воздухом — явление, известное как тепловой дрейф или старение.

Термическое сопротивление или R-коэффициент пенополистирола зависит от его плотности. Полистироловая насыпная или шариковая изоляция обычно имеет более низкое значение R по сравнению с пенопластом.

Полиизоциануратные изоляционные материалы

Полиизоцианурат или полиизо – это термореактивный пластиковый пенопласт с закрытыми порами, содержащий в своих ячейках газ с низкой электропроводностью, не содержащий гидрохлорфторуглеродов.

Изоляция из полиизоцианурата доступна в виде жидкой, напыляемой пены и жесткой пенопластовой плиты. Из него также можно изготовить ламинированные изоляционные панели с различными видами облицовки. Полиизоциануратная изоляция, вспененная на месте, обычно дешевле, чем установка пенопластовых плит, и может работать лучше, потому что жидкая пена принимает форму на всех поверхностях.

Со временем R-значение полиизоциануратной изоляции может упасть, так как часть газа с низкой проводимостью выходит и заменяется воздухом – явление, известное как тепловой дрейф или старение. Экспериментальные данные показывают, что наибольший тепловой дрейф происходит в течение первых двух лет после изготовления изоляционного материала.

Фольга и пластиковые покрытия на жестких панелях из вспененного полиизоцианурата могут помочь замедлить процесс старения. Светоотражающая фольга, если она установлена ​​правильно и обращена к открытому пространству, также может выступать в качестве излучающего барьера. В зависимости от размера и ориентации воздушного пространства это может добавить еще один R-2 к общему тепловому сопротивлению.

Некоторые производители используют полиизоцианурат в качестве изоляционного материала в конструкционных изолированных панелях (SIP). Для изготовления SIP можно использовать пенопласт или жидкий пенопласт. Жидкая пена может быть введена между двумя деревянными обшивками под значительным давлением, и при затвердевании пена образует прочную связь между пеной и обшивкой. Стеновые панели из полиизоцианурата обычно имеют толщину 3,5 дюйма (89 мм). Потолочные панели имеют толщину до 7,5 дюймов (190 мм). Эти панели, хотя и более дорогие, более устойчивы к огню и диффузии водяного пара, чем пенополистирол. Они также изолируют на 30-40% лучше для данной толщины.

Полиуретановые изоляционные материалы

Полиуретан представляет собой изоляционный материал из термореактивной пены, в ячейках которого содержится газ с низкой электропроводностью. Изоляция из пенополиуретана доступна в формулах с закрытыми и открытыми порами. В пене с закрытыми порами ячейки с высокой плотностью закрыты и заполнены газом, который помогает пене расширяться, чтобы заполнить пространство вокруг нее. Ячейки пены с открытыми порами не такие плотные и заполнены воздухом, что придает изоляции губчатую текстуру и более низкое значение R.

Как и пенополистирол, значение R теплоизоляции из полиуретана с закрытыми порами может со временем снижаться, поскольку часть газа с низкой проводимостью выходит и заменяется воздухом в результате явления, известного как тепловой дрейф или старение. Большая часть теплового дрейфа происходит в течение первых двух лет после изготовления изоляционного материала, после чего значение R остается неизменным, если только пенопласт не поврежден.

Фольга и пластиковые покрытия на панелях из жесткого пенополиуретана могут помочь замедлить тепловой дрейф. Светоотражающая фольга, если она установлена ​​правильно и обращена к открытому пространству, также может выступать в качестве излучающего барьера. В зависимости от размера и ориентации воздушного пространства это может добавить еще один R-2 к общему тепловому сопротивлению.

Полиуретановая изоляция доступна в виде напыляемой жидкой пены и жесткой пенопластовой плиты. Из него также можно изготовить ламинированные изоляционные панели с различными видами облицовки.

Нанесение полиуретановой изоляции распылением или вспениванием на месте обычно дешевле, чем установка плит из пенопласта, и эти применения обычно более эффективны, поскольку жидкая пена принимает форму на всех поверхностях. Вся изоляция из пенополиуретана с закрытыми порами, производимая сегодня, производится с использованием газа, отличного от HCFC (гидрохлорфторуглерода), в качестве пенообразователя.

Пенополиуретаны низкой плотности с открытыми порами используют воздух в качестве вспенивателя и имеют значение R, которое не меняется с течением времени. Эти пены похожи на обычные пенополиуретаны, но более эластичны. В некоторых сортах с низкой плотностью в качестве пенообразователя используется углекислый газ (CO2).

Пены низкой плотности распыляются в открытые полости стен и быстро расширяются, закрывая и заполняя полости. Также доступна медленно расширяющаяся пена, предназначенная для полостей в существующих домах. Жидкая пена расширяется очень медленно, что снижает вероятность повреждения стены из-за чрезмерного расширения. Пена проницаема для водяного пара, остается эластичной и устойчива к впитыванию влаги. Он может обеспечить хорошую герметизацию воздуха, огнестойкий и не поддерживает пламя.

Также доступны жидкие полиуретановые пенообразователи на основе сои. Эти продукты можно наносить с помощью того же оборудования, которое используется для продуктов из пенополиуретана на нефтяной основе.

Некоторые производители используют полиуретан в качестве изоляционного материала в структурно-изолированных панелях (SIP). Для изготовления SIP можно использовать пенопласт или жидкий пенопласт. Жидкая пена может быть введена между двумя деревянными обшивками под значительным давлением, и при затвердевании пена образует прочную связь между пеной и обшивкой. Стеновые панели из полиуретана обычно имеют толщину 3,5 дюйма (89мм) толщиной. Потолочные панели имеют толщину до 7,5 дюймов (190 мм). Эти панели, хотя и более дорогие, более устойчивы к огню и диффузии водяного пара, чем пенополистирол. Они также изолируют на 30-40% лучше для данной толщины.

Перлитовые изоляционные материалы

Изоляционные материалы из перлита обычно используются в качестве изоляции чердаков в домах, построенных до 1950 года.

Перлит состоит из очень маленьких легких гранул, которые получают путем нагревания каменных гранул до тех пор, пока они не лопнут. Это создает тип рыхлой изоляции из гранул, которые можно засыпать на место или смешать с цементом для создания легкого, менее теплопроводного бетона.

Изоляционный материал из цементной пены

Цементный изоляционный материал представляет собой пену на основе цемента, используемую в качестве напыляемой или вспениваемой изоляции. Один из видов напыляемой пены на основе цемента, известный как aircrete®, содержит силикат магния и имеет исходную консистенцию, подобную крему для бритья. Air krete® закачивается в закрытые полости. Цементный пенопласт стоит примерно столько же, сколько пенополиуретан, он нетоксичен и негорюч и изготавливается из минералов (например, оксида магния), извлеченных из морской воды.

Изоляционный материал из фенольной пены

Фенольная (фенолоформальдегидная) пена несколько лет назад была довольно популярна в качестве жесткой пенопластовой изоляции. В настоящее время он имеет ограниченную доступность в качестве изоляции для плит, а также доступен в виде вспененной изоляции.

Фенольная пенопластовая изоляция использует воздух в качестве пенообразователя. Одним из основных недостатков фенольной пены является то, что после отверждения она может дать усадку до 2%, что делает ее менее популярной сегодня.

Изоляционные покрытия

Облицовки крепятся к изоляционным материалам в процессе производства. Облицовка защищает поверхность изоляции, скрепляет изоляцию и облегчает крепление к элементам здания. Некоторые типы облицовки могут также выступать в качестве воздушного барьера, барьера для излучения и/или барьера для пара, а некоторые даже обеспечивают огнестойкость.

Обычные облицовочные материалы включают крафт-бумагу, белую виниловую пленку и алюминиевую фольгу. Все эти материалы действуют как паро- и воздухонепроницаемый барьер, если стыки между плитами утеплителя проклеены и герметизированы. Алюминиевая фольга также может выступать в качестве барьера для излучения. Ваш климат, а также место и способ установки изоляции в вашем доме будут определять, какой тип облицовки и / или барьера, если таковой имеется, вам понадобится.

Некоторые из тех же материалов, которые используются в качестве изоляционных покрытий, могут быть установлены отдельно для обеспечения воздушной, паровой и/или лучевой защиты.

  • Учить больше
  • Ссылки

Связано с энергосбережением

Изоляция

Изоляция экономит деньги домовладельцев и повышает комфорт.

Узнать больше

Типы изоляции

Потребители могут выбирать из многих типов изоляции, которые экономят деньги и улучшают комфорт.

Узнать больше

Где утеплить дом

Изоляция всей оболочки вашего дома экономит деньги и повышает комфорт.

Узнать больше

Изоляция для строительства нового дома

Строительство нового энергоэффективного дома требует тщательного выбора места размещения и установки изоляционных материалов.

Узнать больше

Добавление изоляции к существующему дому

Утепление вашего дома — это разумная инвестиция, которая, скорее всего, быстро окупится благодаря сокращению счетов за коммунальные услуги.

Узнать больше

Контроль влажности

Контроль влажности может сделать ваш дом более энергоэффективным, менее затратным на отопление и охлаждение и более комфортным.

Узнать больше

Пароизоляционные материалы или замедлители пара

В большинстве климатических условий США замедлители диффузии пара могут помочь предотвратить проблемы с влажностью, повысить энергоэффективность и улучшить комфорт в домах.

Узнать больше

Сияющие преграды

Радиационные барьеры эффективны для снижения летнего притока тепла в прохладном климате.

Узнать больше

Изделия и услуги для изоляции и герметизации воздуха

Найдите информацию о продукции и найдите профессиональные услуги по изоляции и воздушной герметизации.

Узнать больше

  • Информация о пени с полиуретаном
  • FAQS О светоотъемной изоляции
  • Информация о продукте с изоляцией полиизоциануратной изоляции
  • Информация об изоляции из стекловолокна и минеральной изоляции.