Теплопроводность серебра и алюминия: Теплопроводность, теплоемкость серебра и его теплофизические свойства

Содержание

Теплопроводность, теплоемкость серебра и его теплофизические свойства

Представлены таблицы теплофизических свойств серебра Ag в зависимости от температуры (в интервале от -223 до 1327°С). В таблицах даны такие свойства, как плотность ρ, удельная теплоемкость серебра Ср, теплопроводность λ, удельное электрическое сопротивление ρ и температуропроводность а.

Серебро довольно тяжелый металл — его плотность при комнатной температуре имеет значение 10493 кг/м3. При нагревании серебра его плотность уменьшается, поскольку этот металл расширяется, и его объем увеличивается. При температуре 962°С серебро начинает плавиться. Плотность жидкого серебра при температуре плавления составляет величину 9320 кг/м3.

Серебро имеет относительно не высокую величину теплоемкости по сравнению с другими металлами. Например, теплоемкость алюминия равна 904 Дж/(кг·град), меди — 385 Дж/(кг·град). Удельная теплоемкость серебра при нагревании увеличивается. Ее поведение для этого металла в твердом состоянии подобно таковому для меди, но скачки теплоемкости при плавлении имеют противоположные направления. В целом, рост Ср к температуре плавления по сравнению с классическим значением, составляет около 30%.

Теплоемкость серебра изменяется в пределах от 235,4 (при комнатной температуре) до 310,2 Дж/(кг·град) — в расплавленном состоянии. При переходе в жидкое состояние теплоемкость серебра увеличивается и при последующем росте температуры остается практически постоянной. При обычной температуре значение удельной теплоемкости серебра составляет 235,4 Дж/(кг·град). Следует отметить, что коэффициент электронной теплоемкости Ag равен 0,68 мДж/(моль·К2).

Плотность и удельная теплоемкость серебра
t, °Сρ, кг/м3Ср, Дж/(кг·град)t, °Сρ, кг/м3Ср, Дж/(кг·град)
-731054062710130276,5
2710493235,472710050284,2
12710430239,28279970292,3
22710370243,99279890297
32710300249,79629320310,2
42710270255,611279270310,2
52710200262,11327310,2

Серебро относится к металлам с высокой теплопроводностью — теплопроводность серебра при комнатной температуре составляет 429 Вт/(м·град). Например, у меди значение коэффициента теплопроводности ниже — теплопроводность меди равна 401 Вт/(м·град).

С повышением температуры теплопроводность серебра λ уменьшается. Особенно резкое снижение теплопроводности этого металла происходит при его плавлении. Коэффициент теплопроводности жидкого серебра равен 160 Вт/(м·град) при температуре плавления. При дальнейшем нагревании расплавленного серебра его теплопроводность начинает расти.

Удельное электрическое сопротивление серебра при комнатной температуре равно 1,629·10-8 Ом·м. В процессе нагрева этого металла его сопротивление увеличивается, например при температуре 927°С, удельное сопротивление серебра имеет значение 8,089·10-8 Ом·м. Переход этого металла в жидкое состояние приводит к двукратному росту его электрического сопротивления — при температуре плавления 962°С оно достигает величины 17,3·10-8 Ом·м.

Коэффициент температуропроводности серебра при обычных температурах равен 174·10-6 м2/с и при нагревании уменьшается. При плавлении этого драгоценного металла его температуропроводность значительно снижается, однако последующий нагрев приводит к росту коэффициента температуропроводности.

Теплопроводность серебра, его удельное сопротивление и температуропроводность
t, °Сλ, Вт/(м·град)ρ·108 Ом·ма·106, м2t, °Сλ, Вт/(м·град)ρ·108 Ом·ма·106, м2
-2230,104527398,34,912149
-1730,418627389,85,638143
-734301,029181727380,76,396137
27429,51,629174827369,67,215131
127424,12,241170927358,58,089124
227418,62,87516696216017,355,4
3274143,531161112716718,6958
427406,94,209155132717420,38

Источник:
В. Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.

Серебряный ватерблок литьем


Эта работа была прислана на наш «бессрочный» конкурс статей и автор получил награду – фирменную футболку сайта и материнскую плату Soltek SL-865Pro-775.


Данный материал может послужить кратким пособием по литью металлов для ватерблока, при этом какие-либо архитектурные особенности конструкции рассматриваться не будут. Я считаю, что каждый сам для себя решит, какая конструкция ватерблока ему необходима: канал, ребра, иглы или комбинация всего этого. Поэтому расскажу только о способе получения заготовок для ватерблока из меди и серебра. Также хочу обратить внимание на незначительные расхождения в разных справочниках: некоторые данные о свойствах металлов могут не совпадать.

Какие металлы используются чаще для изготовления радиаторов и теплообменников? Обычно это алюминий и медь, в редких случаях применяют серебро. Какими свойствами обладают эти металлы?

Алюминий. Серебристо-белый металл, удельный вес которого составляет 2.7 г/см3. Температура плавления алюминия составляет 658 градусов Цельсия. Теплопроводность 205 Вт/м*С, теплоемкость 920 Дж/кг*С. В системах охлаждения этот металл используется, несмотря на низкую теплопроводность, довольно часто. Причина этого – относительная дешевизна и простота обработки алюминия. Но в качестве заготовки под ватерблок алюминий не очень подходит – низкая теплопроводность по сравнению с медью.

Медь. Тягучий, вязкий металл светло-розового цвета, удельный вес которого составляет 8.9 г/см3. Температура плавления 1083 градуса Цельсия, теплопроводность 390 Вт/м*С, теплоемкость 400 Дж/кг*С. Медь наиболее распространена в эффективных системах охлаждения, поэтому остановимся на ней подробнее. В сухом воздухе медь почти не изменяется, так как образующаяся на ее поверхности тончайшая пленка окислов, придающая меди более темный цвет, хорошо защищает ее от дальнейшего окисления. В присутствии влаги и углекислого газа поверхность меди покрывается зеленым налетом карбоната меди. При нагревании на воздухе медь превращается в черную окись меди, которая при более высокой температуре разлагается, теряя кислород и переходя в закись меди. Химически чистая медь – явление довольно редкое и дорогое:


Это чистая бескислородная медь для изготовления сплавов драгметаллов. Ее стоимость составляет порядка 15-20 долларов за килограмм. Но чаще мы имеем дело с технически чистой медью: например, трубы для кондиционеров и водопроводов, высоковольтные шины делают из меди марки М1. Теплопроводность такой меди составляет 305–339 Вт/м*С, смотри
здесь
. Это тоже весьма неплохой показатель.

рекомендации

Серебро. Мягкий, тягучий металл удельного веса 10.5 г/см3, плавящийся при температуре 960 градусов Цельсия. Обладает самой большой теплопроводностью среди металлов – 420 Вт/м*С. Удельная теплоемкость серебра составляет 250 Дж/кг*С. Химически малоактивно, не окисляется на воздухе ни при обычной температуре, ни при нагревании. Это вызвано тем, что окись серебра – неустойчивое соединение, которое при нагревании разлагается. Бывает, что на серебряных предметах появляется темный налет – это сульфид серебра, образующийся под влиянием содержащегося в воздухе сероводорода или при контакте с веществами, содержащими сернистые соединения. Серебро гораздо дороже меди. Цены на серебро можно посмотреть
здесь
и
здесь
.

Чистое серебро (проба 999.9) бывает в виде мерных слитков:


И в австралийских монетах (проба 999):


Теперь, выяснив свойства металлов, можно приступать к изготовлению ватерблока.

Хорошо, если есть цельный кусок меди, из которого можно сделать ватерблок, а если такого куска нет? Я столкнулся с этой проблемой, когда решил сделать себе водяное охлаждение. Значит, сначала надо получить кусок меди. Как можно изготовить большой кусок меди из маленьких кусочков? Только литьем! Ну, а если отливать, то можно попробовать и серебро, а также сплавы меди и серебра.

Большинство серебряных изделий, например ювелирных, делается не из чистого серебра, а из сплавов серебро-медь. Такие сплавы обладают повышенной механической прочностью, чем и объясняется их широкое применение. В актуальности применения таких сплавов в ватерблоках я не уверен: они уступают по теплопроводности чистому серебру, а стоят примерно столько же. Единственный, на мой взгляд, заслуживающий внимания сплав состоит из 72% серебра и 28% меди. Объясню почему: этот сплав обладает самой низкой (779 градусов Цельсия) температурой плавления среди сплавов серебро-медь, поэтому с ним работать легче, чем, скажем, с медью. Теплопроводность у этого так называемого кусила меньше, чем у чистого серебра, и составляет 371 Вт/м*С, по данным
производителя
.

Где чаще всего мы встречаем литые изделия? В ювелирном магазине: большая часть ювелирных изделий изготавливается литьем из сплавов серебра, золота, платины. В современном ювелирном деле используется литье по выплавляемым моделям. При этом сложность будущего изделия ограничена только фантазией ювелира:


О процессе литья по выплавляемым моделям можно почитать
здесь
. Довольно сложно, но такой способ позволил бы получить отливку, требующую минимальной обработки, то есть практически готовое основание ватерблока с рельефом любой сложности. Но есть способ получения отливок гораздо более простой, чем литье по выплавляемым моделям. Это литье в кокиль.

Кокиль – это многоразовая металлическая литейная форма, позволяющая получать отливки простейшей формы. Вот пример ватерблока, основание которого получено литьем в кокиль:


Это процессорный ватерблок. Материал основания – серебро, крышка вырезана из листовой меди толщиной 3 мм, штуцеры сделаны из медной трубки с внешним диаметром 10 мм. Конструкция полностью паяная, все медные детали луженые. Следующим я решил сделать ватерблок на чипсет материнской платы. Теперь о том, как я его делал.

Самый главный вопрос: чем расплавить металл? Можно воспользоваться горелкой для пайки твердыми припоями:


Но такие горелки подходят для плавки очень небольшого количества металла – около 30 грамм. Можно, конечно, попробовать ацетиленовую горелку, но газосварочный аппарат явно не впишется в интерьер квартиры. А чем плавят большое количество металла ювелиры? Вот этим:


Это плавильная электропечь с максимальной температурой нагрева 1200 градусов Цельсия. Работает она от обычной розетки на 220 В и имеет максимальное потребление мощности 1300 Вт (хороший электрочайник кушает больше). Печь удобней в использовании, чем горелка, потому что она позволяет не только расплавить металл, но и нагреть расплав до точно заданной температуры: в печи есть термопара и цифровой контроллер, который регулирует нагрев согласно заданной программе. Таким образом, процесс плавки выглядит довольно просто: задается температура нагрева, скорость нагрева, время выдержки заданной температуры. Естественно, печь позволяет делать любые сплавы серебра и меди. Для этого необходимо отмерить нужные количества чистых металлов и сплавить их вот с таким флюсом:


Это флюс на основе буры, применяется также при пайке твердыми припоями. Он необходим при плавке меди. Чистое серебро, благодаря его свойствам, можно плавить без флюса.

Теперь займемся кокилем. Со времен создания процессорного ватерблока у меня остался вот такой небольшой кусочек серебра:


Этот кусок получен переплавкой опилок серебра в печи. Для удобства работы необходимо придать ему другую форму – например, слитка. Кокиль для получения слитка делается очень просто. От железного профиля 60 x 40 мм отрезаются два куска длиной около 70 мм, а также один кусок толщиной 5.5 мм. Два больших куска профиля зачищаются от ржавчины – будущие стенки изложницы, а из маленького кусочка делается П-образная рамка с раструбом – форма будущего слитка. Выглядит это так:



Раструб на рамке – это прибыль, она ограничивает расположение усадочных раковин этой областью. Усадочные раковины – это пустоты, образующиеся внутри или на поверхности отливки вследствие уменьшения объема металла при затвердевании. Для чистого серебра усадка составляет 5%, а для чистой меди – 4.25%.

Затем рамка ставится между двух кусков профиля, и вся конструкция стягивается струбциной:


Толщина железа в этом профиле составляет 2 мм, соответственно, габариты отливки будут ограничены внутренними размерами рамки: 36 x 5 мм и высотой около 50 мм с учетом прибыли. Всё, кокиль готов. Можно приступать к плавке. Серебро загружается в тигель печи, температура нагрева устанавливается в 1150 градусов, процесс плавки начался:



Пока печь набирает температуру, кокиль подогревается на газовой плите:


Делается это для того, чтобы расплавленный металл при заливке в форму не подвергался внезапному охлаждению. Также обратите внимание на весьма значительный перегрев металла, который составляет 1150–960=190 градусов. Причина такого перегрева – маленькая теплоемкость серебра: из-за небольшой теплоемкости серебро очень быстро застывает при заливке в металлическую форму.

Примерно через 15 минут печь достигла заданной температуры, серебро расплавилось:


Пора заливать. Кокиль устанавливается на большой кусок железного профиля:


Программа нагрева отключается, металл заливается в форму:


Серебро застывает в считанные секунды – мне не удалось сфотографировать расплавленный металл в форме. На снимке видно, что форма не залита полностью. Возможно, в отливке будут дефекты. Теперь необходимо охладить кокиль. Для этого он опускается в ведро с холодной водой, через некоторое время вынимается оттуда и разбирается:


Да, действительно, отливка имеет небольшие дефекты: видны пузыри в поверхностном слое металла. Но это не страшно, главное, что нет значительных дефектов, а поверхностный слой можно сточить. Прибыль отпиливается и, после обработки напильником, получается вот такой небольшой серебряный слиток:


Слиток имеет размеры 41 x 32 x 4. 5 мм. Что можно из него сделать? Я решил особо не мудрить, ведь нужен ватерблок на чипсет. Вырезал из 3 мм меди рамку и крышку:



После этого медные части лудились, и вся конструкция, собранная в бутерброд, паялась. Теперь у меня уже два серебряных ватерблока, на процессор и на чипсет:



Литье металлов открывает весьма заманчивые перспективы. Реально доступным становится изготовление ватерблоков из серебра и его сплавов. Возможности кокилей не ограничены только отливкой слитка: возможно изготовление кокилей с М-образным выступом на одной из его стенок. Отливка, сделанная в такой кокиль, будет иметь М-образный канал. Или, например, можно сделать кокиль, в одной из стенок которого будет углубление 20 x 20 x 5 мм. В этом случае отливка будет иметь выступ, который можно будет превратить в ребра или иглы.

Да, есть еще над чем работать.

AG-cool

400Физические свойства
401Плотность*1,8-2,1 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – аморфный углерод, 2,267 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – графит,

3,515 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – алмаз

402Температура плавления
403Температура кипения
404Температура сублимации3642 °C (3915 K, 6588 °F) – графит
405Температура разложения1000 °C (1273 K, 1832 °F) – алмаз. Продукты разложения алмаза – графит
406Температура самовоспламенения смеси газа с воздухом
407Удельная теплота плавления (энтальпия плавления ΔHпл)
408Удельная теплота испарения (энтальпия кипения ΔHкип)715 кДж/моль (сублимация)
409Удельная теплоемкость при постоянном давлении
410Молярная теплоёмкость*8,517Дж/(K·моль) – графит, 6,155 Дж/(K·моль) – алмаз,
411Молярный объём5,31 см³/моль – графит, 3,42 см³/моль – алмаз,
412Теплопроводность119-165 Вт/(м·К) (при стандартных условиях) – графит, 900-2300 Вт/(м·К) (при стандартных условиях) – алмаз
413Коэффициент теплового расширения0,8 мкм/(М·К) (при 25 °С) – алмаз
414Коэффициент температуропроводности
415Критическая температура
416Критическое давление
417Критическая плотность
418Тройная точка4326,85 °C (4600 К, 7820,33 °F), 10,8 МПа
419Давление паров (мм. рт.ст.)0,000000001 мм.рт.ст. (при 1591 °C) — графит, 0,00000001 мм.рт.ст. (при 1690 °C) — графит, 0,0000001 мм.рт.ст. (при 1800 °C) — графит, 0,000001 мм.рт.ст. (при 1922 °C) — графит, 0,00001 мм.рт.ст. (при 2160 °C) — графит, 0,0001 мм.рт.ст. (при 2217 °C) — графит, 0,001 мм.рт.ст. (при 2396 °C) — графит, 0,01 мм.рт.ст. (при 2543 °C) — графит, 0,1 мм.рт.ст. (при 2845 °C) — графит, 1 мм.рт.ст. (при 3214 °C) — графит, 10 мм.рт.ст. (при 3496 °C) — графит, 100 мм.рт.ст. (при 4373 °C) — графит
420Давление паров (Па)
421Стандартная энтальпия образования ΔH0 кДж/моль (при 298 К, для состояния вещества – твердое тело) – графит, 717 кДж/моль (при 298 К, для состояния вещества – газ) – графит,

1,828 кДж/моль (при 298 К, для состояния вещества – твердое тело) – алмаз

422Стандартная энергия Гиббса образования ΔG0 кДж/моль (при 298 К, для состояния вещества – твердое тело) – графит, 2,833 кДж/моль (при 298 К, для состояния вещества – твердое тело) – алмаз
423Стандартная энтропия вещества S5,74 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – графит, 158 Дж/(моль·K) (при 298 К, для состояния вещества – газ) – графит,

2,368 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – алмаз

424Стандартная мольная теплоемкость Cp8,54 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – графит, 20,8 Дж/(моль·K) (при 298 К, для состояния вещества – газ) – графит,

6,117 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – алмаз

425Энтальпия диссоциации ΔHдисс
426Диэлектрическая проницаемость
427Магнитный типДиамагнитный материал
428Точка Кюри
429Объемная магнитная восприимчивость-1,4·10-5 – графит
430Удельная магнитная восприимчивость-6,2·10-9 – графит
431Молярная магнитная восприимчивость-5,9·10-6 см3/моль (при 298 K) – графит, -6,0·10-6 см3/моль (при 298 K) – алмаз
432Электрический типПроводник – графит
433Электропроводность в твердой фазе0,1·106 См/м – графит
434Удельное электрическое сопротивление7,837 мкОм·М (при 20 °C) – графит
435Сверхпроводимость при температуре
436Критическое магнитное поле разрушения сверхпроводимости
437Запрещенная зона
438Концентрация носителей заряда
439Твёрдость по Моосу1-2 – графит, 10 – алмаз
440Твёрдость по Бринеллю
441Твёрдость по Виккерсу
442Скорость звука17500 м/с (при 20°C, состояние среды — кристаллы, ось L100) – алмаз, 12800 м/с (при 20°C, состояние среды — кристаллы, ось S100) – алмаз, 18600 м/с (при 20°C, состояние среды — кристаллы, ось L111) – алмаз, 11600 м/с (при 20°C, состояние среды — кристаллы, ось S110) – алмаз
443Поверхностное натяжение
444Динамическая вязкость газов и жидкостей
445Взрывоопасные концентрации смеси газа с воздухом, % объёмных
446Взрывоопасные концентрации смеси газа с кислородом, % объёмных
446Предел прочности на растяжение
447Предел текучести
448Предел удлинения
449Модуль Юнга1050 ГПа — алмаз
450Модуль сдвига478 ГПа – алмаз
451Объемный модуль упругости442 ГПа – алмаз
452Коэффициент Пуассона0,1 – алмаз
453Коэффициент преломления2,417 (при нормальных условиях для линии D, длина волны которой приближенно равна 0,5893 μ) – алмаз белый

МатериалКоэффициент теплопроводности, Вт/(м*К)
Серебро428
Медь394
Алюминий220
Железо74
Сталь45
Свинец35
Кирпич0,77

Распределение температуры.  

Атомная теплоемкость железа.| Схема установки для определения теплопроводности металлических стержней. / — 6 — термопары. 7 — дьюаровский сосуд. 8 — печь. 9 — гальванометр. 10 — стержень. / / — кожух.