- медно-никелевый феррит
- медно-окисный выпрямитель
Медно-никелевый сплав — сплавы на медной основе и содержащие в качестве основного легирующего элемента никель. В результате смешивания меди и никеля полученый сплав обладает повышеной стойкостью против коррозий, а электросопротивление и прочность возрастают. Медно… … Википедия
Никель — У этого термина существуют и другие значения, см. Никель (значения). 28 Кобальт ← Никель → Медь … Википедия
Мельхиор (сплав) — У этого термина существуют и другие значения, см. Мельхиор. Пять швейцарских франков Мельхиор (искаженное от фр. Maillot Chorier) является сплавом меди с никелем, иногда с добавками железа и марганца. Обычно в состав мельхиора входит 5 … Википедия
Стерлинг (сплав) — У этого термина существуют и другие значения, см. Стерлинг. Вилки из стерлинга Стерлинг (англ. … Википедия
Потин (сплав) — У этого термина существуют и другие значения, см. Потин. Кельтская монета из потина. I век до н. э … Википедия
МНЦ — МНЦ медно никелево цинковый сплав. В зависимости от соотношения компонентов такие сплавы называются либо мельхиором, либо нейзильбером. Имеют серебристо медный оттенок. Столовые приборы изготавливаются из нейзильбера марки МНЦ15 20 ГОСТ… … Википедия
Монеты СССР — Монетами СССР являются все монеты, выпущенные Государственным банком СССР с момента его создания в 1923 году и до момента распада СССР в 1991 году. За это время, в результате проведения череды экономических реформ, монеты несколько раз меняли… … Википедия
Цинк — У этого термина существуют и другие значения, см. Цинк (значения). 30 Медь ← Цинк → Галлий … Википедия
Медь — 29 Никель ← Медь → Цинк … Википедия
Металл — (Metal) Определение металла, физические и химические свойства металлов Определение металла, физические и химические свойства металлов, применение металлов Содержание Содержание Определение Нахождение в природе Свойства Характерные свойства… … Энциклопедия инвестора
Платина — Для термина «Платина» см. другие значения. 78 Иридий ← Платина → Золото … Википедия
- сплав меди, олова и цинка, осаждаемый электролитическим способом
- сплав медь-никель
Бронза (сплав меди) — Бронза (франц. bronze, от итал. bronzo), сплав меди с разными химическими элементами, главным образом металлами (олово, алюминий, бериллий, свинец, кадмий, хром и др.). Соответственно, Б. называется оловянной, алюминиевой, бериллиевой и т.п. Б.… … Большая советская энциклопедия
Сплав — У этого термина существуют и другие значения, см. Сплав (значения). Сплавы … Википедия
Медно-никелевый сплав — сплавы на медной основе и содержащие в качестве основного легирующего элемента никель. В результате смешивания меди и никеля полученый сплав обладает повышеной стойкостью против коррозий, а электросопротивление и прочность возрастают. Медно… … Википедия
Никелин (сплав) — У этого термина существуют и другие значения, см. Никелин. Никелин сплав меди (65 67% Cu) с никелем (25 35 % Ni) с примесями марганца (0,4 0,6% Mn), железа и цинка. Характеризуется большим электрическим сопротивлением, которое… … Википедия
Валюта Литвы — Литовский лит Lietuvos litas Банкнот 500 литов с портретом Винцаса Кудирки Код ISO 4217 LTL … Википедия
Тарелка (музыкальный инструмент) — У этого термина существуют и другие значения, см. Тарелка (значения). Барабанная установка 1. Тарелки | 2. Напольный том том | 3 … Википедия
Сплавы для тарелок — Тарелки (музыкальный инструмент) производят из 4 основных сплавов, в основе каждого из них лежит медь, колокольная бронза (bell bronze), ковкая бронза (malleable bronze), латунь (brass) и нейзильбер (nickel silver, сплав меди, цинка и никеля).… … Википедия
Никель — I (техн.) Руды, содержащие Н. в достаточном для его добывания количестве, можно разделить на две группы: а) руды, которые, кроме Н., железа и серы, содержат кобальт, мышьяк и сурьму, и b) руды, которые последних примесей не содержат. Первые из… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Купрум — Медь / Cuprum (Cu) Атомный номер 29 Внешний вид простого вещества пластичный металл золотисто розового цвета Свойства атома Атомная масса (молярная масса) 63,54 … Википедия
Шпиатр — Шпиатр, шпеат (польск. szpeat «смесь») обобщённое название сплавов различных цветных металлов: меди, цинка, никеля, олова; иногда цинк с добавлением свинца и железа. Точного рецепта сплава нет. Самое распростанённое понятие… … Википедия
Никелин — м. 1. Сплав меди и никеля с примесями железа, марганца и цинка. 2. Одна из никелевых руд; красный никелевый колчедан. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
сплав меди, цинка, никеля. Сплав цинк медь никель
Покрытие сплавом цинк—никель - Справочник химика 21
Сплав цинк — никель. Легирование цинковых покрытий никелем способствует повышению коррозионной стойкости их с одновременным сохранением их потенциала по отношению к защищаемому металлу, например стали. Никель с цинком образует интерметаллическое соединение. Так, покрытия, содержащие 2% никеля, в атмосфере с постоянной влажностью при 20 5°С остаются светлыми более продолжительное время, чем цинковые. Наиболее коррозионно-стойкими являются покрытия Zn — Ni, содержащие 25-28% Ni. Такие покрытия по отношению к стали являются катодом. Твердость покрытий цинк — никель при 98% Zn составляет 115 — 125 кгс/мм , а при 72 — 87% Zn соответственно 400 — 450 кгс/мм . В большинстве случаев их получают из цианистого или аммиакатного электролита. [c.141]
Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]
Значительно лучшие результаты были получены при покрытии сплавом цинк—никель. [c.111]
Аммиакатный электролит позволяет получать качественные покрытия сплавом цинк — никель, но на деталях более простой конфигурации. Состав электролита (в г/л) [c.142]
ПОКРЫТИЕ СПЛАВОМ ЦИНК—НИКЕЛЬ [c.53]
Коррозионная стойкость покрытий увеличивается в случае гальванического осаждения на поверхность детали сплава цинк—никель даже с незначительным содержанием никеля (9-12%). [c.83]
Электроосаждение полимерных покрытий существенно зависит от природы и структуры электрода [22, 23, 43]. Анодные материалы можно разделить на три группы. Первая группа — нерастворимые аноды (благородные металлы, пассивированное железо, пассивированный алюминий). Для этой группы характерны высокие выходы по току при небольшом растворении металла за счет коагуляции вещества под действием образующихся протонов. Вторая группа — цинк, никель, серебро, железо. (Поверхность последнего была предварительно обработана хлором.) Эти металлы не пассивируются и переходят в раствор. Выход по току при этом сохраняется высокий, так как металлические ионы, подобно протонам, действуют коагулирующе. К третьей группе относятся медь и ее сплавы, которые, несмотря на сильное растворение, дают низкие выходы по току из-за образования комплексов с аммиаком. [c.32]
Кадмиевые покрытия могут быть использованы в качестве подслоя при цинковании, для декоративного покрытия деталей радиоприборов и телевизоров. Наиболее известными являются гальванические покрытия сплавами кадмий — никель, кадмий — олово и кадмий — цинк. Первое применяют для декоративных целей, второе — для [c.175]
Кадмиевые, оловянные или цинковые покрытия могут отделяться от основных слоев стали при использовании раствора соляной кислоты, содержащей трехокись или трихлорид сурьмы, который действует как ингибитор и приостанавливает воздействие кислоты на сталь (Английские стандарты 1706 и 1872). Кадмий можно отделить в 30%-ном растворе азотнокислого аммония, а цинк — в растворе 5 г персульфата и 10 мл гидрата окиси аммония в 90 мл воды (Английский стандарт 3382). Покрытия из сплавов олова с никелем отделяют электролитически в растворе, содержащем 20 г/л едкого натра и 30 г/л цианистого натрия, а медное покрытие — погружением в концентрированную фосфорную кислоту (Английский стандарт 3597). Серебряные покрытия вначале погружают в смесь концентрированных азотной и серной кислот в соотношении 1/19, а после потемнения— в 250 г/л раствора трехокиси хрома в концентрированной серной кислоте (Английский стандарт 2816). Основной слой отделяют от покрытия золотом путем растворения в концентрированной азотной кислоте. Отфильтрованное золото промывают, просушивают и взвешивают (Английский стандарт 4292). [c.143]
Металлические покрытия делят на две группы коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, т. е. в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т. е. в ряду напряжений находятся левее железа. [c.144]
Значение реакций электровосстановления, протекающих на катоде при электролизе, огромно. На катоде получаются многие металлы алюминий, магний, натрий, цинк, никель, кадмий, медь, олово, платина, серебро, золото и др. образуются гальванические покрытия многими металлами и сплавами, придающие металлическим изделиям ценные свойства — способность противостоять коррозии, твердость, декоративный вид и т. д. В данной книге мы не касаемся вопросов, связанных с покрытиями металлов наша задача — рассмотреть процессы образования на катоде различных химических продуктов. [c.76]
Испытание пригодно для гальванических покрытий кадмием, кобальтом, медью или бронзой, свинцом, никелем, серебром, оловом или сплавом олово—цинк и цинком на алюминии, меди или латуни, стали и цинке. При нанесении многослойных систем можно успешно определить толщину отдельных слоев покрытий, применяя струю соответствующего раствора на той же площади поверхности образца. Время, необходимое для определения толщины отдельного слоя покрытия,— — 2 мин общая точность испытаний составляет 15%. [c.142]
Гальванические покрытия получают путем осаждения при помощи тока на поверхности деталей слоя металла из электролитов, содержащих ионы данного металла. Широко применяются гальванические покрытия цинком, медью, никелем, хромом, оловом, кадмием, свинцом, серебром, а также сплавами медь— цинк, медь—олово, свинец—олово, олово—никель и т. п. [c.4]
В настоящей брошюре (первое издание брошюры было выпушено в свет под названием Гальванические покрытия сплавами ) расс.матривается технология электролитического осаждения некоторых сплавов, их свойства и область применения, Основное внимание обращается на гальванические сплавы, получившие промышленное применение в нашей стране и за рубежом медь—цинк, свинец—олово, никель— кобальт и некоторые другие. [c.2]
Марганец исполь.зуется в промышленном масштабе для защитного покрытия металлов такое покрытие лучше цинкового, так как марганец имеет более отрицательный, чем цинк, электродный потенциал. По микротвердости марганцевое покрытие находится между хромовым и никелевым покрытиями. Покрытия из марганца (или сплава марганец — никель) обладают большой коррозионной устойчивостью. [c.397]
Декоративное хромирование алюминия. При декоративном хромировании алюминия и алюминиевых сплавов на полированную поверхность изделия наносят многослойное покрытие цинк— никель — хром. [c.39]
Производство цинка. Цинк используется в больших количествах для покрытия железа с целью предохранения его от ржавления, а также для изготовления сплавов с медью и никелем (латунь, мельхиор и другие). [c.410]
Существуют два способа для уменьшения коррозии железных сплавов (здесь не имеются в виду стали нержавеющие). Первый способ заключается в нанесении на металл защитного покрытия — металлического (цинк, олово, свинец, никель, хром) или неметаллического (например, краска), второй — в добавке легирующих элементов, которые обеспечивают образование плотного слоя ржавчины, что способствует более медленному разрушению. Ниже рассматривается только второй способ уменьшения атмосферной коррозии (о первом способе см. стр. 858). [c.9]
Применение. Так как на цинк при обычных условиях не действуют ни кислород воздуха, ни вода, то основная масса цинка расходуется на защитные покрытия железных листов и стальных изделий. Цинк применяют для получения технически важных сплавов с медью (латуни), алюминием и никелем, а также для производства цинково-угольных гальванических элементов, которые используют в батареях разного назначения. [c.108]
Применение двух видов цинковая пыль и литой цинк. Цинковая пыль представляет собой конденсат непосредственно из газовой фазы, довольно загрязненный ( d, As). Применяют как восстановитель в химической технологии. Литой цинк выпускают нескольких марок по ГОСТу. Идет на изготовление сплавов латуней, алюминиевых сплавов и сплавов на основе никеля. Основная масса цинка расходуется на защитные покрытия черных металлов от коррозии. Эти покрытия можно наносить различными методами окунанием, металлизацией, диффузионным путем и электролитически. Из цинка изготовляют сухие элементы (см. гл. 9). Сам по себе цинк не является конструкционным материалом из-за хрупкости в определенном интервале температур. [c.393]
Несмотря на то что цинк обладает низкой химической устойчивостью, он широко применяется преимущественно в слабокоррозионных средах. Использование цинка и его сплавов основано на их способности образовывать защитные пленки при взаимодействии с коррозионной средой. Цинк непригоден для изготовления химической аппаратуры, но сравнительно хорошо ведет себя в атмосферных условиях и воде. Детали из цинковых сплавов, полученные литьем под давлением и предназначенные для работы в атмосферных условиях, можно дополнительно защитить путем нанесения гальванического покрытия из меди, никеля и хрома. Цинк применяется в качестве защитного покрытия для стальных изделий и для плакирования арматуры. [c.108]
Лужение медных сплавов погружением в растворы солей, содержащих двухвалентное олово, применяется при пайке. Цинк осаждается на алюминии погружением в горячие, щелочные, цинкатные растворы в целях получения тонкого покрытия как основы для последующего электроосаждения других металлов, в основном меди, никеля и хрома. В результате химического осаждения можно получить чисто декоративные оловянные и серебряные покрытия. [c.83]
Из др>п[. покрытий сплавами меди известны составы э-тектролитов для осаждения покрытий медь — свинец, медь — кадмий, медь — никель, медь — никель — цинк, медь — олово— цннк, применяемые как для защитно-декоративной отделки, так н для специальных целей. [c.103]
К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2, [c.29]
Сплав никель — цинк. Цинковые покрытия, легированные никелем (50" , N1 и 50% 2п), имеют более высокую коррозионную стойкость, чем цинковые, и способны обеспечить анодную защиту стальным деталям от коррозии. Наиболее оптимальным для этой цели является электролит (в г/л) [c.117]
Сплав цинк — никель. В Московском химико-технологическом институте им. Д. И. Менделеева проф. Н. Т. Кудрявцев и К- М. Тю-тина исследовали легирование цинка никелем, так как это представляет большой практический интерес. Сплав коррозионноустойчив, имеет красивую светлую блестящую поверхность. Осаждением этого сплава можно с успехом заменить хромирование и фосфатирова-яие, применяемые для повышения антикоррозионной стойкости металлов. Технология этих процессов очень сложна, а хроматные и фосфатные пленки имеют низкую механическую прочность. Покрытия сплавом цинка с никелем имеют преимущества и перед покрытиями из чистого цинка. Последние хотя и широко зашищают стальные детали от атмосферной коррозии, но быстро тускнеют н покрываются пятнами (отложения продуктов коррозии — гидроокиси и углекислого цинка). [c.125]
Сплав цинк —никель. Н. Т. Кудрявцев, К. М. Тютина и С. М. Фиргер [88] установили, что цинковые покрытия, легированные никелем, имеют более высокую коррозионную стойкость по сравнению с чистым цинком. Сплав, содержащий около 56 [c.56]
Испытания на коррозию показали, что в атмосфере с постоянной повышенной влажностью покрытие сплавом, содержащим около 2% никеля, сохраняется светлым и не темнеет более продолжительное время, чем чистое цинковое покрытие. Во влажной атмосфере с переменной температурой (гидростат) и в 3%-ном растворе Na l с периодической выгрузкой в атмосферу такое покрытие ведет себя аналогично чистому цинку. Пассивированные в хроматном растворе покрытия цинком и сплавом цинк — никель ( 2% Ni) ведут себя одинаково. [c.111]
Наибольший интерес для промышленности представляют магнитные и электромагнитные приборы. В течение длительного времени для измерения толщины покрытий успешно лспользовали магнитные приборы, применяемые в том случае, когда металл основы или покрытия обладает ферромагнитными свойствами, например, магнитные приборы могут быть предназначены для измерения толщины немагнитных покрытий (медь, цинк, кадмий, хром, серебро, свинец, различные сплавы) на стали или чугуне. Они пригодны также для определения толщины пластмассовых или лакокрасочных покрытий. Что касается, например, никелевых покрытий, то магнитные измерения их толщины затруднены вследствие того, что при градуировке магнитных приборов имеют место большие неточности, вследствие того что никель [c.207]
Вследствие способности сополимера к разложению выбор материалов для изготовления прессформ и деталей литьевых и других машин для формования изделий является ответственной задачей. Для этих целей в США применяются сплавы, содержащие никель вместе с молибденом ( гастеллой А и В, стеллит 19 и никель Z ) может быть использован также и никель. В отдельных случаях рабочие поверхности стальных прессформ для менее ответственных изделий подвергают хромированию, никелированию или кадмированию. Железо, медь и цинк ускоряют термическое разложение сополимера (выделяется хлористый водород), поэтому применение их в качестве конструкционных материалов для пресс-форм или для их покрытия совершенно недопустимо. [c.78]
Так, например, осаждение медноцинкового сплава (70% Си и30%2п) на сталь обеспечивает прочность сцепления стальных, изделий с резиной. Замена золотого покрытия сплавом золото— медь дает возможность увеличить износоустойчивость и твердость в два-три раза при одновременной экономии золота. Сплавы олово—цинк (Зп- гп), цинк—кадмий 2п—Сс1), цинк— никель (2п—N1) характеризуются более высокой коррозионной устойчивостью по сравнению с цинковым покрытием, что позволяет рекомендовать эти покрытия взамен цинка. Сплав никель— кобальт (N1—Со) характеризуется высокими магнитными характеристиками, он также используется при получении твердых матриц для литья и прессования пластмассовых изделий. Гальванические сплавы свинец—олово (РЬ—8п), свинец—цинк свинец—медь (РЬ—Си), свинец—сурьма (РЬ—5Ь) зарекомендовали себя как антифрикционные материалы, имеющие хо-рошую прирабатываемость, низкий коэффициент трения и высокую стойкость в смазочных материалах. Значительный интерес представляют защитно-декоративные покрытия сплавами медь— олово (Си—5п), олово—никель (5п—N1), медь—олово—цинк (Си—5п—2п) и др. [c.3]
Детали, неработающие в вакууме и при повЬ1щенных температурах, после черного хромирования пропитывают индустриальным маслом. Черные покрытия хромом осаждают на такие металлы (или покрытия) как хром, медь, никель, серебро, олово, цинк и их сплавы. [c.95]
chem21.info
Сплавы никеля
Изготовим сплав никеля в различных формах и химсоставах.
Сплавы никеля многочисленны, общее количество используемых в промышленности больше нескольких тысяч. Приведем основные.
Ални сплавы – сплав железо-никель-алюминий (никель 20-35%, алюминий 11-18%). Имеют высокие магнитные свойства и применяются для производства магнитов литьем, металлокерамическим способом или электроискровыми методами (ввиду твердости и хрупкости). Могут легироваться кобальтом, кремнием (алниси сплавы)
Алюмель – сплав алюминий-кремний-марганец остальное никель и кобальт (алюминий 1,8-2,5%, кремний 0,85-2%, марганец 1,8-2,2%, кобальт 0,6-1%). Легируется цирконием и бором. Применяется как отрицательный электрод в термопаре хромель-алюмель и в качестве компенсационного провода.
Инвар – сплав никель-железо (никель 34,5%, железо 65,5%) обладает малым коэффициентом теплового расширения и используется для производства мер длины и деталей контролирующей аппаратуры. Имеет разновидности (суперинвар) с особенно низким коэффициентом расширения.
Инконель – жаропрочный сплав никель-хром-железо (хром 15%, железо 9%). Может легироваться титаном, алюминием, молибденом. Служит конструкционным материалом в производстве реактивных двигателей.
Константан – медно-никелевый сплав (никель 39—41%, марганец 1-2%, медь остальное) обладает малой зависимостью электропроводности от температуры. Используется для производства реостатов, измерительных приборов (за исключением приборов высокого класса точности).
Копель – медно-никелевый сплав (никель 43%, марганец 0,5%) схож с константаном. Никелевый сплав, обладающий максимальной термоэлектродвижущей силой в термопаре с хромелем, используется отрицательным термоэлектродом в термопарах и для производства компенсационных проводов.
Куниаль – сплав медь-никель-алюминий. Существуют куниаль А (никель 12-15%, алюминий 2,3-3%) и куниаль Б (никель 5,5-6,5%, алюминий 1,2-2,8%). Сплавы никеля корозионностойки и прочны, а куниаль Б еще и морозостойкая, поэтому используется в криогенной технике. Распространенные марки: МНА6-1,5 и МНА13-3.
Манганин – сплав никеля с преобладанием меди и добавлением никеля 2,5—3,5%, марганца (11,5—13,5%). Обладает очень малой зависимостью электропроводности от температуры (но при комнатной температуре). Используется при производстве эталонных сопротивлений и измерительных приборов.
Мельхиор – сплав меди с никелем (в основном) 5-30%. Коррозионностоек и применяется в кораблестроении. А сплавы с большим содержанием никеля применяются для изготовления посуды и пр.
Монель – никелевые сплавы с медью легируется марганцем, железом. Имеет хорошую коррозионную стойкость в щелочах и кислотах, жаростоек, прочен. Используется в текстильной, нефтеперерабатывающей, медицинской, химической промышленностях.
Нейзильбер – сплав медь-никель-цинк (никель 5-35%, цинк 13-45%). Имеет высокие эстетические качества, применяется для изготовления посуды, благодаря своей удовлетворительной электропроводности, используется в электротехнике. Также применяется в производстве мединструментов и многом другом.
Никель кремнистый производится в виде лент и полос. Используется для производства деталей электротехнических приборов и устройств.
Никель марганцевый применяется для изготовления сетки никелевой управления ртутных выпрямителей.
Нимоник – жаропрочный никелевый сплав (группа никелевых сплавов) с добавлением хрома, титана и алюминия. Легируется кобальтом, молибденом. Производится в форме труб, листов, прутков, поковок. Используется в качестве конструкционного материала в производстве реактивных двигателей.
Нитинол – сплав никеля с титаном (титан 55 %, никель 45 %). Обладает эффектом памяти.
Нихром – класс никелевых жаростойких сплавов (никеля 65—80%, хром 15—30%). Легируется алюминием, кремнием, редкоземельным металлами. Жаростоек обладает высоким электрическим сопротивлением, используется, благодаря чему, как материал для производства нагревательных элементов, а также для изготовления деталей, работающих при высокой температуре.
Пермаллой – класс сплавов никеля с железом. Обладают высокой магнитной проницаемостью, низкой коэрцитивной силой, и низкими потерями на гистерезис. Поставляется в виде ленты 0,003-0,5 мм. Применяется в технике связи, радиотехнике.
Платинит – железоникелевый сплав (никель 42-46 %, углерод 0,15%, остальное железо). Сплав 46Н используется в пайке с керамикой. Применяется для производства биметаллических обмедненных лент и проволоки, используемых в производстве электровакуумных приборов.
Свинцовый нейзильбер – производится в виде полосы и используется в часовой промышленности.
Сплав ТБ – производится в виде проволоки. Используется для изготовления компенсационных проводов.
Сплав ТП – также производится в виде проволоки и применяется для изготовления компенсационных проводов.
ТД-никель – сплав никеля с примесью высокодисперсных окислов тория.
Хастелой – класс никелевых сплавов с молибденом, хромом, железом. Корозионностоек в кислотах. Производится в виде отливок, проволоки, прутков, листов. Используется в основном в химической промышленности.
Хромель – сплав никеля с хромом, жаростоек и имеет определенные термоэлектрические свойства, благодаря чему используется в качестве положительного термоэлектрода в термопарах, а также для производства компенсационных проводов.
Элинвар – класс железоникелевых сплавов, упругие свойства которых имеют слабую температурную зависимость, что позволяет использовать их для производства деталей, где это необходимо (например, мембран, пружин).
Ниже приведены марки никелевых сплавов.МН0,6; МН16; МН19; МН25; МН95-5; МНА13-3; МНА6-1,5; МНЖ5-1; МНЖКТ5-1-0,2; МНЖМц10-1-1; МНЖМц28-2,5-1,5; МНЖМц30-1-1; МНМц 60-20-20; МНМц 68-4-2; МНМц3-12; МНМц40-1,5; МНМц43-0,5; МНМцАЖ3-12-0,3-0,3; МНЦ12-24; МНЦ15-20; МНЦ18-20; МНЦ18-27; МНЦС16-29-1,8; Н70М28; Н70М28Ф; НК0,2; НМЖМц28-2,5-1,5; НМц1; НМц2; НМц2,5; НМц5; НМцАК2-2-1; НХ9; НХ9,5; Х15Н55М16В; Х20Н80; ХН55ВМТФКЮ.
автор: russkijmetall ru
russkijmetall.ru
медно-никель-цинковый сплав - это... Что такое медно-никель-цинковый сплав?
медно-никель-цинковый сплавEngineering: copper-nickel-zinc alloy, electrum
Универсальный русско-английский словарь. Академик.ру. 2011.
Смотреть что такое "медно-никель-цинковый сплав" в других словарях:
universal_ru_en.academic.ru
цинк оловом сплавы никеля - Справочник химика 21
Изобретенный в начале столетия способ металлизации обрызгиванием жидким металлом и сегодня успешно применяют для металлизации пластмасс и тканей. Алюминий, цинк, свинец, медь, никель, олово, а также различные их сплавы расплавляют в пламени газовой горелки, в электрической дуге или в потоке плазмы и сжатым воздухом или га-3014 разбрызгивают на покрываемую поверхность. Частицы жидкого металла величиной около 60 мкм по пути к поверхности охлаждаются до 200—800 °С и вследствие кратковременности действия н дальнейшего быстрого охлаждения лишь оплавляют поверхность, прилипая к ней. При металлизации обрызгиванием обычно получают шероховатые и относительно толстые покрытия — 10—1000 мкм. Конечно, такие покрытия не во всех случаях пригодны. Этим способом удобно металлизировать большие плоские [c.13] Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст [c.780]
Кадмиевые, оловянные или цинковые покрытия могут отделяться от основных слоев стали при использовании раствора соляной кислоты, содержащей трехокись или трихлорид сурьмы, который действует как ингибитор и приостанавливает воздействие кислоты на сталь (Английские стандарты 1706 и 1872). Кадмий можно отделить в 30%-ном растворе азотнокислого аммония, а цинк — в растворе 5 г персульфата и 10 мл гидрата окиси аммония в 90 мл воды (Английский стандарт 3382). Покрытия из сплавов олова с никелем отделяют электролитически в растворе, содержащем 20 г/л едкого натра и 30 г/л цианистого натрия, а медное покрытие — погружением в концентрированную фосфорную кислоту (Английский стандарт 3597). Серебряные покрытия вначале погружают в смесь концентрированных азотной и серной кислот в соотношении 1/19, а после потемнения— в 250 г/л раствора трехокиси хрома в концентрированной серной кислоте (Английский стандарт 2816). Основной слой отделяют от покрытия золотом путем растворения в концентрированной азотной кислоте. Отфильтрованное золото промывают, просушивают и взвешивают (Английский стандарт 4292). [c.143]
При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
Существуют два способа для уменьшения коррозии железных сплавов (здесь не имеются в виду стали нержавеющие). Первый способ заключается в нанесении на металл защитного покрытия — металлического (цинк, олово, свинец, никель, хром) или неметаллического (например, краска), второй — в добавке легирующих элементов, которые обеспечивают образование плотного слоя ржавчины, что способствует более медленному разрушению. Ниже рассматривается только второй способ уменьшения атмосферной коррозии (о первом способе см. стр. 858). [c.9]
Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]
Для исследования состава алюминиевых сплавов применяют часто еще следующий способ разложения и анализа. 0,1—0,2 г алюминиевых стружек или опилок помещают в коническую колбу и прибавляют небольшими порциями 25%-ный раствор едкого натра. Ввиду того что реакция растворения протекает очень бурно, следует иметь наготове сосуд с холодной водой для охлаждения содержимого колбы с целью замедлить реакцию. После прекращения реакции дают раствору постоять 3—5 мин., затем разбавляют вдвое водой и кипятят. Осадок, содержащий соединения меди, железа, никеля, марганца, магния и кальция, отфильтровывают от раствора, в котором находятся алюминий, цинк, олово и большая часть кремневой кислоты. Затем в осадке и растворе определяют вышеперечисленные элементы. [c.132]
Из цветных металлов применяют алюминий, медь, никель, титан, цинк, олово, свинец, серебро, тантал, их сплавы применяют также металлические защитные покрытия, наносимые различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), плакированием (двухслойные металлы), погружением (горячие покрытия) и др. Их применение ограничено, так как они имеют большой недостаток — пористость. [c.362]
К анодным покрытиям по отношению к стали относятся цинковые и в некоторых условиях кадмиевые. Катодные покрытия образует большинство металлов олово, свинец, никель, хром и их сплавы. На рис. 24 приведена схема коррозии железа с защитными покрытиями. В агрессивной среде начинает корродировать анодное покрытие— цинк, так как его потенциал имеет более отрицательное значение по сравнению с потенциалом металла основы — же- [c.111]
Латунями называются сплавы медь — цинк, к которым могут быть добавлены и другие элементы. В обозначении марок латуней первая буква Л обозначает латунь . Наличие в сплаве других элементов, кроме меди и цинка, обозначается следующими буквами А — алюминий, Ж — железо, Мц — марганец, К—кремний, С—свинец. О—олово, Н—никель. Стоящие за буквами цифры обозначают среднее содержание элементов, причем первое двузначное число показывает процент меди, последующая цифра — содержание в процентах других элементов в порядке расположения цифр. Остальное до 100% — цинк. Буква Л в конце обозначения марки после цифр указывает, что латунь литейная,, т. е. предназначена для изготовления отливок и не может быть [c.34]
Цветные металлы алюминий, медь, никель, титан, цинк, олово, свинец, серебро, тантал, их сплавы и другие более редкие металлы. [c.88]
В промышленности нашли широкое применение гальванические покрытия цинком, кадмием, оловом, свинцом, никелем, медью, хромом, золотом, серебром, а также сплавами медь—цинк, медь—олово и др. [c.339]
При испытании тонких или пористых покрытий из золота появляется слабо окрашенное пятно в том случае, когда испытывается позолота на серебре, в пятне видны темные части (серебро). Очень тонкое покрытие по меди или латуни не может быть открыто этим способом. Открытие золота возможно в присутствии ряда других металлов и сплавов (никель, серебро, платина, палладий, иридий, пр ипой, латунь, белые металлы, бронза, сталь, марганец, молибден, тантал, вольфрам, ртуть, кадмий, алюминий, олово, цинк, свинец). [c.216]
I — магний, цинк II — кадмий, алюминий и его сплавы III — железо, свинец, олово IV — никель, нержавеющие стали, медь, латуни, бронзы, медноникелевые сплавы V — серебро VI—золото, платина. [c.42]
Восстановление солей никеля протекает лишь на металлах, катализирующих этот процесс (железо, никель, кобальт, алюминий, палладий). Выделение никеля на меди и ее сплавах возможно только при контакте их с электроотрицательными металлами алюминием, цинком и другими, или же после кратковременной обработки покрываемой поверхности раствором хлорида олова (сенсибилизация) и в разбавленном растворе хлорида палладия (активирование). На таких металлах, как свинец, кадмий, цинк, олово, сурьма, процесс вообще не идет. [c.173]
Олово легко образует сплавы с многими металлами в различных соотношениях. Практическое применение нашли сплавы олово—свинец, олово—цинк, олово—никель, олово—висмут. [c.122]
Обычно иа состав сплава влияют различные факторы. Для большого числа сплавов соблюдается следующее правило сплав обогащается менее благородным компонентом, если от изменения условий электролиза потенциал осаждения сплава становится отрицательнее. Увеличение плотности тока, введение комплексообразователей или поверхностно активных веществ способствует увеличению в сплаве менее благородного компонента, а повышение температуры, общей концентрации металлов, применение перемешивания, реверсивного тока и наложения переменного тока на постоянный обогащает сплав более благородным компонентом. Это правило выполняется при осаждении сплавов медь—сурьма, медь— свинец, серебро—висмут [148], олово—цинк, в щ елочно-цианистых электролитах, медь— цинк [149], медь—никель (рис. 5) и др. [c.48]
Чугун, сталь, никель, хром Медь, латунь, томпак, бронза, серебро Цинк, олово, свинец, алюминий и их сплавы 2850 2400 1900 2300 1900 1530 1880 1500 1260 1620 1350 1090 1440 1190 960 [c.23]
Анодным покрытием по отношению к стали является цинк и в некоторых случаях кадмий. Катодный характер защиты проявляет большинство металлов олово, свинец, никель, хром и их сплавы. На рис. 33 представлена [c.137]
Для большого числа электроосажденных сплавов никель — кобальт [164], железо — цинк [163], медь —олово [162], кадмий — [c.47]
Цветные металлы и, главным образом, их сплавы имеют довольно широкое применение в аппаратостроении. В некоторых случаях они до сих пор являются незаменимыми по своим качествам — достаточной прочности и пластичности при хороших антикоррозионных свойствах. Однако цветные металлы и их сплавы являются остродефицитным материалом, и стоимость их значительно выше, чем черных. Наиболее дорогими из дефицитных цветных металлов являются последовательно по стоимости олово, никель, затем— медь, магний, алюминий, цинк, свинец. Сплавы, в состав которых входят указанные металлы, по возможности заменяют черными и некоторыми неметаллическими синтетическими материалами, не являющимися дефицитными. [c.65]
За последние годы все более широкое применение находят сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово — цинк, кадмий — цинк, олово — кадмий и др.), антифрикционных свойств (олово — свинец, свинец—цинк, серебро — кадмий, олово — свинец —сурьма и др.), высоких декоративных свойств (медь — золото, золото — серебро, никель — олово, медь — олово и др.), магнитных свойств (никель— кобальт, вольфрам — кобальт, никель — железо и др.). специальных свойств, например сцепление с резиной (медь — цинк), как подслой под окраску (железо —цинк), для пайки (олово — свинец) и т. п. [c.194]
Ртуть часто применяют в качестве вспомогательного вещества при изучении металлических систем. Например, с ее помощью были уточнены диаграммы состояния бинарных сплавов никель цинк, никель — олово, железо — марганец, хром — цинк и др. Она применяется в качестве растворителя для получения полупроводниковых материалов, в частности, для выращивания при низких температурах из насыщенных ртутных растворов а-олова монокристаллов серого олова Пластинки, изготовленные из серого олова, обладают большой чувствительностью к инфракрасному излучению и позволяют обнаруживать электромагнитные волны длиною до 15 мкм. [c.8]
В трансформаторостроении применяются углеродистая и кремнистая стали, медь, алюминий, бронза, медно-фосфо-ристый и оловянно-свинцовый сплавы. Для покрытий черных и цветных металлов используют цинк, олово, кадмий, никель и хром. [c.216]
Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]
ОЛОВЯНИСТАЯ БРОНЗА - бронза, основным легирующим элементом которой является олово. О. б. применяли за 3000 лет до н. э. Сплав отличается хорошими мех. св-вами, мало чувствителен к церегреву и газам, легко сваривается и паяется. Олово повышает твердость и прочность сплава, но снижает пластичность. Кроме олова, в О. б. вводят фосфор, цинк, свинец и никель (табл.). Фосфор раскисляет и рафинирует сплав, улучшает жидкотекучесть, коррозионную стойкость и износостойкость, повышает прочность. Цинк улучшает технологические свойства сплава. Свинец повышает плотность сплава, улучшает антифрикционные св-ва, обрабатываемость резанием, коррозионную стойкость в некоторых средах, однако снижает пластичность. Никель измельчает структуру. [c.112]
Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]
Цинк, олово, никель, алюминий добавляются в медь обычно в качестве легирующих присадок при этом получаются основные сплавы меди медпоникелевые, бронза, латунь. Присутствуя в меди в небольших количествах, эти элементы обычно полностью растворяются в ней, не ухудшая при этом ее механических свойств. [c.176]
Для изготовления катодов применяют сталь, многие цветные металлы (ртуть, свииец, платину, цинк, олово, медь, алюминий), силавы металлов, уголь или графит. Аноды бывают растворимые и нерастворимые. Растворимые аноды изготовляют из в ы ш е и е р е ч и с л енных цветных металлов, углеродистой стали, некоторых других сплавов, нерастворимые аподы— из платины, графита или угля, никеля, нержавеющей сталп, двуокиси свинца, двуокиси марганца, магнетита. В пек-рых случаях используют т. наз. биме-таллич. аноды, у к-рых тонкий слой драгоценного металла, например платины, наносится на токоиодводящую основу из другого металла, инертного в данном электролите и в данных [c.470]
Из всех известных в настоящее время металлов больще половины можно О саждать на другие металлы электролитическим способом. Практически осуществляют гальваиичеекие покрытия не менее чем 10— 15 металлами, в том числе больше всего цинком, никелем, медью, хромом, оловом, кадмием, свинцом, серебром и железом. Менее распространены покрытия платиной, родием, палладием, кобальтом, марганцем , мышьяком, индием, ртутью. Покрытия такими металлами, как галлий, нио бий, вольфрам, молибден и рений, в гальванической практике широкого применения не имеют. За последнее время были о саждены электролитически такие виды металлов, как уран, плутоний, актиний, полоний, цезий, торий, а также германий. Получили значительное практическое применение различные тюирытия сплавами, в том числе сплавами олово-цинк, олово-никель, олово-свинец, никель-кобальт, золото-медь и другими. Почти все применяемые виды покрытий можно разбить по их назначению на следующие группы защитные, защитно-декоративные к специальные покрытия. [c.11]
ЭКОНОМИЧНЫМ и совершенным, позволяюш,им наносить более равномерные по толш ине и более высокой химической чистоты покрытия любым металлом, чем при других перечисленных способах. В промышленности нашли широкое применение гальванопокрытия цинком, кадмием, оловом, свинцом, никелем, медью, хромом, серебром, золотом, а также сплавами медь-цинк, медь-олово и др. [c.171]
В связи с широким развитием техники требуются покрытия с новыми специфическими свойствами, которылш зачастую электроосажденные слои отдельных металлов не обладают. За последние годы находят все более широкое применение сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово-цинк, олово-свинец, кад5лий-цинк, олово-кадмий и др.), антифрикционных свойств (сплавы олово-свинец, свинец-цинк, серебро-кадмий, олово-свинец-сурьма, и др.), высоких декоративных свойств (сплавы медь-золото, золото-серебро, никель-олово, медь-олово и др.), магнитных свойств (сплавы никель-кобальт, вольфрам-кобальт, никель-железо и др.), специальных [c.208]
Вода Дистиллированная и мягкая Колодезная и речная Конденсаторные трубы — Олово, никель, серебро, платша, алкжйвий, монель-металл, нержавеющая сталь типа 1Х18Н9Т Цинк, свинец, олово, алюминий, никель, М0 нель-металл, нержавеющая сталь, бетон Медь, латунь, бронза, медноникелевые сплавы (15—30% N1), монель-металл [c.35]
Так, например, осаждение медноцинкового сплава (70% Си и30%2п) на сталь обеспечивает прочность сцепления стальных, изделий с резиной. Замена золотого покрытия сплавом золото— медь дает возможность увеличить износоустойчивость и твердость в два-три раза при одновременной экономии золота. Сплавы олово—цинк (Зп- гп), цинк—кадмий 2п—Сс1), цинк— никель (2п—N1) характеризуются более высокой коррозионной устойчивостью по сравнению с цинковым покрытием, что позволяет рекомендовать эти покрытия взамен цинка. Сплав никель— кобальт (N1—Со) характеризуется высокими магнитными характеристиками, он также используется при получении твердых матриц для литья и прессования пластмассовых изделий. Гальванические сплавы свинец—олово (РЬ—8п), свинец—цинк свинец—медь (РЬ—Си), свинец—сурьма (РЬ—5Ь) зарекомендовали себя как антифрикционные материалы, имеющие хо-рошую прирабатываемость, низкий коэффициент трения и высокую стойкость в смазочных материалах. Значительный интерес представляют защитно-декоративные покрытия сплавами медь— олово (Си—5п), олово—никель (5п—N1), медь—олово—цинк (Си—5п—2п) и др. [c.3]
Приведенные выше данные показывают, что из всех металлов, применяемых в трансформаторостроении, наиболее активными катализаторами окисления масла следует считать медь и ее сплавы. Алюминий, сталь, цинк, олово и его сплавы, кадмий, никель, хром незначительно ускоряют окисление трансформаторного масла. Производные металлов — окислы и соли органических кислот — мыла — в большинстве случаев является более активными инициаторами окисления масла, чем сами металлы. [c.228]
Металлические покрытия. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные н анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Си, Ni, Ag. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрьггия — катодом, на котором выделяется водород или поглощается кислород (рис. 10.8, а). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный потенциал, чем потенциал основного металла. Примером анодного покрытия может служить цинк на стали. В этом случае основной металл будет катодом коррозионного элемента, поэтому он не корродирует (рис. 10.8,6). Потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия. Так, покрытие стали оловом в растворе h3SO4 — катодное, а в растворе органических кислот — анодное. [c.329]
chem21.info
сплавы никеля на сплавы магния на сплавы меди на цинк
Марганец придает сталям твердость и другие важные качества. Он находит применение и для производства безжелезных сплавов с медью, никелем, алюминием, магнием и другими металлами. Для производства этих сплавов ферросплавы марганца непригодны, поэтому применяется марганец в виде металла той или иной степени чистоты. Производство элементов цинк-марганцевой системы (аноды из активизированной двуокиси марганца), химическая промышленность, стекловарение и сельское хозяйство (микроудобрения) потребляют 5% добываемого марганца. [c.279] Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]
Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]
При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
Наличие около 0,1% примеси железа в чистом алюминии повышает его скорость растворения в 2 н. соляной кислоте в 160 раз, а содержание 0,1% меди — в 1600 раз. Кремний и магний практически не оказывают вредного влияния на коррозионную устойчивость алюминия. Цинк в небольших количествах также безвреден, но алюминиевые сплавы, содержаш,не магний и цинк, неустойчивы. Коррозионную устойчивость этих сплавов повышают путем дополнительного легирования медью, хромом или ванадием. Свинец не оказывает никакого влияния при содержании до 0,5—1,4%. Кобальт и никель чаще всего более вредны, чем медь. [c.133]
Для исследования состава алюминиевых сплавов применяют часто еще следующий способ разложения и анализа. 0,1—0,2 г алюминиевых стружек или опилок помещают в коническую колбу и прибавляют небольшими порциями 25%-ный раствор едкого натра. Ввиду того что реакция растворения протекает очень бурно, следует иметь наготове сосуд с холодной водой для охлаждения содержимого колбы с целью замедлить реакцию. После прекращения реакции дают раствору постоять 3—5 мин., затем разбавляют вдвое водой и кипятят. Осадок, содержащий соединения меди, железа, никеля, марганца, магния и кальция, отфильтровывают от раствора, в котором находятся алюминий, цинк, олово и большая часть кремневой кислоты. Затем в осадке и растворе определяют вышеперечисленные элементы. [c.132]
Сплавы медь—хром, цинк—хром, никель-магний, железо—медь, Кобальт—марганец [c.6]
Главнейшие цветные металлы—это медь, цинк, алюминий, никель, олово, свинец. Цветные металлы в большинстве случаев применяют в виде сплавов. Это объясняется тем, что сплавам, изменяя качество и количество составных частей, можно придать такие свойства, которыми не обладает чистый металл. Наиболее широко применяют сплавы меди, алюминия, магния, никеля и др [c.320]
НДА защищает от коррозии сталь, алюминий и его сплавы, никель, хром, кобальт, стальные фосфатированные и оксидированные изделия. На меди и ее сплавах при значительном содержании в воздухе сернистого газа этот ингибитор образует темную пленку. Чтобы избежать этого, при хранении медных изделий в атмосфере рекомендуется добавлять в НДА карбонат аммония. НДА не дает достаточно надежной защиты чугуна и не защищает такие металлы, как цинк, кадмий, серебро, магний и его сплавы. Ингибитор разрушает нитролаки, хлоркаучуки, но безвреден для глифталевых и пентафталевых эмалей, натуральной резины, пластмасс. [c.151]
Фтор энергично взаимодействует с большинством металлов с образованием фторидов. Железо, медь, алюминий, никель, цинк практически не взаимодействуют со фтором при обычной температуре, так как при этом образуется защитная пленка фторидов. Наибольшей устойчивостью к действию фтора обладают алюминий, магний, никель и их сплавы [38]. [c.19]
В качестве основы пенометаллов применяются, главным образом, алюминий, магний и их сплавы и другие металлы цинк, свинец, железо, медь, никель, сталь и сплавы этих металлов с магнием, титаном. [c.187]
До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий. [c.251]
Ингибитор ХЦА защищает от коррозии черные. металлы (сталь и чугун), никель, алюминий и его сплавы, медь и ее сплавы, серебро не защищает цинк, кадмий, магний и его сплавы. Испытаниями установлено [37], что ингибитор ХЦА надежно защищает оборудование и детали от коррозии до 5 лет при хранении в герметических чехлах на открытых площадках и в неотапливаемых помещениях. [c.117]
Цветные металлы и, главным образом, их сплавы имеют довольно широкое применение в аппаратостроении. В некоторых случаях они до сих пор являются незаменимыми по своим качествам — достаточной прочности и пластичности при хороших антикоррозионных свойствах. Однако цветные металлы и их сплавы являются остродефицитным материалом, и стоимость их значительно выше, чем черных. Наиболее дорогими из дефицитных цветных металлов являются последовательно по стоимости олово, никель, затем— медь, магний, алюминий, цинк, свинец. Сплавы, в состав которых входят указанные металлы, по возможности заменяют черными и некоторыми неметаллическими синтетическими материалами, не являющимися дефицитными. [c.65]
Особенно широко применяются в промышленности различные сплавы. Сплавы электрон (90% магния, алюминий, цинк, медь, марганец), дюралюминий (93—95% алюминия, медь, магний, марганец, кремний), магналий (10—30% магния, алюминий) находят применение в авиационной промышленности. Из никелированной стали (73% железа, 18% хрома, никель, углерод) изготовляют кабели, самые разнообразные инструменты, из сплава стали с кремнием (0,9—1,2% кремния) — канализационные трубы для химических предприятий. Последний сплав обладает высокой коррозионной устойчивостью. Амальгамы — это сплавы золота, серебра или натрия с ртутью. Серебряная амальгама применяется для пломбирования зубов. [c.74]
В первой части книги весьма полно приведены линии спектров 32 элементов, необходимые для анализа важнейших металлов и сплавов. К таким элементам мы отнесли алюминий, ванадий, висмут, вольфрам, железо, золото, индий, кадмий, кальций, кобальт, кремний, магний, марганец, медь, молибден, мышьяк, натрий, никель, ниобий, олово, платину, свинец, серу, серебро, сурьму, титан, углерод, фосфор, хром, церий, цинк, цирконий. [c.11]
Осаждение гидроокиси магния избытком едкого натра в присутствии алюминия, олова, цинка и других амфотерных металлов более пригодно для повышения концентрации магния в растворе, чем для отделения его от этих металлов, поскольку они соосаждаются вместе с гидроокисью магния. Метод отделения магния от таких металлов, как железо, марганец, медь, цинк, свинец и никель, основан на осаждении гидроокиси магния едким натром в присутствии тартрата или цианида, которые предотвращают осаждение указанных металлов . Этот метод выделения магния был применен для определения его в сплавах алюминия. Для отделения магния от больших количеств титана применяют осаждение магния в виде гидроокиси из растворов, содержащих перекись водорода . [c.528]
Хотя развитие производства сплавов в порошке имеет интересные перспективы, основные находящиеся уже теперь в употреблении металлические порошки представляют собой чистые металлы медь, никель, кобальт, хром, алюминий, магний, кремний, свинец, цинк, железо, вольфрам, молибден, тантал, серебро, золото, платину и иридий. [c.157]
Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]
Сплавы. В латунь и нейзильбер входит цинк в количестве до 50 %, остальное медь — в латуе, медь и никель —в нейзильбере. Прчокатные, литейные и распыляемые сплавы содержат более 90 % цинка и небольшие количества меди, алюминия и магния. [c.401]
Праотец многочисленного рода этих сплавов — пакт-хонг (или пекфонг ), который выплавляли в Китае, возможно до нашей эры, дожил до наших дней. Он состоит из меди, никеля (20%) и цинка, причем цинк играет здесь в основном ту же роль, что и магний при приготовлении ковкого никеля. Этот сплав в небольших количествах начали получать в Европе еще в первой половине XIX века под названиями аргентан, немецкое серебро, нейзильбер (новое серебро) и массой других, причем почти все эти названия подчеркивали красивый — серебряный — внешний вид сплава. Никель обладает интересной отбеливающей способностью , уже 20% его полностью гасят красный цвет меди. [c.56]
Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]
Метод основан на том, что цинк в аммиачном растворе вступает во взаимодействие с трилоном Б, образуя устойчивый комплекс. При растворении навески сплава в щелочи медь, железо, магний, марганец, никель и некоторые другие компоненты сплавов остаются в нерастворившемся в щелочи остатке и определению цинка не мешают. [c.104]
Определению магния с феназо мешают железо, алюминий, медь, цинк, никель, марганец, титан. Присутствие растворимых карбонатов и силикатов оказывает незначительное влияние, что позволяет определить магний в карбонатсодержащих природных водах, а также применять реактив при анализе многих сплавов, требующих для своего растворения едкий натр, которой может содержать примеси карбонатов или силикатов. [c.35]
Кобальт и никель можно разделить при анализе руд и сплавов на ЭДЭ-Юп и дауэксе-1. Алюминий, железо и медь в бронзах можно определять на СБС в Н-форме. Можно на СБС отделить бериллий от алюминия и меди. На КУ-2 в Н- и Na-форме можно разделять магний, алюминий, хром, марганец, железо, никель, медь. Цинк из медных сплавов можно выделять на СБС в Nh5-фopмe, разделять железо и молибден в сталях, ферромолибдене и рудах. Молибден и рений разделяют на СБС, КУ-1, СБСР, МСФ, ЭДЭ-Юп, сульфоугле, вофатите П, амберлите ИРА-400, дауэксе-50, вофатите Ц. Ниобий и титан можно разделить на КУ-2 в Н-форме. Отделение кадмия от свинца и висмута проводят на сульфоугле, КУ-1, СБС, СДВ-3. [c.146]
При решении вопроса о допустимости контакта между металлами можно также руководствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — цинк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоникелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]
В конструкциях,изготовленных из магния и его сплавов, следует избегать соприкосповенпя отдельных деталей с другими металлами, так как в подавляющем большинстве случаев последние катодны по отношению к магнию и его сплавам. Особенно опасны контакты с медью, никелем, железом и сталями типа 1Х18Н9, менее опасны контакты с металлами, имеющими больп ое перенапряжение водорода (кадмий, цинк). [c.243]
chem21.info
сплав меди, цинка, никеля - это... Что такое сплав меди, цинка, никеля?
сплав меди, цинка, никеляGeneral subject: electrum
Универсальный русско-английский словарь. Академик.ру. 2011.
Смотреть что такое "сплав меди, цинка, никеля" в других словарях:
universal_ru_en.academic.ru
Сплавы свинец — олово — цинк
МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80 [c.156] Классификация металлов . Металлы составляют большую часть всех элементов в периодической системе Д. И. Менделеева, но в технике они классифицируются по иным признакам. До настоящего времени не разработана научно обоснованная классификация металлов. В практике получили применение исторически сложившиеся классификации, базиру.ющиеся на таких признаках металлов, как их распространенность в природе, применимость, физические и частично химические свойства. Металлы делятся на черные и цветные. К черным металлам относятся железо, марганец, хром и сплавы на их основе, к цветным — все остальные. Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие [c.115]Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]
МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст [c.780]
Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]
Сплавы свинец — олово — цинк [c.305]
СПЛАВЫ СВИНЕЦ-ОЛОВО-ЦИНК [c.141]
Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]
Покрытие сплавом свинец олово — цинк обеспечивает хорошую антикоррозионную стойкость и высокую прирабатываемость деталей. Поэтому покрытие этим сплавом применяют для защиты деталей, работающих при агрессивных условиях, например деталей двигателей внутреннего сгорания. [c.172]
Олово легко образует сплавы с многими металлами в различных соотношениях. Практическое применение нашли сплавы олово—свинец, олово—цинк, олово—никель, олово—висмут. [c.122]
Покрытия оловом широко применяют в электротехнической промышленности благодаря хорошим контактным свойствам и в пищевой промышленности благодаря отсутствию токсичности. Наряду с покрытиями из чистого олова в специальных случаях применяют в качестве покрытий и его сплавы, например олово — свинец (сплав терн ), олово — цинк, олово — кадмий, олово—бронза и олово — никель. Данные по коррозии покрытий из олова и его сплавов можно найти в разделе 7.5 и работах Бриттона [24]. [c.398]
Что касается металлов, то они также в большинстве случаев корродируют в среде гексафторида урана. Золото и платина устойчивы к этому соединению лишь при комнатной температуре, при нагревании же они тускнеют. Свинец, олово, цинк и железо разрушаются очень быстро. Наиболее устойчивы медь, алюминий и никель, а также сплавы на их основе (монель-металл, инконель). [c.36]
Влияние соединений меди на окисление очищенных крекинг-бензинов исследовано Даунингом [84]. Вальтере [82] показал, что каталитическая активность медных сплавов пропорциональна содержанию в них меди. Педерсен [85].изучал влияние концентрации меди на химическую стабильность бензинов термического крекинга после сернокислотной очистки. Опубликованы результаты исследования влияния таких металлов, как сталь, медь, латунь, свинец, олово, алюминий и цинк, на бензины, различающиеся по химической стабильности [86, 87]. [c.243]
Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]
При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]
Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]
Металлы и сплавы. Для повышения коррозионной устойчивости различных материалов применяются разнообразные методы. Рус )ф и Хайнцельман [3] получили некоторые качественные результаты по коррозионной стойкости путем обработки различных веществ парами гексафторида. Они установили, что золото и платина не реагируют с гексафторидом на холоду, при нагревании же эти металлы несколько тускнеют. Ртуть реагирует уже на холоду. На медь и серебро гексафторид действует слабо при нагревании. Свинец, олово, цинк и железо подвергаются более сильному воздействию, чем медь и серебро. Алюминий покрывается белым налетом. Натрий быстро реагирует с гексафторидом и при нагревании даже загорается. [c.358]
Для изготовления стекловолокон повышенной прочности, а также волокон для декоративных целей в газовый поток вводят металлы, такие как цинк, свинец, олово и их сплавы или пары неорганических солей, которые не разлагаются при высоких температурах (фосфаты или нитраты щелочных металлов). Получаемый из таких волокон холст более плотен и менее порист, чем обычный. [c.385]
Действие на металлы. При обычных температурах химически чистые фреоны не действуют на железо и его сплавы, алюминий, олово, медь, бронзу, латунь и сталь. С фреоном-113 не рекомендуется применять цинк. В присутствии незначительного количества влаги фторированные углеводороды действуют на магний, его сплавы и сплавы алюминия с 2% магния. Не рекомендуется применять свинец, если препарат содержит масла и фреон-11. [c.60]
Этот способ имеет существенные недостатки. Если рабочий неопытен, в процессе пайки получается большое количество брака, а плохое качество электродов является одной из причин снижения качества элементов. Во время пайки в цинк вводятся посторонние примеси, так как перед пайкой шов обрабатывают соответствующей протравой и в качестве припоя пользуются сплавом, содержащим олово и свинец. При хорошей пайке припой не попадает внутрь электрода, и опасность возникновения местных гальванических элементов отпадает. Однако и в этом [c.72]
Так, например, осаждение медноцинкового сплава (70% Си и30%2п) на сталь обеспечивает прочность сцепления стальных, изделий с резиной. Замена золотого покрытия сплавом золото— медь дает возможность увеличить износоустойчивость и твердость в два-три раза при одновременной экономии золота. Сплавы олово—цинк (Зп- гп), цинк—кадмий 2п—Сс1), цинк— никель (2п—N1) характеризуются более высокой коррозионной устойчивостью по сравнению с цинковым покрытием, что позволяет рекомендовать эти покрытия взамен цинка. Сплав никель— кобальт (N1—Со) характеризуется высокими магнитными характеристиками, он также используется при получении твердых матриц для литья и прессования пластмассовых изделий. Гальванические сплавы свинец—олово (РЬ—8п), свинец—цинк свинец—медь (РЬ—Си), свинец—сурьма (РЬ—5Ь) зарекомендовали себя как антифрикционные материалы, имеющие хо-рошую прирабатываемость, низкий коэффициент трения и высокую стойкость в смазочных материалах. Значительный интерес представляют защитно-декоративные покрытия сплавами медь— олово (Си—5п), олово—никель (5п—N1), медь—олово—цинк (Си—5п—2п) и др. [c.3]
В 1829 г. А. Я. Купфером была опубликована Заметка об удельном весе сплавов и их точке плавления [36], в которой он приводит данные термического анализа системы олово — свинец. В литературе по истории химии обычно утверждается, что первая работа в области исследования металлических сплавов методом термического анализа принадлежит шведскому ученому Рудбергу (1800—1839), профессору физики в Упсале, который в 1830 г. опубликовал работу, посвященную термическому исследованию двойных металлических сплавов свинец — олово, висмут — олово, свинец — висмут, цинк — олово [37]. [c.45]
В качестве примера электрогравиметрического определения рассмотрим определение меди. Торранс и Дил рекомендуют проводить электролиз в солянокислом растворе с анодными деполяризаторами, устанавливая катодный потенциал на достаточно отрицательном уровне (—0,40 в относительно насыщенного каломельного электрода), чтобы исключить образование растворимых хлорокомилексов меди (I). Лингейноднако, считает, что электролиз в тартратном буфере с pH 4—6 дает лучшие результаты, чем в солянокислом растворе. Метод позволяет определять медь иепосредственно во всех наиболее распространенных сплавах, содержащих, например, сурьму, мышьяк, свинец, олово, никель и цинк, ири этом он нисколько не уступает в точности многим другим, более трудоемким методам. [c.354]
Некоторые металлы и сплавы, например алюминий, никель, свинец, олово, цинк, вольфрам, хром, молибден, ковар, константан, алюминированное железо, вообще не коррозируются в чистом влажном атмосферном воздухе. У этих металлов и сплавов процесс взаимодействия с кислородом воздуха протекает почти мгновенно. При этом образуется тонкая сплошная окисная пленка, плотно прилегающая к поверхности металла. Эта пленка не пропускает кислорода во внутренние слои металла, защищая их от окисления (там, где нет кислорода, не может быть окисления) и поэтому называется пассивирующей. [c.94]
Для покрытия каталитически неактивных металлов (медь и ее сплавы) был предложен другой метод, который заключается в наиесении на покрываемую поверхность каталитически активного металла (например, палладия) Палладий наносится погружением деталей на несколько секунд в палладиевый раствор Следует Отметить, что на некоторых металлах вообще не удаетси получить никелевого покрытия К таким металлам относится олово, свинец, кадмий, цинк, висмут и -сурьма [c.6]
К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2, [c.29]
Шлак шахтной плавки продувают в шлаковозгопочной печи смесью воздуха с пылеуглем, переводя цинк, свинец и олово в возгоны. Затем его переливают с добавкой пирита в отстойник, отапливаемый мазутом, для извлечения меди. К эффективному способу переработки шлаков относят и электротермический. Он позволяет извлекать в сплав медь, олово, свинец, переводить в цинк возгоны и получать отвальные шлаки, пригодные для изготовления строительных материалов или использования в качестве удобрений, содержащих микроэлементы. [c.128]
Это старейший электрохимический метод анализа, известен с 1864 г. В настоящее время он применяется только дпя ощ)еделения меди и анализа медных сплавов, содержащих олово, свинец, кадмий, цинк. Будучи безэталонным методом, электрогравиметрня по правильности и воспроизводимости результатов превосходит другие методы ощ)еделения этих элементов. Однако на проведение анализа требуется много времени, и метод считают уст евшим. [c.195]
Радиоактивные изотопы оказались полезными при зучении яв лений коррозии и пассивности металлов. Точки поверхности, подвергшиеся разъеданию или окислению, могут быть найдены авторадиографически. По почернению различных частей фотопластинок, соприкасающихся с корродированной поверхностью, на которую предварительно нанесен слой изотопа, можно найти место фиксации кислорода или растворения металла. Так, авторадиография сплава сурьмы, олова и свинца, меченного РЬ тем выдерживания в растворе соли тория, показывает, что только участки, богатые свинцом, фиксируют радиоактивный изотоп свинца, между тем как фазы сурьма — олово практически не содержат его. В сплаве цинк — алюминий — свинец имеет место обратная картина радиоактивный свинец локализуется вокруг зерен эвтектики цинк — алюминий. Коррозия водяным паром протекает особенно интенсивно в точках, богатых свинцом. [c.217]
Сталь различных марок сталь с металлическими и неметаллическими покрытиями алюминий и его сплавы медь и ее сплавы магний оксидированный цинк и кадмий хроматизи-рованные олово свинец серебро молибден ковар цирконий сочетания этих металлов [c.330]
Ими можно паять в горячей воде олово, свинец, нейзильбер, железо, цинк, латунь. Эвтектический сплав свинца, олова и кадмия с т-рой плавления 145° С применяют в системах автоматического тушения пожаров и электр. предохранителях. Сплавы кадмия с серебром используют в качестве контактного материала. Сплав свинца и олова с кадмием (20% С(1) применяется для изготовления типографских клише (см. также Вуда сплав, Легкоплавкие сплавы. Припои, [c.525]
ОЛОВЯНИСТАЯ БРОНЗА - бронза, основным легирующим элементом которой является олово. О. б. применяли за 3000 лет до н. э. Сплав отличается хорошими мех. св-вами, мало чувствителен к церегреву и газам, легко сваривается и паяется. Олово повышает твердость и прочность сплава, но снижает пластичность. Кроме олова, в О. б. вводят фосфор, цинк, свинец и никель (табл.). Фосфор раскисляет и рафинирует сплав, улучшает жидкотекучесть, коррозионную стойкость и износостойкость, повышает прочность. Цинк улучшает технологические свойства сплава. Свинец повышает плотность сплава, улучшает антифрикционные св-ва, обрабатываемость резанием, коррозионную стойкость в некоторых средах, однако снижает пластичность. Никель измельчает структуру. [c.112]
Первые оловоорганические соединения были приготовлены реакцией алкилгалогенидов со сплавами олова этот метод привлек внимание лишь много времени спустя. Аналогичная реакция с использованием сплава свинец — натрий является экономически важной для производства тетраэтилсвинца. В ранних исследованиях Каура [100, 103], Гримма [282], Ладенбурга [484], Вернера и Пфейффера [886] при нагревании йодистых алкилов со сплавом олово — натрий получали смесь продуктов, содержащих тетраалкилолово. Вместо йодидов были использованы и другие алкилгалогениды (обычно под давлением) [70, 181, 304, 446, 447, 611, 667] было опубликовано несколько сообщений об использовании галогенидов [666, 667]. Леттс и Колли [516, 517] получили тетраэтилолово с 50%-ным выходо.м при нагревании йодистого этила со сплавом олово — цинк—медь в этих условиях йодистый этил не реагировал со сплавом олово — медь. [c.18]
Термическая стойкость и стойкость метилсиликоновых жидкостей к окислению изучалась очень подробно [135]. Установлено, что на воздухе до 175° заметных изменений не происходит при 200° начинается окисление, которое проявляется в изменении вязкости и выделении формальдегида и муравьиной кислоты. Повышение вязкости при окислении приписывается конденсации силоксановых молекул, от которых под действием кислорода отш епляются метильные радикалы. При температуре выше 200° стойкость к окислению у метилсиликоновых масел сильно уменьшается, что ограничивает их применение в окислительной а мосфере. Медь, свинец и селен ингибируют окисление при 200°, о чем можно судить по меньшему выделению образующихся при этом формальде-.гида и муравьиной кислоты мед1> и селен препятствуют также изменению вязкости. Теллур, наоборот, ускоряет при этих температурах окислительный процесс. Остальные исследованные металлы и сплавы (дюралюминий, кадмий, серебро, сталь, олово, цинк) заметно не влияют на стойкость к оккслению. Весовые потери в присутствии теллура, меди, свинца и селена при 225° очень высоки среди продуктов реакции были идентифицированы циклические молекулы Dg и D4. Эти металлы, по-видимому, катализируют термическую деполимеризацию высокие потери из-за испарения в присутствии свинца объясняют взаимодействием окиси свинца с силоксанами. При испытании термостойкости метилсиликоновых масел в инертной атмосфере установлено, что заметная температурная деполимеризация наступает уже при 250°. [c.332]
Наибольший интерес представляет металлизация ткани напылением частичек расплавленного металла. Этот метод, разработанный фирмой Metallizing Engineering o., используется для покрытия металлов, стекла, пластмасс, керамики и бумаги. (Пульверизацию расплавленного металла осуществляют потоком сжатого воздуха или инертного газа. В большинстве случаев металл берется в форме проволоки, плавление которой проводят различными способами электродуговым, газовым (в ацетилен-кислородном, водородно-кислородном и пропан-кислород-ном пламени), а также с помощью токов высокой частоты. Для металлизации тканей напылением можно использовать лишь относительно легкоплавкие металлы и их сплавы ((цинк, свинец, олово), так как при высоких температурах разрушаются частицы волокна. Покрытие тугоплавкими металлами и сплавами, такими как латунь и сталь, необходимо осуществлять на ткани, предварительно металлизированные легкоплавкими металлами. Металлизированные ткани, полученные напылением металла, используют не только в технике, например для изготовления слоистых материалов, фильтров, гибких пленочных материалов, электродов и т. д., но и в быту (для декоративных целей). [c.397]
chem21.info