Химические и физические свойства меди: Свойства меди – все важные характеристики металла + Видео
Содержание
Медь, свойства атома, химические и физические свойства
Медь, свойства атома, химические и физические свойства.
Cu 29 Медь
63,546(3) 1s2 2s2 2p6 3s2 3p6 3d10 4s1
Медь — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 29. Расположен в 11-й группе (по старой классификации — побочной подгруппе первой группы), четвертом периоде периодической системы.
Атом и молекула меди. Формула меди. Строение атома меди
Цена на медь
Изотопы и модификации меди
Свойства меди (таблица): температура, плотность, давление и пр.
Физические свойства меди
Химические свойства меди. Взаимодействие меди. Химические реакции с медью
Получение меди
Применение меди
Таблица химических элементов Д.И. Менделеева
Атом и молекула меди. Формула меди. Строение атома меди:
Медь (лат. Cuprum) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Cu и атомным номером 29. Расположен в 11-й группе (по старой классификации – побочной подгруппе первой группы), четвертом периоде периодической системы.
Медь – металл. Относится к переходным металлам, а также к группе тяжёлых, цветных металлов.
Медь обозначается символом Cu.
Как простое вещество медь при нормальных условиях представляет собой пластичный металл золотисто-розового цвета (либо розового цвета при отсутствии оксидной плёнки). Наряду с осмием, цезием и золотом, медь – один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов.
Молекула меди одноатомна.
Химическая формула меди Cu.
Электронная конфигурация атома меди 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Потенциал ионизации (первый электрон) атома меди равен 745,48 кДж/моль (7,726380(4) эВ).
Строение атома меди. Атом меди состоит из положительно заряженного ядра (+29), вокруг которого по четырем оболочкам движутся 29 электронов. При этом 28 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку медь расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома меди – на s-орбитали находится один неспаренный электрон. В свою очередь ядро атома меди состоит из 29 протонов и 35 нейтронов.
Радиус атома меди (вычисленный) составляет 145 пм.
Атомная масса атома меди составляет 63,546(3) а. е. м.
Медь с давних пор широко используется человеком.
Медь, свойства атома, химические и физические свойства
Изотопы и модификации меди:
Свойства меди (таблица): температура, плотность, давление и пр.:
Подробные сведения на сайте ChemicalStudy.ru
100 | Общие сведения | |
101 | Название | Медь |
102 | Прежнее название | |
103 | Латинское название | Cuprum |
104 | Английское название | Copper |
105 | Символ | Cu |
106 | Атомный номер (номер в таблице) | 29 |
107 | Тип | Металл |
108 | Группа | Переходный, тяжёлый, цветной металл |
109 | Открыт | Известна с глубокой древности |
110 | Год открытия | 9000 г. до н. э. |
111 | Внешний вид и пр. | Пластичный металл золотисто-розового цвета (либо розового цвета при отсутствии оксидной плёнки) |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 0,0068 % |
120 | Содержание в морях и океанах (по массе) | 3,0·10-7 % |
121 | Содержание во Вселенной и космосе (по массе) | 6,0·10-6 % |
122 | Содержание в Солнце (по массе) | 0,00007 % |
123 | Содержание в метеоритах (по массе) | 0,011 % |
124 | Содержание в организме человека (по массе) | 0,0001 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса) | 63,546(3) а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 3d10 4s1 |
203 | Электронная оболочка | K2 L8 M18 N1 O0 P0 Q0 R0
|
204 | Радиус атома (вычисленный) | 145 пм |
205 | Эмпирический радиус атома* | 135 пм |
206 | Ковалентный радиус* | 132 пм |
207 | Радиус иона (кристаллический) | Cu+ 60 (2) пм, 74 (4) пм, 91 (6) пм, 71 (4) пм, 87 (6) пм, Cu3+ low spin 68 (6) пм (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 140 пм |
209 | Электроны, Протоны, Нейтроны | 29 электронов, 29 протонов, 35 нейтронов |
210 | Семейство (блок) | элемент d-семейства |
211 | Период в периодической таблице | 4 |
212 | Группа в периодической таблице | 11-ая группа (по старой классификации – побочная подгруппа 1-ой группы) |
213 | Эмиссионный спектр излучения | |
300 | Химические свойства | |
301 | Степени окисления | -2, 0, +1, +2 , +3, +4 |
302 | Валентность | I, II |
303 | Электроотрицательность | 1,90 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 745,48 кДж/моль (7,726380(4) эВ) |
305 | Электродный потенциал | Cu+ + e– → Cu, Eo = +0,520 В, Cu2+ + e– → Cu+, Eo = +0,153 В, Cu2+ + 2e– → Cu, Eo = +0,337 В |
306 | Энергия сродства атома к электрону | 119,235(4) кДж/моль (1,23578(4) эВ) |
400 | Физические свойства | |
401 | Плотность* | 8,96 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело), 8,02 г/см3 (при температуре плавления 1084,62 °C и иных стандартных условиях, состояние вещества – жидкость), 7,962 г/см3 (при 1127 °C и иных стандартных условиях, состояние вещества – жидкость), 7,225 г/см3 (при 2027 °C и иных стандартных условиях, состояние вещества – жидкость), |
402 | Температура плавления* | 1084,62 °C (1357,77 K, 1984,32 °F) |
403 | Температура кипения* | 2562 °C (2835 K, 4643 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 13,26 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 300,4 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,384 Дж/г·K (при 20 °C) |
410 | Молярная теплоёмкость | 24,44 Дж/(K·моль) |
411 | Молярный объём | 7,12399 см³/моль |
412 | Теплопроводность | 401 Вт/(м·К) (при стандартных условиях), 401 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Кубическая гранецентрированная
|
513 | Параметры решётки | 3,615 Å |
514 | Отношение c/a | |
515 | Температура Дебая | 315 K |
516 | Название пространственной группы симметрии | Fm_ 3m |
517 | Номер пространственной группы симметрии | 225 |
900 | Дополнительные сведения | |
901 | Номер CAS | 7440-50-8 |
Примечание:
205* Эмпирический радиус атома меди согласно [1] и [3] составляет 128 пм.
206* Ковалентный радиус меди согласно [1] и [3] составляет 132±4 пм и 117 пм соответственно.
401* Плотность меди согласно [3] составляет 8,92 г/см3 (при 0 °C и при иных стандартных условиях, состояние вещества – твердое тело).
402* Температура плавления меди согласно [3] и [4] составляет 1083,4 °С (1356,55 K, 1982,12 °F) и 1083 °С (1356,15 K, 1981,4 °F) соответственно.
403* Температура кипения меди согласно [3] и [4] составляет 2567 °С (2840,15 K, 4652,6 °F) и 2543 °C (2816,15 К, 4609,4 °F) соответственно.
407* Удельная теплота плавления (энтальпия плавления ΔHпл) меди согласно [3] и [4] составляет 13,01 кДж/моль и 13 кДж/моль соответственно.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) меди согласно [3] и [4] составляет 304,6 кДж/моль и 302 кДж/моль соответственно.
Физические свойства меди:
Химические свойства меди. Взаимодействие меди. Химические реакции с медью:
Получение меди:
Применение меди:
Таблица химических элементов Д. И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Источники:
- https://en.wikipedia.org/wiki/Copper
- https://de.wikipedia.org/wiki/Kupfer
- https://ru.wikipedia.org/wiki/Медь
- http://chemister.ru/Database/properties.php?dbid=1&id=239
- https://chemicalstudy.ru/med-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/
Примечание: © Фото https://www. pexels.com, https://pixabay.com
медь атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле меди
сколько электронов в атоме свойства металлические неметаллические термодинамические
Коэффициент востребованности
3 557
Физические и химические свойства меди презентация, доклад
Выполнил:
Медь
Выполнил:
Содержание
Содержание
О меди
Физические и химические свойства меди
Медь и здоровье
Применение меди
История меди
Народная медицина
Медь – первый металл, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Первые медные орудия изготовлялись из самородной меди, которая встречается довольно часто. Самый крупный самородок меди был найден на территории США, он имел массу 420 т.
Но в виду того, что медь – мягкий металл, медь в древности не смогла вытеснить каменные орудия труда. Лишь когда человек научился плавить медь и изобрел бронзу (сплав меди с оловом), металл заменил камень. Широкое использование меди началось в IV тысячелетии до н.э.
Медь – первый металл, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Первые медные орудия изготовлялись из самородной меди, которая встречается довольно часто. Самый крупный самородок меди был найден на территории США, он имел массу 420 т.
Но в виду того, что медь – мягкий металл, медь в древности не смогла вытеснить каменные орудия труда. Лишь когда человек научился плавить медь и изобрел бронзу (сплав меди с оловом), металл заменил камень. Широкое использование меди началось в IV тысячелетии до н. э.
Медь — тяжелый розово-красный металл, мягкий и ковкий, ее температура плавления 1083° С, является отличным проводником электрического тока и теплоты электрическая проводимость меди в 1,7 раза выше, чем алюминия, и в 6 раз выше железа.
В повседневной жизни все время приходится иметь дело с медью и ее сплавами: включаем компьютер или настольную лампу — ток идет по медным проводам, пользуемся металлическими деньгами, которые, как желтые, так и белые, изготовлены из сплавов меди. Некоторые дома украшают изделия из бронзы, из меди изготавливается посуда. Тем временем медь- далеко не самый распространенный в природе элемент: содержание меди в земной коре составляет 0,01%, что позволяет ей занимать лишь 23-е место среди всех элементов.
Медь — тяжелый розово-красный металл, мягкий и ковкий, ее температура плавления 1083° С, является отличным проводником электрического тока и теплоты электрическая проводимость меди в 1,7 раза выше, чем алюминия, и в 6 раз выше железа.
В повседневной жизни все время приходится иметь дело с медью и ее сплавами: включаем компьютер или настольную лампу — ток идет по медным проводам, пользуемся металлическими деньгами, которые, как желтые, так и белые, изготовлены из сплавов меди. Некоторые дома украшают изделия из бронзы, из меди изготавливается посуда. Тем временем медь- далеко не самый распространенный в природе элемент: содержание меди в земной коре составляет 0,01%, что позволяет ей занимать лишь 23-е место среди всех элементов.
Медь – первый металл, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Первые медные орудия изготовлялись из самородной меди, которая встречается довольно часто. Самый крупный самородок меди был найден на территории США, он имел массу 420 т.
Но в виду того, что медь – мягкий металл, медь в древности не смогла вытеснить каменные орудия труда. Лишь когда человек научился плавить медь и изобрел бронзу (сплав меди с оловом), металл заменил камень. Широкое использование меди началось в IV тысячелетии до н. э.
Медь – первый металл, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Первые медные орудия изготовлялись из самородной меди, которая встречается довольно часто. Самый крупный самородок меди был найден на территории США, он имел массу 420 т.
Но в виду того, что медь – мягкий металл, медь в древности не смогла вытеснить каменные орудия труда. Лишь когда человек научился плавить медь и изобрел бронзу (сплав меди с оловом), металл заменил камень. Широкое использование меди началось в IV тысячелетии до н. э.
Медь — малоактивный металл, в электрохимическом ряду напряжений она стоит правее водорода. Она не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако в кислотах — сильных окислителях (например, азотной и концентрированной серной) — медь растворяется:
Сu + 4НМО3 — Сu(NO3)2 + 2NO+ 2Н2О концентрированная
Медь обладает достаточно высокой стойкостью к коррозии. Однако во влажной атмосфере, содержащей углекислый газ медь покрывается зеленоватым налетом основного карбоната меди:
2Сu + O2 + СO2 + Н2O = СU(ОН)2 • СuСО3
В соединениях медь может проявлять степени окисления +1,
+•2 и +3, из которых +2 — наиболее характерная и устойчивая.
Медь (II) образует устойчивые оксид СuО и гидроксид Си(ОН)2.
Этот гидроксид амфотерен, хорошо растворяется в кислотах
Сu(ОН)2 + 2НСl = СuСl2 + 2Н2О и в концентрированных щелочах. Соли меди (II) нашли широкое применение в народном хозяйстве. Особенно важным является медный купорос — кристаллогидрат сульфата меди (II) СuSО4 • 5Н2.
Медь обладает достаточно высокой стойкостью к коррозии. Однако во влажной атмосфере, содержащей углекислый газ медь покрывается зеленоватым налетом основного карбоната меди:
2Сu + O2 + СO2 + Н2O = СU(ОН)2 • СuСО3
В соединениях медь может проявлять степени окисления +1,
+•2 и +3, из которых +2 — наиболее характерная и устойчивая.
Медь (II) образует устойчивые оксид СuО и гидроксид Си(ОН)2.
Этот гидроксид амфотерен, хорошо растворяется в кислотах
Сu(ОН)2 + 2НСl = СuСl2 + 2Н2О и в концентрированных щелочах. Соли меди (II) нашли широкое применение в народном хозяйстве. Особенно важным является медный купорос — кристаллогидрат сульфата меди (II) СuSО4 • 5Н2.
Медь и здоровье
Организму человека медь необходима для образования различных протеинов и ферментов. Медь нужна:
Для синтеза гемоглобина
Для образования костей
Для функционирования системы кровообращения
Для функционирования центральной нервной системы
Для получения энергии из клеток
Медь и здоровье
Организму человека медь необходима для образования различных протеинов и ферментов. Медь нужна:
Для синтеза гемоглобина
Для образования костей
Для функционирования системы кровообращения
Для функционирования центральной нервной системы
Для получения энергии из клеток
Последние исследования показали, что весьма близко к истине предположение о том, что питание с недостаточным содержанием меди повышает риск сердечно-сосудистых заболеваний. Дефицит меди в организме может привести к таким тяжелым последствиям как порок развития костей, малокровие и мозговая недостаточность. Дельнейшими последствиями являются:
Блокировка клеточного дыхания
Остановка образования мочевой кислоты
Неправильное образование нейромедиаторов
Остановка образования пигментов (белые волосы)
Нарушение окислительно-восстановительного баланса
Человек вместе с пищей должен получать определенное количество меди для достаточного насыщения организма этим элементом. Ежедневная потребность взрослого человека в меди составляет 2-3 мг. Многие продукты и напитки содержат этот важный элемент в различном количестве. Одного потребления питьевой воды с ионами меди недостаточно. К продуктам с высоким содержанием меди относятся:
Шоколад
Белая и зеленая фасоль
Рыба
Лесные и южные орехи
А ниже перечисленные продукты наоборот содержат медь лишь в малом количестве:
Сыр
Молоко
Белый хлеб
Говядина и баранина
В данной таблице приведен список продуктов и содержание в них меди
Человек вместе с пищей должен получать определенное количество меди для достаточного насыщения организма этим элементом. Ежедневная потребность взрослого человека в меди составляет 2-3 мг. Многие продукты и напитки содержат этот важный элемент в различном количестве. Одного потребления питьевой воды с ионами меди недостаточно. К продуктам с высоким содержанием меди относятся:
Шоколад
Белая и зеленая фасоль
Рыба
Лесные и южные орехи
А ниже перечисленные продукты наоборот содержат медь лишь в малом количестве:
Сыр
Молоко
Белый хлеб
Говядина и баранина
В данной таблице приведен список продуктов и содержание в них меди
Выделяется технический металл, содержащий 97 — 98% меди. Одна из важнейших отраслей применения меди — электротехническая промышленность. Из меди изготовляют электрические провода. Для этой цели металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02% алюминия снизит ее электрическую проводимость почти на 10%. Еще более резко возрастает сопротивление металла в присутствии неметаллических примесей. Для получения чистой меди, которую можно использовать в электротехнике, проводят ее электрорафинирование. Этот метод основан На проведении электролиза водного раствора соли меди с растворимым медным анодом. Техническую или черновую медь, кото-служит одним из электродов, погружают в ванну, заполненную водным раствором сульфата меди. В ванну погружают еще один электрод. К электродам подключают источник постоянного тока таким образом чтобы техническая медь стала анодом (положительный полюс источника тока), а другой электрод — катодом.
Выделяется технический металл, содержащий 97 — 98% меди. Одна из важнейших отраслей применения меди — электротехническая промышленность. Из меди изготовляют электрические провода. Для этой цели металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02% алюминия снизит ее электрическую проводимость почти на 10%. Еще более резко возрастает сопротивление металла в присутствии неметаллических примесей. Для получения чистой меди, которую можно использовать в электротехнике, проводят ее электрорафинирование. Этот метод основан На проведении электролиза водного раствора соли меди с растворимым медным анодом. Техническую или черновую медь, кото-служит одним из электродов, погружают в ванну, заполненную водным раствором сульфата меди. В ванну погружают еще один электрод. К электродам подключают источник постоянного тока таким образом чтобы техническая медь стала анодом (положительный полюс источника тока), а другой электрод — катодом.
Очень важная область применения меди — производство медных сплавов. Со многими металлами медь образует так называемые твердые растворы, которые похожи на обычные растворы тем, что в них атомы одного компонента (металла) равномерно распределены среди атомов другого (рис. 34). Большинство сплавов меди — это твердые растворы.
Сплав меди, известный с древнейших времен, — бронза — содержит 4—30% олова (обычно 8—10%). Интересно, что бронза по своей твердости превосходит отдельно взятые чистые медь и олово. Бронза более легкоплавка по сравнению с медью. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка (рис. 35) и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом.
Очень важная область применения меди — производство медных сплавов. Со многими металлами медь образует так называемые твердые растворы, которые похожи на обычные растворы тем, что в них атомы одного компонента (металла) равномерно распределены среди атомов другого (рис. 34). Большинство сплавов меди — это твердые растворы.
Сплав меди, известный с древнейших времен, — бронза — содержит 4—30% олова (обычно 8—10%). Интересно, что бронза по своей твердости превосходит отдельно взятые чистые медь и олово. Бронза более легкоплавка по сравнению с медью. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка (рис. 35) и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом.
Лечебные свойства меди известны очень давно. Древние считали, что лечебный эффект меди связан с её обезболивающем жаропонижающим антибактериальным и противовоспалительным свойствами. Ещё Авиценна и Гален описывали медь, как лекарственное средство, а Аристотель, указывая на общеукрепляющее действие меди на организм, предпочитал засыпать с медным шариком в руке. Царица Клеопатра носила тончайшие медные браслеты, предпочитая их золотым и серебряным, хорошо зная медицину и алхимию. В медных доспехах античные воины меньше уставали, а их раны меньше гноились и быстрее заживали. Была подмечена и широко использовалась в Древнем мире способность меди положительно влиять на «мужскую силу».
Лечебные свойства меди известны очень давно. Древние считали, что лечебный эффект меди связан с её обезболивающем жаропонижающим антибактериальным и противовоспалительным свойствами. Ещё Авиценна и Гален описывали медь, как лекарственное средство, а Аристотель, указывая на общеукрепляющее действие меди на организм, предпочитал засыпать с медным шариком в руке. Царица Клеопатра носила тончайшие медные браслеты, предпочитая их золотым и серебряным, хорошо зная медицину и алхимию. В медных доспехах античные воины меньше уставали, а их раны меньше гноились и быстрее заживали. Была подмечена и широко использовалась в Древнем мире способность меди положительно влиять на «мужскую силу».
Народная медицина
В наши дни применение медных изделий широко распространено. В Средней Азии носят медные изделия и практически не болеют ревматизмом. В Египте и Сирии медные изделия носят даже дети. Во Франции с помощью меди лечат расстройства слуха. В США медные браслеты носят как средства от артрита. В китайской медицине используются аппликации медных дисков на активные точки. А в Непале медь считают священным металлом.
В наши дни применение медных изделий широко распространено. В Средней Азии носят медные изделия и практически не болеют ревматизмом. В Египте и Сирии медные изделия носят даже дети. Во Франции с помощью меди лечат расстройства слуха. В США медные браслеты носят как средства от артрита. В китайской медицине используются аппликации медных дисков на активные точки. А в Непале медь считают священным металлом.
Медетерапия (лечение медью) – один из видов народной медицины. В детстве прикладывая по совету бабушки медный пятак на шишку, мы уменьшали боль и воспаление, хотя в 5-ти копеечной монете, выпущенной в советское время, содержание меди было невелико. В медетерапии используются изделия с содержанием меди не менее 99,9%. Самым простым, эффективным, эстетически красивым и практичным средством в медетерапии является медный браслет, разрешенный и рекомендуемый МинЗдравом РФ
Медь Минеральные свойства, использование и распространение
Медь, вероятно, была первым металлом, использованным людьми. Считается, что люди эпохи неолита использовали камень вместо камня к 8000 г. до н.э. Около 4000 г. до н.э. египтяне отливали медь в формах. К 3500 г. до н.э. его начали сплавлять с оловом для получения бронзы. Он непрозрачный, яркий и имеет металлический лососево-розовый цвет на свежеразломанных поверхностях, но вскоре становится тускло-коричневым. Кристаллы встречаются редко, но при формировании имеют кубическую или додекаэдрическую форму, часто располагаются в ветвящихся агрегатах. Большинство из них встречается в виде неправильных, уплощенных или ветвящихся масс. Это один из немногих металлов, которые встречаются в «самородной» форме, не будучи связанными с другими элементами. Самородная медь, по-видимому, является вторичным минералом, возникающим в результате взаимодействия медьсодержащих растворов с железосодержащими минералами.
Азурит-МалахитСамородные минералы медиСамородные минералы медиСамородные минералы меди
Название : От латинского cuprum, в свою очередь от греческого kyprios, Кипр, с острова которого раньше производился металл.
Химия : Обычно только с небольшими количествами других металлов.
Ассоциация : Серебро, халькоцит, борнит, куприт, малахит, азурит, тенорит, оксиды железа, многие другие минералы.
Химическая классификация | Native element |
Chemical Composition | Cu |
Color | Red on a fresh surface, dull brown on a tarnished surface |
Streak | Metallic copper red |
Блеск | Металлик |
Спайность | Нет |
Прозрачность | Непрозрачность |
Твердость по шкале Мооса0020 | от 2,5 до 3 |
Удельный вес | 8,9 |
Диагностические свойства | Цвет, блеск, удельный вес, Плотная металле, пластичность |
Кристаллическая система | Изометрическая |
Затрачиваемость | . ) |
Type | Isometric |
Twinning | Spinel twins {111} |
Commonly associated with porous zones in mafic extrusive rocks, less commonly in sandstones and shales, where the copper was probably гидротермального происхождения, выпадающие в осадок в результате окислительных условий; в зоне окисления крупных вкрапленных месторождений в результате вторичных процессов. Редкий минерал в некоторых метеоритах.
Подавляющее большинство производимой в мире продукции используется в электротехнической промышленности. Большая часть оставшихся используется для создания акклиматизации. Основным составляющим веществом балки является важный ряд сплавов латуни (цинк), бронзы (олово) и нейзильбера (цинк и никель, без серебра).
- Проводит электричество и тепло;
- Проводка,
- Электрические контакты и
схемы; - Чеканка монет
- Сплавы
Встречается во многих районах мира.
- В США в виде исключительно больших масс и превосходных крупных кристаллов в месторождениях полуострова Кевино, Кевино и Хоутон, штат Мичиган; в нескольких месторождениях порфира в Аризоне, в том числе на руднике New Cornelia, Ajo, Pima Co.; Медная Королева и другие рудники в Бисби, Кочиз Ко.; и в Ray, Gila Co.; аналогично на руднике Чино в Санта-Рите, Грант Ко., Нью-Мексико.
- В Намибии, на руднике Онганджа, в 60 км к северо-востоку от Виндхука и в Цумебе.
- В крупных кристаллах Туринского рудника, Богословск, Урал, Россия.
- В Германии, в Райнбрайтбахе, Северный Рейн-Вестфалия, и на шахте Фридрихсеген, недалеко от Бад-Эмса, Рейнланд-Пфальц.
- В мелких образцах из многих шахт в Корнуолле, Англия.
- В Австралии, в Брокен Хилл, Новый Южный Уэльс.
- В Чили, в Андаколье, недалеко от Кокимбо. Из Боливии, в Корокоро.
Ссылки
Боневиц, Р. (2012). Камни и минералы. 2-е изд. Лондон: Издательство ДК.
Handbookofmineralogy.org. (2019). Справочник по минералогии. [онлайн] Доступно по адресу: http://www.handbookofmineralogy.org [По состоянию на 4 марта 2019 г.].
Mindat.org. (2019). Медь: информация о минералах, данные и местонахождения ..
Доступно по адресу: https://www.mindat.org/min-727.html [Проверено 4 марта 2019 г.].
Медь
Медь
|
|