Инвертор самодельный: Самодельный инвертор 12-220 В мощностью 2500 Вт: схема, фото и описание изготовления

Содержание

ПРОСТОЙ И МОЩНЫЙ ПРЕОБРАЗОВАТЕЛЬ 12-220

 Самодельные инверторы



   Такой вариант преобразователя напряжения можно использовать для самостоятельного повторения. Основное достоинство — надежная работа, простота ну и разумеется мощность. Многие, кто увидят схему, наверняка не поверят, что такой простой инвертор может отдавать такую мощность, но на самом деле это так. К стати о мощности, в ходе испытаний удалось получить скромные 200 ватт от источника 12 Вольт, но разумеется это не предел, инвертор может работать и от напряжения 24 вольт, при этом без каких-либо замен в схеме, в этом случае чистая мощность на выходе будет в районе 300 ватт, но и это не предел — мощность можно поднять до 500 ватт! И это вполне реальные показатели.  

Схема преобразователя 12-220

   Схема довольно часто встречается в сети, на некоторых ресурсах замечал ошибки, поэтому в лишний раз предоставлю полностью РАБОЧИЙ вариант преобразователя. Инвертор работает точно так, как и любой другой двухтактный преобразователь. Дополнительных генераторов частоты он не содержит, силовым звеном в схеме являются мощные N-канальные полевые ключи работающие по принципу мультивибратора.

   Работая на определенной частоте в первичной обмотке импульсного трансформатора образуется переменное напряжение высокой частоты, а дальше все согласно методу индукции.

   Ключи в ходе работы перегреваются, поскольку КПД схемы не на высоком уровне (не более 65%), следовательно, ключи обязательно установить на теплоотводы, при этом не забывать про слюдяные прокладки.

   Трансформатор можно не мотать, а взять готовый, от компьютерного блока питания, при этом подойдут ЛЮБЫЕ трансформаторы от любого блока питания, не зависимо от марки и даты изготовления блока.  

Видео работы преобразователя

   Стабилитроны в схеме желательно на 1 ватт с напряжением стабилизации 12-15 Вольт, нужны они для стабилизации напряжения на затворах ключей, иначе есть опасность перенапряжения, а как мы знаем, полевые транзисторы управляются напряжением и повышение допустимого напряжения на затворе может привести к выходу из строя транзистора. Диоды — любые быстрые и ультрабыстрые диоды с током 1 Ампер и более, можно из доступных диодов использовать UF4007, HER107, HER207, HER307, MUR460, BYV26 и т.п. Расчеты под трансформатор не предоставлю, поскольку наилучший вариант использовать готовый трансформатор от компьютерного блока питания.



Поделитесь полезными схемами


ЛАБОРАТОРНЫЙ БП ИЗ КОМПЬЮТЕРНОГО ATX

    На основе зарядного устройства несложно изготовить лабораторный источник питания с регулировкой выходного напряжения от 0 до 30 В и порогом ограничения тока от 0,1 до 10 А.  


СХЕМА СВЕТОТЕЛЕФОНА

    Простейшая конструкция приемопередающих узлов светотелефона, не требующих каких-либо дефицитных материалов и обеспечивающих достаточную для практических целей дальность связи.


Казино Вулкан Stars в 2020 году

Со стремительным развитием сети интернет растет и количество предложений от создателей сайтов азартного направления. Игровая индустрия ‒ это отдельная, яркая и эффектная по-своему ниша, где спрос формируется влиянием активности игроков.


ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ 12 В 220

   Компактный преобразователь 12-220 — принципиальная схема, фото собранного инвертора и результаты испытаний радиоустройства.


СХЕМА ПРОБНИКА ДЛЯ ЭЛЕКТРОМОНТАЖНИКА

     Такой простой пробник позволяет проверить фазу в сети, двигателях, проверит выпрямительные диоды, а также многое другое.

—>


Как ленточные конвейеры облегчают работу шахты?

Ленточные конвейеры — это профессиональные рабочие устройства, которые используются во многих отраслях промышленности и хозяйства. 


Как самостоятельно сделать угольную маску?

В период, когда пандемия коронавируса бушует по всему миру, каждый хочет защититься от опасных вирусов.


Особенности зимней стройки

Строительство обычно проводится в теплое время года. Однако кто сказал, что строить зимой нельзя?


Что собой представляет сварочный инвертор

Сегодня сварку активно используют не только для строительных и монтажных процедур, но и при выполнении различных бытовых работ.


Игровые автоматы Плей Фортуна

Для любителей азартных игр на просторах интернета представлены много игровых площадок, удовлетворяющих требования своих игроков.


Что делать если зависает компьютер

Постепенное снижение работоспособности и производительности компьютера — одна из наиболее частотных проблем, с которой сталкиваются пользователи любого ПК.


Gaminator Slot — игровые автоматы бесплатно

Несмотря на большой ассортимент игровых автоматов, наибольшей популярностью пользуются Гаминаторы.


Для тех, кто любит и знает мир спорта — полная версия Вулкан ставка на спорт

Отличные знания спортивных игр и событий могут значительно улучшить финансовое положение. Для этого существуют букмекерские конторы, где можно воспользоваться опытом прогнозирования в спорте и заработать.


Игровые автоматы на деньги в 2020 году

Очень много игроков уже давно просиживают вечера в казино-онлайн.


Играть в онлайн автоматы без регистрации

Еще с незапамятных времен некоторые люди предпочитали проводить время за игрой…

Как сделать сварочный инвертор своими руками? Инструкция

Время чтения: 10 минут

Инверторная сварка — самая популярная из всех на данный момент. Казалось бы, еще 20 лет назад об инверторах и речи не шло. А сейчас простенький инверторный аппарат можно найти на даче у каждого второго дачника и в гараже у многих автомобилистов. Раньше сварочный аппарат был сложен в освоении и за сварку принимались только те, кто действительно хотел постичь все азы этого дела. Но времена изменились. Сейчас даже новичок может включить инвертор в розетку и начать сварку, посмотрев один-два обучающих ролика в интернете.

Не удивительно, что инверторные аппараты завоевали такую популярность. Производители во многом этому поспособствовали, выпустив в продажу бюджетные аппараты. Сейчас можно зайти в обычный строительный магазин и увидеть там инвертор ценой в 50$, а то и меньше. Ассортимент большой, и каждый может подобрать аппарат для своих целей.

Но что делать, если у вас нет средств на качественный инвертор, а покупать дешевого «китайца» вы не хотите? А может быть, вы просто любите изготавливать электроприборы и хотите собрать сварочный аппарат? Эта статья для вас. Мы расскажем, что такое инвертор, каково его устройство и принцип работы, стоит ли вообще собирать инвертор самому и, наконец, как сделать сварочный инвертор своими руками.

Содержание статьи

  • Общая информация
  • Устройство инвертора
  • Принцип работы
  • Расходные материалы
  • Купить или собрать своими руками?
    • Почему вам стоит собрать самодельный инвертор
    • Почему НЕ стоит делать инвертор своими руками
  • Самодельный инвертор
  • Вместо заключения

Общая информация

Сварочный инвертор (именно инвертор, а не инвентор, как путают многие сварщики) — это разновидность сварочного оборудования. Всего выделяют четыре группы сварочных аппаратов: трансформаторные, топливные сварочные генераторы, выпрямители и, конечно, сварочные инверторы. Остальные приборы (например, полуавтомат или САК) являются лишь разновидностью одной из четырех групп.

Задача любого сварочного прибора — это легкая генерация сварочной дуги и поддержка ее стабильного горения. Инверторы отлично справляются с этой задачей, оставаясь простыми и понятными в эксплуатации. Аппараты инверторного типа завоевали свою популярность лишь в 21 веке, поскольку производители научились изготавливать недорогие модели для бытового применения. И на данный момент инвертор — это самый популярный тип сварочного оборудования в мире.

Чем же инвертор так понравился многим сварщикам? Дело в том, что в основе инвертора лежит силовой трансформатор нового поколения, который имеет существенной меньшие габариты и вес, чем трансформаторы из прошлого столетия. Благодаря такой особенности инженеры смогли создать самые маленькие сварочные аппараты весом не более 5 кг, которые при этом снабжены набором дополнительных функций (например, «горячий старт» или «форсаж дуги»).

Применение инверторных аппаратов позволяет варить даже новичку без опыта, поскольку встроенные функции упрощают сварочный процесс. При этом возможна плавная регулировка силы сварочного тока и детальная настройка режима сварки. Не удивительно, что инверторы стали настолько популярны и их даже начали собирать своими руками.

Устройство инвертора

Стандартный инвертор состоит из трех условных частей: силового трансформатора, блока электросхем на транзисторах и дросселя. Трансформатор необходим для понижения входящего напряжения электросети до необходимого значения. Блок электросхем — это «мозг» инвертора. А дроссель уменьшает пульсацию тока, выполняя стабилизирующую функцию.

Ниже вы можете видеть устройство типичного инвертора.  Как видите, оно простое и понятное, так что вы сможете без проблем собрать похожую инверторную сварку своими руками. Откройте изображение в новой вкладке, чтобы приблизить его.

Также ниже схема сварочного инвертора. Можно использовать любую из двух представленных. В первой подробно показано расположение драйвера сварочного инвертора, что удобно. Также в интернете есть еще с десяток схем, и вы можете подыскать наиболее удобную и понятную для вас.

Принцип работы

Сборка сварочного инвертора своими руками требует тщательной подготовки. Для этого недостаточно знать одно лишь устройство аппарата. Нужно понимать принцип его действия.

Принцип работы инвертора выглядит так. Сначала переменный ток частотой в 50 Гц поступает на выпрямитель прямо из вашей бытовой электросети. Проще говоря, из розетки. Пройдя через выпрямитель, ток сглаживается с помощью фильтра. На выходе мы получаем постоянный ток, который снова преобразовывается в переменный с помощью транзисторов.

Полученный переменный ток обладает слишком высокой частотой, поэтому аппарат понижает ее до необходимого значения, чтобы вы могли получить силу сварочного тока в среднем около 200 Ампер (в зависимости от модели аппарата и его технических характеристик).

Зная это, вы сможете сами собрать сварочный аппарат своими руками в домашних условиях, обладая базовыми знаниями в области электротехники.

Расходные материалы

В качестве расходных материалов самодельный аппарат будет использовать обычные плавящиеся электроды с защитным покрытием. Они бывают разных типов, марок и диаметров. Теме выбора сварочных электродов мы посвятили сразу несколько статей. Прочтите их, чтобы разбираться в теме и не ошибиться с выбором расходников.

Читайте также:

Всё, что вам нужно знать про электроды для сварки

Популярные электроды для сварки

Как настроить сварочный ток и выбрать диаметр электрода?

Маркировка электродов

Правильный выбор марки электродов для дуговой ручной сварки

Купить или собрать своими руками?

Самодельная вещь всегда является предметом гордости ее владельца. Многие умельцы собирают электроприборы просто потому, что им это нравится. Но есть и те, для кого сборка электроприборов — это не хобби, а скорее необходимость,. Такие люди могут задаться резонным вопросом: «А стоит ли вообще делать самодельный инвертор, если можно пойти в магазин, и купить заводской аппарат ценой в 50$?». Этот вопрос вполне оправдан. И мы постараемся ответить на него.

Почему вам стоит собрать самодельный инвертор

Предлагаем начать со стоимости аппарата. Да, в продаже можно найти с десяток инверторов ценой до 100$. И вы можете купить такой аппарат, порадовавшись, что сэкономили время. Но вы не учитываете, что дешевые инверторы по определению не могут быть надежными и долговечными.

Инвертор состоит из множества сложных компонентов, которые должны быть качественными. А для производства аппарата в промышленном масштабе недостаточно просто купить качественные комплектующие. Нужно оплатить налоги, зарплату рабочим и прочие обязательные пункты. Из-за этого производители идут на хитрость и изготавливают свои инверторы из некачественных деталей, которые быстро выходят из строя.

Если вы сами купите все комплектующие и соберете аппарат, его себестоимость может быть равной бюджетному инвертору. Но при этом вы получите надежный и долговечный прибор, способный работать в сложных условиях. Это одна из основных причин, почему стоит изготовить инвертор сварочный своими силами.

Еще одна причина — это слишком большой ассортимент сварочных аппаратов в магазине. Сварщикам старой закалки непросто разобраться в таком большом разнообразии и порой легче собрать свой инвертор. Простенький, недорогой и понятный во всех отношениях. В таком случае целесообразнее купить качественную маску и расходники, а аппарат собрать из доступных деталей. Такой инвертор проще обслуживать и ремонтировать, поскольку в нем не будет сложных частей, непонятных мастеру.

Не забывайте, что самодельные сварочные аппараты любого типа развивают ваши знания и навыки в электротехнике. Изготовление самодельных электроприборов — это очень занятный процесс, который может превратиться в хобби. И если вы давно хотели развиться в этом деле, то можете начать со сборки инвертора. Он в любом случае пригодится вам в быту. Хотя бы для мелкого ремонта.

Почему НЕ стоит делать инвертор своими руками

Итак, в некоторых случаях самодельный инверторный сварочный аппарат — это отличная идея. Но нельзя отрицать, что есть и обратная сторона медали.

Собрав самодельный аппарат, вы не будете иметь самого главного — бесплатной гарантии. Большинство крупных производителей изготавливают инверторы и при их покупке дают вам гарантию минимум на год (а зачастую на 2-3 года). Это значит, что в случае поломки вы можете прийти в сервисный центр и бесплатно починить аппарат у специалиста. Вам не нужно мучиться, разбирать инвертор, пытаться понять причину поломки. Отдали аппарат в руки профессионалу и вскоре можете получить инвертор обратно. В исправном состоянии.

Вторая причина — это время. Чтобы собрать инвертор, вам понадобиться много времени. А ведь необходимо еще купить все детали, которые порой непросто найти в маленьком городе. Если вам нужен инвертор для сварки раз в год, то сборка такого аппарата в домашних условиях может превратиться в сплошное мучение. Ну а если вы не обладаете достаточными знаниями в области электротехники и не горите желанием ее изучать, то точно не получите удовольствие от самостоятельной сборки.

В конечном итоге, именно вам решать, что важнее: гарантия и сервисное обслуживание, или недорогая себестоимость + неприхотливость в хранении и применении. Далее вы узнаете, как изготовить самодельный сварочный инвертор из доступных деталей своими руками в домашних условиях, сэкономив существенную сумму и получив универсального помощника в быту.

Самодельный инвертор

В ролике подробно рассказывается, какие детали были использованы и каков принцип работы этого аппарата. Детали можно без проблем найти на радиорынке или онлайн, и собрать простой самодельный аппарат в домашних условиях. А у многих умельцев та же ручка для сварочного инвертора или трансформатор для сварочного инвертора без труда находятся даже в собственном гараже.

Автор видео показывает полную работоспособность такого прибора и уверяет, что собранный им инвертор очень надежен и неприхотлив в хранении. Если вам удастся собрать такой же аппарат с помощью этого видео, то поделитесь своим опытом в комментариях ниже. Это будет полезно для всех читателей (и нас в том числе).

Вместо заключения

Как сделать инвертор 12 в 220 своими руками

При частых отключениях электроэнергии в домашнем хозяйстве становится незаменимым инвертор, способный превратить 12 вольт в 220. Конечно, такой прибор не решит всех проблем большого частного дома, но обеспечить работу холодильника, зарядку телефонов и другие подобные операции он вполне в состоянии. Стоимость таких устройств довольно высокая, а, кроме того, придется покупать дополнительное оборудование и расходы будут еще выше. Некоторые домашние мастера способны собрать инвертор 12 в 220 своими руками из подручных материалов.

Содержание

Варианты сборки преобразователя

Существует несколько способов создать инвертор своими руками с нормальной работоспособностью. Первый вариант предполагает покупку готового блока, помещенного в корпус и оборудованного теплоотводом. Приобрести его можно на любых популярных торговых площадках через сеть интернет. Такой блок обойдется примерно в два раза дешевле аналогичного оборудования заводского изготовления. Для сборки не требуются особые знания и навыки в области электротехники. По такому же принципу рассчитывается и собирается самодельный сварочный инвертор.

Во втором случае приобретается необходимый набор деталей вместе с печатной платой. В итоге, цена снизится примерно еще в 1,5 раза. Для сборки уже понадобятся навыки работы с паяльником и радиодеталями. Нужно знать, как выполнить разводку активных компонентов, уметь быстро найти их выводы, правильно включать в схему полярные элементы – конденсаторы, диоды и т.д. Требуются знание нужного сечения проводов, для того или иного тока.

Тем не менее, эти два способа имеют немало сложностей, с которыми придется столкнуться в процессе работы. Готовый заводской корпус выполняет функцию теплоотвода, эффективно охлаждающего мощные транзисторные ключи, расположенные внутри. Все это отсутствует у полуфабрикатов и у наборов деталей, прежде всего, у них нет готового корпуса. Этим и объясняется такая большая разница в цене. Поэтому радиатор придется искать отдельно или покупать готовую конструкцию из алюминия. В местах расположения ключей его толщина составляет от 4 мм и более, а каждому ключу отводится 50 см2 на 1 кВт выдаваемой мощности. Все эти дополнительные приборы достаточно громоздкие и могут не поместиться в имеющийся корпус.

В связи с этим многие домашние умельцы используют в качестве инвертора источник бесперебойного питания, работающий совместно с компьютером. Здесь также не требуется специальных навыков, бесперебойник просто подключается к автомобильному аккумулятору. Однако, сама АКБ требует отдельной предварительной зарядки.

Последний способ собрать простейший инвертор, заключается в создании собственной схемы с учетом потребностей и деталей, имеющихся в наличии. Необходимо самостоятельно выполнить все расчеты, а на стадии сборки потребуются знания измерительных приборов и умение ими пользоваться.

Изготовление автомобильного инвертора

Инверторное устройство, способное преобразовывать 12 вольт в 220, становится незаменимым во время путешествий на автомобиле. Многие виды бытовой техники смогут работать в отрыве от стационарных источников питания. Единственным серьезным ограничением является величина максимально допустимой нагрузки, находящейся в пределах нескольких сотен ватт. Конечно, можно воспользоваться и более мощными инверторами, но в этом случае наступит очень быстрая разрядка аккумулятора.

В зависимости от расходования тока, нагрузка бывает активной, с максимальным потреблением энергии, и реактивной, когда энергия, полученная от батареи, потребляется частично. Характер нагрузки необходим для того, чтобы рассчитать максимальную мощность. Например, самая большая нагрузка, планируемая к подключению, составляет 300 Вт. Сам же инвертор должен обладать мощностью на 25% больше. По расчетам мощность устройства выходит 375 Вт, поэтому наиболее близким по этому значению прибором будет инвертор на 400 Вт.

По такой же схеме рассчитывается преобразователь, изготавливаемый собственными силами. Устройство с нормальной сборкой или схема простого инвертора обеспечивает потребности в освещении, зарядке телефонов, подключении телевизора и других устройств первой необходимости. Как уже отмечалось, не рекомендуется пользоваться мощными приборами, которые очень быстро сажают АКБ.

Для изготовления простейшего преобразователя будут нужны силовые транзисторы и мультивибратор. Такие устройства могут нормально работать даже в условиях резких перепадов температур. В условиях жаркой погоды понадобится система дополнительного охлаждения транзисторов, чтобы избежать их перегрева и выхода из строя. В большинстве случаев можно обойтись обычным кулером от компьютера, установленным на радиатор охлаждения.

Сегодня в конструкциях инверторов уже не используются обычные трансформаторы, которые обеспечивали высокочастотные преобразования на 220В. В преобразователях применяются импульсные схемы, обеспечивающие такой же результат. Для самодельного устройства подойдет микросхема К561ТМ2 с двумя D-триггерами. Один триггер DD1 является задающим генератором, а второй – DD1.2 – служит делителем частоты. Преобразование напряжения осуществляется силовыми транзисторами КТ827 или КТ819. Более качественное преобразование выполняется полевыми транзисторами IRFZ44, выдающими максимально чистую синусоиду.

Для получения контура частотой 50 Гц используется вторичная обмотка с параллельно соединенными конденсаторами электролитического типа и нагрузка. Без этой нагрузки, подключаемой на выходе, устройство не будет работать. Только после подключения какого-либо потребителя, начнется преобразование напряжения из 12 вольт в 220. Существенным недостатком подобных схем является не совсем качественное выходное напряжение. Чтобы увеличить мощность устройства потребуются более эффективные, но и более дорогостоящие транзисторы. Конденсатор, подключаемый к выходу, рассчитывается на минимальное напряжение в диапазоне от 250 до 300 вольт.

Самодельный преобразователь повышенной мощности

Изготовление преобразователя напряжения с 12 вольт на 220, мощностью 3 кВт, потребует теоретических знаний и практических навыков работы с радиоэлектронными компонентами. Некоторые важные компоненты, например, импульсный трансформатор, необходимо изготовить самостоятельно.

Остальные детали можно приобрести в готовом виде. Кроме трансформатора для решения задачи, как сделать инвертор понадобятся следующие элементы:

  • Широтно-импульсный модулятор – ШИМ, работающий непосредственно с полупроводниковыми ключами. Именно он задает рабочую частоту для всей схемы, при которой силовые ключи переключаются десятки тысяч раз в течение секунды.
  • Полупроводниковые транзисторы. По факту являются силовыми ключами, обеспечивающие усиление сигнала и выполнение всех необходимых коммутаций. Их основное действие заключается в своевременном открытии и закрытии. Совместно с ШИМ выдают на выходе максимально качественную синусоиду.
  • Система охлаждения. Состоит из алюминиевых радиаторов, площадь поверхности которых зависит от мощности прибора. С возрастанием мощности, требуется и более крупный радиатор.
  • Необходимое количество фольгированного материала. Он служит основой, на которую монтируются детали. На такой плате можно собрать любой, даже самый простой сварочный инвертор.
  • Нужные марки конденсаторов, резисторов и других пассивных элементов. Требуемое количество соединительных проводов с заранее рассчитанным сечением.

В некоторых случаях для коммутационных действий могут понадобиться электромагнитные реле. При необходимости, допускается их использование в качестве силовых ключей, но скорость коммутации в этом случае будет намного ниже.

В любом случае самодельное устройство 12 — 220 обойдется намного дешевле заводского инвертора. Тем не менее, все кому позволяют денежные средства, предпочитают приобретать фирменные устройства в красивом корпусе, со всеми необходимыми разъемами для подключения потребителей. Хотя, некоторые виды преобразователей, разработанные самостоятельно, могут превосходить по характеристикам заводские аналоги.

Аккумуляторные батареи

Инвертор 12 в 220, сделанный самотоятельно не может работать сам по себе. Для преобразования напряжения в 12 вольт, его нужно вначале откуда-то получить. Таким источником электроэнергии служат аккумуляторные батареи свинцово-кислотного типа. Эти химические устройства способны регулярно выполнять отдачу больших токов, не утрачивая своей работоспособности за 12-15 циклов зарядки и разрядки.

Чтобы АКБ преждевременно не вышла из строя, ее напряжение отслеживается с помощью контроллера, предотвращающего чрезмерный разряд. Однако, следует помнить, что в родных АКБ бесперебойников используется гелевый электролит, а в автомобильных батареях – жидкий. Поэтому режимы зарядки у них различаются. Токи, пропускаемые сквозь гель, не подходят для жидкого электролита. Таким образом, источник бесперебойного питания будет регулярно не до конца заряжать автомобильный аккумулятор, и он быстро выйдет из строя. Во избежание подобных ситуаций, у инвертора 12 в 220 на основе ИБП в комплекте должно быть отдельное зарядное устройство для АКБ. Его также возможно сделать самостоятельно.

Мощность аккумуляторной батареи выбирается в соответствии с основными целями и задачами преобразователя напряжения. Этот показатель рассчитывается как мощность, отдаваемая потребителям, разделенная на КПД инвертора. В любом случае следует не допускать полной разрядки аккумулятора, устанавливать для этой цели специальные ограничители работы или контроллеры. При отсутствии этих приборов, конструкция инвертора должна соответствовать возможностям имеющейся батареи.

В среднем кислотные аккумуляторы могут работать без заметной потери своего ресурса в течение 2 часов при токе 12 А и мощности 60 А/ч, 24 А – 120 А/ч, 42 А – 210 А/ч. Учитывая имеющийся КПД преобразования допустимая долговременная мощность нагрузки будет соответственно 120, 230 и 400 Вт. На короткое время может быть подключена повышенная нагрузка, тогда мощность возрастает примерно в 2,5 раза. Однако, после такой интенсивной работы, батарея должна отдыхать как минимум 20 минут.

Как сделать простой инвертор в домашних условиях

Вы можете легко сделать инвертор дома. Чтобы понять, как легко сделать инвертор, в этом посте обсуждается простой пошаговый метод.

Раньше наши потребности в энергии (электрической) были намного меньше. Но сейчас сценарий сильно изменился. От простой индукционной до сложной стиральной машины, от сотового телефона до наших высококлассных гаджетов, каждое оборудование, связанное с нашим повседневным использованием, требует источника питания. Это основная причина недавнего увеличения использования инверторов в нашем доме. На рынке доступны различные типы инверторов, но эти схемы сложны, высококлассны и дороги. Итак, давайте сделаем инвертор своими руками в домашних условиях.

Схема (схема) для изготовления инвертора в домашних условиях

Эта схема не имеет каких-либо функциональных ограничений и имеет КПД более 75%. И, кроме того, он способен компенсировать почти все наши потребности в электроэнергии, а также большую часть ваших потребностей в энергии по очень разумной цене.

Рис. 1 – Принципиальная схема изготовления инвертора в домашних условиях

Теория схемы

Схема этого инвертора отличается от широко используемых инверторов, так как в ней не задействована отдельная схема генератора для включения встроенных транзисторов. Вместо этого в нашей схеме обе половины схемы функционируют как регенеративный процесс (точно так же, как двухполупериодные мостовые выпрямители).

Что бы мы ни делали для балансировки обеих частей цепи, всегда будет дисбаланс значений сопротивлений и обмоток трансформаторов. По этой причине обе части схемы никогда не могут работать одновременно.

Теперь предположим, что первая часть схемы начинает проводить ток первой. Напряжение смещения для первой половины подается от обмотки трансформатора второй части через R2. Как только первая часть завершает стадию проводимости, вывод батареи заземляется коллекторами.

Процесс сбрасывает все доступное напряжение на базу через R2, и, таким образом, проводимость первой части полностью прекращается. В этом случае транзисторы во второй части получают возможность для проводимости. и, следовательно, этот цикл продолжает продолжаться.

Рис. 2 – Схема для изготовления инвертора в домашних условиях

Элементы, необходимые для изготовления инвертора в домашних условиях

  • R1, R2= 100 Ом./10 Вт проволочная обмотка.
  • R3, R4= 15 Ом/10 Вт проволочная обмотка
  • Т1, Т2 = силовые транзисторы 2N3055.
  • Трансформатор = 9–0–9 Вольт/5 Ампер.
  • Автомобильный аккумулятор = 12 Вольт/10 Ач.
  • Алюминиевый радиатор = вырез по размеру.
  • Вентилируемый металлический шкаф= по размеру всей сборки.

Пошаговый метод изготовления инвертора в домашних условиях

Шаг 1

Возьмите алюминиевый лист и разделите его на две части размером примерно 5×5 дюймов. Просверлите отверстия для установки силовых транзисторов. Отверстия должны быть примерно 3 мм в диаметре. Просверлите/сделайте подходящие отверстия для легкой и надежной установки на корпус инвертора.

Шаг 2

Возьмите резистор и соедините его в режиме перекрестной связи с плечами транзистора в соответствии со схемой, показанной ниже.

Шаг 3

Прочно закрепите транзисторы на радиаторах с помощью гаек/болтов.

Шаг 4

Соедините сборку радиатор + резисторы + транзисторы со вторичной (выходной) обмоткой трансформатора.

Шаг 5

Поместите полную печатную плату и трансформатор в металлический шкаф. Учтите, что вентиляция в шкафу должна быть хорошей. Присоедините точки ввода/вывода, включая держатель предохранителя, к шкафу и соедините их в соответствии с приведенной выше принципиальной схемой.

Теперь ваш инвертор готов. Вы можете использовать корпус для размещения схемы инвертора, если хотите.

Рис.3 – Корпус схемы инвертора

Эксплуатационные проверки самодельной схемы инвертора

Рабочие проверки схемы перед ее использованием в полном объеме необходимы. Для проверки подключите лампочку 50-60 Вт к розетке инвертора. После этого поместите аккумулятор (12 вольт) в гнездо i/p инвертора. Лампа загорится ярко, что будет означать, что соединение цепи правильное, и инвертор готов к работе. Однако, если лампочка не загорается, то перепроверьте соединения.

Где использовать самодельный инвертор

Выходная мощность инвертора находится примерно в диапазоне 70-80 Вт, а время резервного питания полностью зависит от нагрузки. Его можно использовать для питания лампочек, компактных люминесцентных ламп, вентиляторов и других небольших электроприборов, таких как паяльник и т. д. КПД этого инвертора составляет примерно 75%.

Самое большое преимущество: Блок схемы небольшой и его легко носить с собой. Он также может быть подключен к аккумулятору вашего автомобиля, когда вы находитесь на улице, чтобы исключить проблему переноски дополнительного аккумулятора.

Научитесь делать проектор дома за несколько простых шагов.

7 простых инверторных схем, которые можно собрать дома

Эти 7 инверторных схем могут показаться простыми по своей конструкции, но они способны обеспечить достаточно высокую выходную мощность и КПД около 75%. Узнайте, как собрать этот дешевый мини-инвертор и питать небольшие приборы на 220 В или 120 В, такие как дрели, светодиодные лампы, лампы компактных люминесцентных ламп, фены, мобильные зарядные устройства и т. д., через аккумулятор 12 В 7 Ач.

Содержимое

Что такое простой инвертор

Инвертор, который использует минимальное количество компонентов для преобразования 12 В постоянного тока в 230 В переменного тока, называется простым инвертором. Свинцово-кислотная батарея на 12 В является наиболее стандартной формой батареи, которая используется для работы таких инверторов.

Начнем с самого простого из списка, в котором используется пара транзисторов 2N3055 и несколько резисторов.

1) Простая схема инвертора с использованием транзисторов с перекрестной связью

В статье рассматриваются детали конструкции мини-инвертора. Прочтите, чтобы узнать, как изменить процедуру сборки базового инвертора, который может обеспечить достаточно хорошую выходную мощность, но при этом очень доступный и элегантный.

В Интернете и электронных журналах можно найти огромное количество схем инверторов. Но эти схемы часто представляют собой очень сложные инверторы высокого класса.

Таким образом, у нас не остается выбора, кроме как строить инверторы, которые могут быть не только простыми в сборке, но также недорогими и высокоэффективными в работе.

Схема инвертора 12 В на 230 В

На этом ваши поиски такой схемы заканчиваются. Описанная здесь схема инвертора, пожалуй, самая маленькая по количеству компонентов, но при этом достаточно мощная, чтобы удовлетворить большинство ваших требований.

Процедура сборки

Для начала убедитесь, что у двух транзисторов 2N3055 есть надлежащие радиаторы. Его можно изготовить следующим образом:

  • Вырежьте два листа алюминия по 6/4 дюйма каждый.
  • Согните один конец листа, как показано на схеме. Просверлите отверстия соответствующего размера на изгибах, чтобы их можно было надежно закрепить на металлическом корпусе.
  • Если вам сложно изготовить этот радиатор, вы можете просто приобрести его в местном магазине электроники, указанном ниже:
  • Также просверлите отверстия для установки силовых транзисторов. Отверстия диаметром 3 мм, размер упаковки типа ТО-3.
  • Плотно закрепите транзисторы на радиаторах с помощью гаек и болтов.
  • Соедините резисторы с перекрестной связью непосредственно с выводами транзисторов в соответствии со схемой.
  • Теперь соедините радиатор, транзистор, резистор в сборе со вторичной обмоткой трансформатора.
  • Закрепите всю схему вместе с трансформатором в прочном металлическом корпусе с хорошей вентиляцией.
  • Установите выходную и входную розетки, держатель предохранителя и т. д. снаружи шкафа и подсоедините их соответствующим образом к узлу цепи.

После завершения описанной выше установки радиатора вам просто нужно соединить несколько резисторов высокой мощности и 2N3055 (на радиаторе) с выбранным трансформатором, как показано на следующей схеме.

Полная схема проводки

После того, как описанная выше проводка завершена, пришло время подключить ее к батарее 12 В 7 Ач с лампой мощностью 60 Вт, прикрепленной к вторичной обмотке трансформатора. При включении результатом будет мгновенное освещение нагрузки с удивительной яркостью.

Здесь ключевым элементом является трансформатор, убедитесь, что трансформатор действительно рассчитан на 5 ампер, иначе вы можете обнаружить, что выходная мощность намного меньше ожидаемой.

Я могу сказать это по своему опыту, я дважды собирал это устройство, один раз, когда я был в колледже, а второй раз недавно в 2015 году. Хотя я был более опытным во время недавнего предприятия, я не мог получить удивительную мощность, которую Я приобрел от моего предыдущего блока. Причина была проста: предыдущий трансформатор был прочным, сделанным на заказ 9.-0-9V 5-амперный трансформатор, по сравнению с новым, в котором я использовал, вероятно, ложно оцененный 5-амперный трансформатор, который на самом деле был всего 3-х амперным с его выходом.

Перечень деталей

Для конструкции потребуются следующие компоненты:

  • R1, R2= 100 Ом/10 Вт, проволочная обмотка
  • R3, R4= 15 Ом/10 Вт, проволочная обмотка
  • 4 T1, T2 = 2N3055 СИЛОВЫЕ ТРАНЗИСТОРЫ (MOTOROLA).
  • ТРАНСФОРМАТОР = 9-0-9 ВОЛЬТ / 8 А или 5 А.
  • АВТОМОБИЛЬНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ = 12 В/ 10 Ач
  • АЛЮМИНИЕВЫЙ РАДИАТОР = ОБРЕЗАЕТСЯ ПО ТРЕБУЕМОМУ РАЗМЕРУ.
  • ВЕНТИЛИРУЕМЫЙ МЕТАЛЛИЧЕСКИЙ ШКАФ= ПО РАЗМЕРУ ВСЕГО КОМПЛЕКТА

Доказательство видеотеста

Как проверить?

  • Тестирование этого мини-инвертора выполняется следующим образом:
  • Для тестирования подключите лампу накаливания мощностью 60 Вт к выходному разъему инвертора.
  • Затем подключите полностью заряженный автомобильный аккумулятор 12 В к клеммам питания.
  • Лампа на 60 Вт должна сразу же ярко загореться, указывая на то, что инвертор работает правильно.
  • На этом построение и проверка схемы инвертора завершены.
  • Я надеюсь, что из приведенных выше обсуждений вы, должно быть, ясно поняли, как построить инвертор, который не только прост в сборке, но и очень доступен каждому из вас.
  • Его можно использовать для питания небольших электроприборов, таких как паяльник, компактные люминесцентные лампы, небольшие портативные вентиляторы и т. д. Выходная мощность составляет около 70 Вт и зависит от нагрузки.
  • КПД этого инвертора составляет около 75%. Устройство может быть подключено к аккумулятору вашего автомобиля, когда вы находитесь на улице, чтобы не было проблем с переносом дополнительного аккумулятора.

Работа схемы

Работа этой схемы мини-инвертора довольно уникальна и отличается от обычных инверторов, которые включают каскад дискретного генератора для питания транзисторов.

Однако здесь две секции или две ветви цепи работают регенеративно. Это очень просто и может быть понято через следующие пункты:

Две половины схемы, независимо от того, насколько они согласованы, всегда будут иметь небольшой дисбаланс окружающих их параметров, таких как резисторы, Hfe, витки обмотки трансформатора и т. д.

Из-за этого обе половины не могут провести вместе в одно мгновение.

Предположим, что транзисторы верхней половины проводят ток первыми, очевидно, они будут получать напряжение смещения через нижнюю половину обмотки трансформатора через резистор R2.

Однако в тот момент, когда они полностью насыщаются и проводят ток, все напряжение батареи уходит через их коллекторы на землю.

Это высасывает любое напряжение через R2 на их базу, и они немедленно перестают проводить ток.

Это дает возможность нижним транзисторам открыться, и цикл повторяется.

Таким образом, вся схема начинает колебаться.

Базовые эмиттерные резисторы используются для фиксации определенного порога нарушения их проводимости, они помогают зафиксировать базовый опорный уровень смещения.

Приведенная выше схема была вдохновлена ​​следующим дизайном Motorola:


ОБНОВЛЕНИЕ: Вы также можете попробовать это: 50-ваттная мини-инверторная схема Схема (схема со стороны дорожки)

Инвертор на полевых МОП-транзисторах с перекрестной связью

Следующая конструкция представляет собой простую схему инвертора на полевых МОП-транзисторах с перекрестной связью, способную подавать сетевое напряжение 220/120 В переменного тока или напряжение постоянного тока (с выпрямителем и фильтром). Схема представляет собой простой в сборке инвертор, который повышает 12 или 14 вольт до любого уровня в зависимости от вторичной обмотки трансформатора.

В этой схеме первичная и вторичная обмотки трансформатора T1 представляют собой понижающий трансформатор от 12,6 В до 220 В, подключенный в обратном порядке.

МОП-транзисторы Q1 и Q2 могут быть любыми мощными N-канальными полевыми транзисторами. Не забудьте нанести радиатор на полевые МОП-транзисторы Q1 и Q2. Конденсаторы С1 и С2 расположены так, чтобы подавить обратные выбросы высокого напряжения от трансформатора. Вы можете использовать любое близкое значение для резисторов R1-R4 с допуском ± 20% от показанных значений на диаграмме.

Схема идеально подходит для питания ламповой схемы, или ее можно соединить с повышающим трансформатором для создания искрового промежутка, лестницы Иакова, или, регулируя частоту, ее можно использовать для питания катушки Тесла.

2) Использование микросхемы 4047

Трансформатор T может быть трансформатором 9-0-9 В / 10 А для батареи 12 В / 10 Ач

Как показано выше, можно построить простой, но полезный небольшой инвертор. с использованием всего одной микросхемы IC 4047. IC 4047 представляет собой универсальный осциллятор с одной микросхемой, который обеспечивает точные периоды включения/выключения на своих выходных контактах № 10 и № 11. Частоту здесь можно было бы определить путем точного расчета резистора R1 и конденсатора С1. Эти компоненты определяют частоту колебаний на выходе микросхемы, которая, в свою очередь, устанавливает выходную частоту 220 В переменного тока этой схемы инвертора. Он может быть установлен на 50 Гц или 60 Гц в соответствии с индивидуальными предпочтениями.

Аккумулятор, MOSFET и трансформатор можно модифицировать или модернизировать в соответствии с требуемой выходной мощностью инвертора.

Для расчета значений RC и выходной частоты см. техническое описание микросхемы

Результаты видеотестирования

3) Использование микросхемы 4049

Информация о контактах микросхемы 4049

В этой простой инверторной схеме мы используем одну микросхему 4049, который включает в себя 6 вентилей НЕ или 6 инверторов внутри. На приведенной выше диаграмме N1—-N6 обозначают 6 вентилей, которые сконфигурированы как каскады генератора и буфера. Элементы NOT N1 и N2 в основном используются для каскада генератора, C и R можно выбрать и зафиксировать для определения частоты 50 Гц или 60 Гц в соответствии со спецификациями страны

Остальные вентили с N3 по N6 настраиваются и конфигурируются как буферы и инверторы, так что конечный результат приводит к созданию чередующихся импульсов переключения для силовых транзисторов. Конфигурация также гарантирует, что ни один вентиль не останется неиспользуемым и бездействующим, что в противном случае может потребовать, чтобы их входы были подключены отдельно через линию питания.

Трансформатор и батарея могут быть выбраны в соответствии с требованиями к мощности или техническими характеристиками нагрузки.

Выходной сигнал будет чисто прямоугольным.

Формула для расчета частоты:

f = 1/1,2RC,

где R в омах, а F в фарадах

По сравнению с предыдущим инвертором НЕ, показанный выше простой инвертор на основе вентиля НЕ-И может быть построен с использованием одной микросхемы 4093.

Затворы с N1 по N4 обозначают 4 затвора внутри микросхемы 4093.

N1 подключен как схема генератора для генерации необходимых импульсов частотой 50 или 60 Гц. Они соответствующим образом инвертируются и буферизуются с помощью оставшихся затворов N2, N3, N4, чтобы, наконец, обеспечить попеременную частоту переключения через базы силовых биполярных транзисторов, которые, в свою очередь, переключают силовой трансформатор с заданной скоростью для выработки требуемого напряжения 220 В или 120 В. переменного тока на выходе.

Несмотря на то, что здесь подойдет любая микросхема вентиля И-НЕ, рекомендуется использовать микросхему 4093, поскольку она оснащена триггером Шмидта, который обеспечивает небольшую задержку переключения и помогает создать своего рода мертвое время на переключающих выходах, гарантируя, что питание устройства никогда не включаются вместе даже на долю секунды.

5) Еще один простой инвертор NAND на полевых МОП-транзисторах

В следующих параграфах объясняется еще одна простая, но мощная схема инвертора, которую может собрать любой энтузиаст электроники и использовать для питания большинства бытовых электроприборов (резистивные и импульсные нагрузки). .

Использование пары полевых МОП-транзисторов влияет на мощный отклик схемы, включающей очень мало компонентов, однако прямоугольная конфигурация действительно ограничивает использование устройства в нескольких полезных приложениях.

Введение

Может показаться, что расчет параметров MOSFET включает несколько сложных шагов, однако, следуя стандартной схеме, заставить эти замечательные устройства работать, безусловно, легко.

Когда мы говорим об инверторных схемах с силовыми выходами, МОП-транзисторы обязательно становятся частью конструкции, а также основным компонентом конфигурации, особенно на выходных концах схемы.

Схемы инверторов являются фаворитами среди этих устройств, и мы обсудим одну из таких схем, включающую полевые МОП-транзисторы для питания выходного каскада схемы.

Ссылаясь на диаграмму, мы видим очень простую конструкцию инвертора, включающую каскад прямоугольного генератора, буферный каскад и каскад выходной мощности.

Использование одной ИС для генерации требуемых прямоугольных сигналов и для буферизации импульсов особенно упрощает создание конструкции, особенно для новых энтузиастов электроники.

Использование вентилей И-НЕ IC 4093 для схемы генератора

IC 4093 представляет собой микросхему триггера Шмидта с четырьмя вентилями И-НЕ, одиночный И-НЕ подключен как нестабильный мультивибратор для генерации базовых прямоугольных импульсов. Значение резистора или конденсатора можно отрегулировать для получения импульсов частотой 50 или 60 Гц. Для приложений 220 В необходимо выбрать вариант 50 Гц и 60 Гц для версий 120 В.

Выход вышеописанного каскада генератора связан с еще парой вентилей И-НЕ, используемых в качестве буферов, чьи выходы в конечном итоге заканчиваются вентилями соответствующих полевых МОП-транзисторов.

Два вентиля И-НЕ соединены последовательно таким образом, что два полевых МОП-транзистора поочередно получают противоположные логические уровни от каскада генератора и поочередно переключают полевые МОП-транзисторы для создания желаемой индукции во входной обмотке трансформатора.

Переключение полевых МОП-транзисторов

Описанное выше переключение полевых МОП-транзисторов заполняет весь ток батареи внутри соответствующих обмоток трансформатора, вызывая мгновенное повышение мощности на противоположной обмотке трансформатора, откуда в конечном итоге поступает выходной сигнал на нагрузку.

МОП-транзисторы способны выдерживать ток более 25 ампер, а их диапазон довольно велик, поэтому они подходят для управления трансформаторами с различными характеристиками мощности.

Остается только доработать трансформатор и аккумулятор для изготовления инверторов разных диапазонов с разной мощностью.

Список деталей для описанной выше схемы инвертора мощностью 150 Вт:
  • R1 = потенциометр 220K, необходимо установить для получения желаемой выходной частоты.
  • R2, R3, R4, R5 = 1K,
  • T1, T2 = IRF540
  • N1-N4 = IC 4093
  • C1 = 0,01UF,
  • C3 = 0,1UF

TR1 = 0-12VINGIN , ток = 15 А, выходное напряжение в соответствии с требуемыми спецификациями

Формула для расчета частоты будет идентична описанной выше для IC 4049.

f = 1/1,2RC. где R = установленное значение R1, а C = C1

6) Использование микросхемы 4060

Если у вас есть одна микросхема 4060 в вашем электронном ящике для мусора вместе с трансформатором и несколькими силовыми транзисторами, вы, вероятно, готовы к созданию ваша простая схема инвертора мощности с использованием этих компонентов. Базовую конструкцию предлагаемой схемы инвертора на базе IC 4060 можно представить на приведенной выше схеме. Концепция в основном такая же, мы используем IC 4060 в качестве генератора и настраиваем его выход для создания импульсов включения-выключения попеременно через транзисторный каскад инвертора BC547.

Как и IC 4047, IC 4060 требует внешних RC-компонентов для настройки выходной частоты, однако выходы IC 4060 разбиты на 10 отдельных выводов в определенном порядке, при этом выход генерирует частоту со скоростью, вдвое превышающей его предыдущей распиновки.

Несмотря на то, что вы можете найти 10 отдельных выходов с удвоенной частотой на выходных выводах микросхемы, мы выбрали контакт № 7, поскольку он обеспечивает самую высокую частоту среди остальных и, следовательно, может выполнять эту задачу, используя стандартные компоненты для RC. сеть, которая может быть легко доступна для вас независимо от того, в какой части земного шара вы находитесь.

Для расчета значений RC для R2 +P1 и C1 и частоты вы можете использовать формулу, описанную ниже:

Или другой способ:

f(osc) = 1 / 2,3 x Rt x Ct

Rt в омах, Ct в фарадах

Дополнительную информацию можно получить из этой статьи

Вот еще одна классная идея инвертора DIY, которая чрезвычайно надежна и использует обычные детали для достижения конструкции инвертора высокой мощности, и может быть повышен до любого желаемого уровня мощности.

Давайте узнаем больше об этой простой конструкции

7) Простейший инвертор на 100 Вт для новичков

Схема простого инвертора на 100 Вт, рассмотренная в этой статье, может считаться самым эффективным, надежным, простым в сборке и мощным инвертором. дизайн. Он эффективно преобразует любое напряжение 12 В в 220 В, используя минимальное количество компонентов.

Введение

Идея была опубликована много лет назад в одном из журналов по электронике elektor. Я представляю ее здесь, чтобы вы все могли изготовить и использовать эту схему для своих личных приложений. Давайте узнаем больше.

Предлагаемая схема простого 100-ваттного инвертора была опубликована довольно давно в одном из журналов по электронике elektor, и, по моему мнению, эта схема является одной из лучших конструкций инвертора, которые вы можете получить.

Я считаю его лучшим, потому что конструкция хорошо сбалансирована, хорошо просчитана, использует обычные детали и, если все сделать правильно, заработает сразу.

Эффективность этой конструкции составляет около 85%, что хорошо, учитывая простоту формата и низкие затраты.

Использование нестабильного транзистора в качестве генератора с частотой 50 Гц

По сути, вся конструкция построена на каскаде нестабильного мультивибратора, состоящего из двух маломощных транзисторов общего назначения BC547 вместе с соответствующими частями, состоящими из двух электролитических конденсаторов и нескольких резисторов.

Этот каскад отвечает за генерацию основных импульсов частотой 50 Гц, необходимых для запуска инвертора.

Вышеупомянутые сигналы имеют низкий уровень тока и поэтому требуют повышения до более высоких порядков. Это делают драйверные транзисторы BD680, дарлингтонские по своей природе.

Эти транзисторы принимают маломощные сигналы частотой 50 Гц от транзисторных каскадов BC547 и усиливают их при более высоких уровнях тока, чтобы их можно было подавать на выходные транзисторы.

Выходные транзисторы представляют собой пару 2N3055, на базы которых подается усиленный ток от вышеуказанного драйверного каскада.

2N3055 Транзисторы в качестве силового каскада

Таким образом, транзисторы 2N3055 также управляются при высоком уровне насыщения и высоких уровнях тока, который попеременно накачивается в соответствующие обмотки трансформатора и преобразуется в требуемое напряжение 220 В переменного тока на вторичной обмотке трансформатора.

Список деталей для описанной выше простой схемы инвертора мощностью 100 Вт
  • R1, R2 = 27K, 1/4 Вт, 5 %
  • R3, R4, R5, R6 = 330 Ом, 1/4 Вт, 5 %
  • R7
  • C1,C2 = 470 нФ
  • T1,T2 = BC547,
  • T3,T4 = BD680, ИЛИ TIP127
  • T5,T5 = 3 19003 2N303 1N5402
  • ТРАНСФОРМАТОР = 9–0–9 В, 5 А
  • АККУМУЛЯТОР = 12 В, 26 Ач,

Радиатор для T3/T4 и T5/T6

Технические характеристики:

  1. Выходная мощность: 100 Вт при использовании по одному транзистору 2n3055 на каждом канале.
  2. Частота: 50 Гц, прямоугольная волна,
  3. Входное напряжение: 12 В при 5 А для 100 Вт,
  4. Выходное напряжение: 220 В или 120 В (с некоторыми корректировками) как построить эти 7 простых инверторных схем, настроив заданную базовую схему генератора с биполярным транзисторным каскадом и трансформатором, а также включив самые обычные детали, которые могут уже быть у вас или быть доступными путем утилизации старой собранной печатной платы.

    Как рассчитать резисторы и конденсаторы для частот 50 Гц или 60 Гц

    В этой схеме инвертора на основе транзисторов конструкция генератора построена с использованием транзисторной нестабильной схемы.

    В основном резисторы и конденсаторы, связанные с базами транзисторов, определяют выходную частоту. Хотя они правильно рассчитаны для получения частоты примерно 50 Гц, если вы заинтересованы в настройке выходной частоты в соответствии с собственными предпочтениями, вы можете легко сделать это, рассчитав их с помощью этого Транзисторный нестабильный мультивибратор Калькулятор.

    Еще одна простая схема преобразователя постоянного тока в переменный ток на транзисторах

    Q1 и Q2 могут быть любыми маломощными PNP-транзисторами, такими как BC557.

    Универсальный двухтактный модуль

    Если вы заинтересованы в создании более компактной и эффективной конструкции с использованием простой двухтактной конфигурации с 2-проводным трансформатором, вы можете попробовать следующие несколько концепций

    В первом ниже используется ИС 4047, а также пара полевых МОП-транзисторов с каналом p и n:

    Если вы хотите использовать какой-либо другой каскад генератора в соответствии с вашими предпочтениями, в этом случае вы можете применить следующую универсальную конструкцию.

    Это позволит вам интегрировать любой желаемый каскад генератора и получить требуемый двухтактный выход 220 В.

    Кроме того, он также имеет встроенную ступень зарядного устройства с автоматическим переключением.

    Преимущества простого двухтактного инвертора

    Основные преимущества этой универсальной двухтактной инверторной конструкции:

    • В нем используется 2-проводной трансформатор, что делает конструкцию высокоэффективной с точки зрения размера и выходной мощности.
    • Включает в себя переключение с зарядным устройством, которое заряжает аккумулятор при наличии сети, а при отключении сети переключается в инверторный режим с использованием той же батареи для получения требуемого напряжения 220 В от батареи.
    • В нем используются обычные p-канальные и N-канальные МОП-транзисторы без каких-либо сложных схем.
    • Дешевле в изготовлении и более эффективен, чем аналог центрального крана.

    УНИВЕРСАЛЬНЫЙ МОДУЛЬ PUSH PULL MOSFET, КОТОРЫЙ БУДЕТ ВЗАИМОДЕЙСТВОВАТЬ С ЛЮБОЙ ТРЕБУЕМОЙ СХЕМОЙ ГЕНЕРАТОРА

    Инвертор SCR

    Следующая схема инвертора использует SCR вместо транзисторов и, таким образом, обеспечивает еще более высокую выходную мощность при простой конфигурации.

    Генерация запускается парой UJT, которые обеспечивают точную регулировку частоты, а также облегчают регулировку частоты между двумя SCR

    Трансформатор может быть любым обычным железным сердечником 9-0-9 В на 220 В или на 120 В понижающий трансформатор, подключаемый в обратном порядке.

    Для опытных пользователей

    Выше было объяснено несколько простых схем инверторов, однако, если вы считаете, что они довольно обычные для вас, вы всегда можете изучить более продвинутые схемы, которые представлены на этом веб-сайте. Вот еще несколько ссылок для справки:


    Дополнительные проекты инверторов для вас с полной онлайн-помощью!

    • 7 Лучшие модифицированные схемы инвертора
    • 5 Лучшие схемы инвертора на базе IC 555
    • Схемы инвертора SG3525

    Самодельный инвертор Схема таймера arduino 555 своими руками

    0.0 Базовое введение

    Что случилось, друзья, с возвращением. Сегодня мы рассмотрим очень простую схему, но также довольно интересную. Если вы увлекаетесь электроникой, держу пари, вы слышали об инверторах. У нас есть выпрямители, которые преобразуют переменное напряжение в постоянное, а затем инверторы, которые преобразуют постоянное напряжение в переменное. Инвертор мощности или инвертор — это электронное устройство или схема, которая преобразует постоянный ток (DC) в переменный ток (AC). Входное напряжение, выходное напряжение и частота, а также общая потребляемая мощность зависят от конструкции конкретного устройства или схемы. Инвертор не производит никакой мощности; питание обеспечивается источником постоянного тока. Инвертор мощности может быть полностью электронным или может представлять собой комбинацию механических эффектов (например, вращающегося устройства) и электронных схем. Статические инверторы не используют движущиеся части в процессе преобразования.

    Итак, сегодня мы увидим, как работает инвертор и как получить выходное переменное напряжение от 12-вольтовой батареи. Так, например, если вы находитесь в машине и вам нужно 220 В для зарядки ноутбука, это будет очень полезная схема, поскольку она даст вам 220 В переменного тока из 12 В постоянного тока.
    Итак, давайте начнем.

    1.0 Что нам нужно?

    Расскажу немного обо всех компонентах. У вас есть фото ниже с некоторыми компонентами. Для более подробной информации перейдите на страницу полного списка деталей. Там вы найдете все компоненты, цены и различные варианты.

    Полный список запчастей смотрите здесь:

    Как дела, друзья, с возвращением. Несколько месяцев назад я купил приведенный ниже инвертор в местном магазине. Давайте откроем его и посмотрим, что внутри. Как я уже догадался, у нас есть трансформатор и несколько МОП-транзисторов. На вход подаю 12В как напряжение автомобильного аккумулятора и на выход подключаю осциллограф. Как и ожидалось, у меня есть выход переменного тока 220 В и 60 Гц, а также, как и ожидалось, это не идеальная синусоидальная волна, которую дает обычная домашняя розетка. Это означает, что здесь происходит какое-то прямоугольное переключение, поэтому я решил попробовать свой собственный проект инвертора, поэтому я попробовал несколько схем, которые нашел в Интернете. Давайте отложим это в сторону и начнем урок.

    1.0 Инвертор Arduino

    Сначала я объясню вам, как работает базовый инвертор. Затем мы смоделируем схему с помощью Arduino и, наконец, сделаем ее постоянной с помощью схемы таймера 555.
    Прежде чем мы начнем, примите к сведению. Даже эта схема будет маломощной, она все равно будет находиться под высоким напряжением, которое может навредить вам. Поэтому, если вы в чем-то не уверены или не используете подходящие инструменты, не подавайте питание на схему. Дважды проверьте соединения перед подачей питания и никогда, никогда не прикасайтесь к выходу переменного тока. Я уже сделал это за вас, так что вам не нужно этого делать. Боль безумная.

    Итак, давайте посмотрим, как работает инвертор. Мы изучим базовую схему инвертора только с двумя переключателями, в данном случае с двумя N-канальными МОП-транзисторами, поэтому выходное напряжение не будет идеальным синусоидальным переменным напряжением, которое дает вам домашняя розетка, а больше похоже на прямоугольную волну. Так что не используйте этот инвертор с высокотехнологичной электроникой, которой нужна идеальная синусоида. Эта схема полезна для зарядных устройств мобильных телефонов и ноутбуков, маломощных лампочек и так далее, как из-за малой мощности, так и из-за отсутствия идеального синусоидального выхода.

    Итак, у нас есть постоянное напряжение 12 В на одной стороне, и мы хотим, чтобы на выходе были 220 вольт и 60 герц. Для этого мы будем использовать трансформатор, подобный приведенному выше, с одной катушкой на выходе и другой на входе, но катушка на входе разделена пополам таким образом, что средний контакт будет основным входом, и тогда мы иметь два выхода.
    Итак, давайте теперь представим, что на каждом выходе мы добавляем переключатель, так как кнопка подключена к земле, а средний контакт подключен к 12В. Если мы замкнем верхний переключатель, ток будет проходить только через первую первичную обмотку. Итак, магнитный поток индуцируется в одном направлении. Сердечник трансформатора будет передавать этот магнитный поток на вторичную катушку, и, как мы все знаем, выходное напряжение трансформатора будет определяться следующей формулой, где N — количество витков каждой катушки.

    Но мы также знаем, что трансформаторы не будут работать с постоянным напряжением, поэтому ток на выходе будет индуцироваться только при изменении магнитного потока.
    Статический магнитный поток, подобный этому, который мы применяем прямо сейчас, не будет индуцировать ток в катушке. Только вначале при нажатии на кнопку в катушке будет индуцироваться ток в течение короткого промежутка времени. Таким образом, мы обязательно должны будем замыкать и размыкать ключ, чтобы получить переменное напряжение на выходе. Таким образом, включение и выключение этих двух переключателей, перевернутых друг относительно друга, создаст хороший колеблющийся магнитный поток внутри сердечника трансформатора. Этот магнитный поток индуцирует ток во вторичной обмотке, как гласит закон Фарадея. Итак, если у нас есть ток, у нас есть падение напряжения.
    Используя приведенную выше формулу, мы можем узнать количество витков для каждой катушки. Мы знаем, что на входе будет 12 В от батареи, и давайте сделаем первичную катушку 100 витков. Если мы хотим 220 на выходе, нам понадобится вторичка на 1833 витка.

    1.1 Схема

    Вот и все. Все, что нам нужно сделать, это быстро переключить эти два переключателя, чтобы получить напряжение переменного тока с помощью трансформатора. Как быстро вы говорите? Обычно напряжение в домашней розетке составляет от 50 до 60 герц. Это означает, что мы должны включать и выключать каждый переключатель около 120 раз в секунду и получать частоту 60 герц.
    Хорошо, конечно, в схеме не будет таких переключателей. Вместо этого мы будем использовать МОП-транзисторы. Подайте напряжение на его затвор, и он будет активирован как переключатель, позволяющий току проходить от стока к истоку, в случае этого IRFZ44 N-канального МОП-транзистора.

    Для первого теста мы будем использовать Arduino для подачи прямоугольного сигнала на затвор каждого полевого МОП-транзистора. Мы знаем, что два сигнала должны быть инвертированы друг относительно друга, поэтому, когда один высокий, другой низкий, и наоборот.
    Мы также знаем, что МОП-транзисторы будут работать при напряжении 12 В, а Arduino работает при напряжении 5 В. Итак, если мы хотим также подать 12 В на затвор MOSFET, нам придется использовать драйвер MOSFET. В этом случае самым простым драйвером MOSFET будет BJT NPN-транзистор, подобный тому, что на схеме у затвора каждого MOSFET. Подтягивающий резистор подключен к 12 В, поэтому, когда транзистор NPN (BC547) закрыт, напряжение на затворе будет 12 В. Но когда мы активируем транзистор NPN, напряжение упадет до земли. Таким образом, мы могли легко получить прямоугольную волну со значениями от 0 до 12 вольт и подать ее на затвор MOSFET.

    1.2 Тест

    Я смонтирую следующую схему на одну из моих макетных плат для тестов. Подсоедините базу двух NPN-транзисторов к контактам 3 и 5 Arduino с резистором 100 Ом к каждому. Не забудьте разделить землю между Arduino и схемой.

    Вот оно. Два N-канальных полевых МОП-транзистора IRFz44, драйверы BJT с подтяжкой до 12 вольт, трансформатор, большая входная емкость, чтобы обеспечить стабильный вход, здесь Arduino и конденсатор на 400 В на выходе для сглаживания прямоугольного сигнала. Я загружаю следующий небольшой код в Arduino.
    Как мы видим, у нас есть два контакта, цифровые контакты 3 и 5, определенные как выходы. Я устанавливаю высокий уровень для одного вывода и низкий уровень для другого, а через 8 мс делаю обратное и добавляю еще одну задержку 8 мс. Это даст мне квадратный сигнал 62 Гц на этих контактах, как мы можем видеть здесь на моем осциллографе.

    См. пример кода здесь:

    У меня есть трансформатор от старых зарядных устройств на 12 В, которые были у меня в мастерской. Вы можете намотать свой собственный трансформатор, если хотите. Поскольку вы, вероятно, захотите возить эту схему в своей машине, вы захотите использовать небольшие трансформаторы, но в моем случае, для этого примера, у меня есть большой и также с металлическим сердечником. Для большей эффективности попробуйте использовать ферритовый сердечник.

    Так или иначе, я сделал все подключения, загрузил код и подключил на выходе люминесцентную лампочку на 15 Вт. Для этой лампочки требуется напряжение 220 В и 60 Гц, поэтому давайте посмотрим, работает ли наша схема.