Какое вещество медь: Медь и виды ее сплавов

Содержание

Медь | это… Что такое Медь?

29

Медь

Cu

63,546

3d104s1

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
  • 3 Физические свойства
  • 4 Изотопы меди
  • 5 Химические свойства
    • 5.1 Возможные степени окисления
    • 5.2 Простое вещество
    • 5.3 Соединения меди(I)
    • 5. 4 Соединения меди(II)
    • 5.5 Соединения меди(III) и меди(IV)
    • 5.6 Аналитическая химия меди
  • 6 Применение
    • 6.1 В электротехнике
    • 6.2 Теплообмен
    • 6.3 Для производства труб
    • 6.4 Сплавы
      • 6.4.1 Сплавы на основе меди
      • 6.4.2 Сплавы, в которых медь значима
      • 6.4.3 Ювелирные сплавы
    • 6.5 Соединения меди
    • 6.6 Другие сферы применения
  • 7 Стоимость
  • 8 Биологическая роль
    • 8.1 Токсичность
    • 8.2 Бактерицидность
    • 8.3 Органолептические свойства
  • 9 Производство, добыча и запасы меди
    • 9.1 Способы добычи
    • 9.2 Современные способы добычи
      • 9.2.1 Влияние на экологию
  • 10 Интересные факты
  • 11 Примечания
  • 12 Литература
  • 13 Ссылки

История и происхождение названия

Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков считают русское слово медь (польск. miedz, чешск. med) родственным древненемецкому smida (металл) и Schmied (кузнец, англ. Smith). От этого слова произошли и родственные названия — медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь «венера» (Venus). В более древние времена встречается название «марс» (Mars).

См. также: История меди и бронзы

Нахождение в природе

Самородная медь

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн[2]. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси)[3].

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвертой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C 55,5-58 МСм/м[5]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Изотопы меди

Основная статья: Изотопы меди

Природная медь состоит из двух стабильных изотопов — 63Cu 65Cu с распространённостью 69 и 31 атомных процентов соответственно. Известны более двух деясятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

Химические свойства

Возможные степени окисления

Диаграмма Пурбе для меди

В соединениях медь проявляет две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например [Cu(NH3)2]+. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23−, полученных в 1994 году.

Простое вещество

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди(II):

Реагирует с концентрированной холодной серной кислотой:

С концентрированной горячей серной кислотой:

С безводной серной кислотой при 200 °C:

C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:

Реагирует с концентрированной азотной кислотой:

С разбавленной азотной кислотой:

С царской водкой:

C разбавленной хлороводородной кислотой в присутствии кислорода:

С газообразным хлороводородом при 500—600 °C:

С бромоводородом:

Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:

Медь растворяется в концентрированном гидроксиде аммония, с образованием аммиакатов:

Окисляется до оксида меди(I) при недостатке кислорода и 200 °C и до оксида меди(II), при избытке кислорода и температурах порядка 400—500 °C:

Медный порошок реагирует с хлором, серой (в жидком сероуглероде) и бромом (в эфире), при комнатной температуре:

При 300—400 °C реагирует с серой и селеном:

C оксидами неметаллов:

Медь реагирует с цианидом калия с образованием дицианокупрата(I) калия, щелочи и водорода:

С концентрированной соляной кислотой и хлоратом калия:

Соединения меди(I)

Степени окисления +1 соответствует оксид Cu2O красно-оранжевого цвета. Соответствующий гидроксид CuOH (жёлтого цвета) быстро разлагается с образованием оксида. Гидроксид CuOH проявляет основные свойства.

Многие соединения меди +1 имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе Сu+ все пять Зd-орбиталей заполнены парами электронов.

Ионы меди(I) в водном растворе неустойчивы и легко диспропорционируют:

В то же время медь(I) встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат(I)-ион [CuCl2] устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

Свойства соединений меди (I) похожи на свойства соединений серебра (I). В частности, CuCl, CuBr и CuI нерастворимы. Также существует нестабильный сульфат меди(I)

Соединения меди(II)

Степень окисления II — наиболее стабильная степень окисления меди. Ей соответсвует чёрный оксид CuO и голубой гидроксид Cu(OH)2, который при стоянии легко отщепляет воду и при этом чернеет:

Гидроксид меди (II) носит преимущественно основный характер и только в концентрированной щелочи частично растворяется с образованием синего гидроксокомплекса. Наибольшее значение имеет реакция гидроксида меди (II) с водным раствором аммиака, про которой образуется так называемый реактив Швейцера (растворитель целлюлозы):

Соли меди(II) образуются при растворении меди в кислотах-окислителях (азотной, концентрированной серной). Большинство солей в этой степени окисления имеют синюю или зелёную окраску.

Медный купорос

Соединения меди(II) обладают слабыми окислительными свойствами, что используется в анализе (например, использование реактива Фелинга).

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди и медных сплавов при взаимодействии оксидной плёнки с углекислым газом воздуха в присутствии воды. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид.

Оксид меди (II) используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников.

Соединения меди(III) и меди(IV)

Степени окисления III и IV являются малоустойчивыми степенями окисления и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

Возбуждённые атомы меди окрашивают пламя в голубовато-зелёный цвет

Медь можно обнаружить в растворе по зелёно-голубой окраске пламени бунзеновской горелки, при внесении в него платиновой проволочки, смоченной исследуемым раствором.

  • Традиционно количественное определение меди в слабокислых растворах проводилось с помощью пропускания через него сероводорода, при этой сульфид меди выпадает в далее взвешиваемый осадок .
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими и спектральными методами.

Применение

В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м[5]), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %[6].

Теплообмен

Система охлаждения из меди на тепловых трубках в ноутбуке

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005[7], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы

Сплавы на основе меди

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллейрийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности.

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевый сплав (мельхиор) используются для чеканки разменной монеты[8].

Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости.

Медь является важным компонентом твёрдых припоев — сплавов с температурой плавления 590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей, особенно, из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей

Сплавы, в которых медь значима

Дюраль (дюралюминий) определяют, как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы

В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения

Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006[9].

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 511 и 578 нм.

Стоимость

На 2011 год стоимость меди составляет около $8900 за тонну[10].

Биологическая роль

Продукты, богатые медью.

Метаболизм меди у человека. Поступление в энтероцит с помощью транспортёра CMT1, перенос с помощью ATOX1 в сеть транс-Гольджи, при росте концентрации — высвобождение с помощью АТФ-азы ATP7A в воротную вену. Поступление в гепатоцит, где ATP7B нагружает ионами меди белок церулоплазмин, а избыток выводит в желчь.

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина.

Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем молекулярный кислород белке гемоцианине. В крови всех головоногих и большинства брюхоногих моллюсков и членистоногих медь входит в состав гемоцианина в виде имидазольного комплекса иона меди, роль, аналогичная роли порфиринового комплекса железа в молекуле белка гемоглобина в крови позвоночных животных.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

При недостатке меди в хондро- и остеобластах снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей[11].

Токсичность

Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен. Всемирная Организация Здравоохранения (ВОЗ) сформулировала в 1998 году это правило так: «Риски для здоровья человека от недостатка меди в организме многократно выше, чем риски от её избытка».

В 2003 году в результате интенсивных исследований ВОЗ пересмотрела прежние оценки токсичности меди. Было признано, что медь не является причиной расстройств пищеварительного тракта[12].

Существовали опасения, что Гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова) сопровождается накоплением меди в организме, так как она не выделяется печенью в желчь. Эта болезнь вызывает повреждение мозга и печени. Однако причинно-следственная связь между возникновением заболевания и приёмом меди внутрь подтверждения не нашла[12]. Установлена лишь повышенная чувствительность лиц, в отношении которых диагностировано это заболевание к повышенному содержанию меди в пище и воде.

Бактерицидность

Бактерицидные свойства меди и её сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью[13] (агентство подчёркивает, что использование меди в качестве бактерицидного вещества может дополнять, но не должно заменять стандартную практику инфекционного контроля). Особенно выражено бактерицидное действие поверхностей из меди (и её сплавов) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, известного как «супермикроб» MRSA[14]. Летом 2009 была установлена роль меди и сплавов меди в инактивировании вируса гриппа A/h2N1 (т. н. «свиной грипп»)[15].

Органолептические свойства

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2—10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приёма внутрь воды с излишним содержанием меди.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн т[16][17]. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т подтверждённые запасы[16], на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов[16]. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн[18]. Основными производителями меди в России являлись:

Компания тыс. тонн %
Норильский никель 425 45 %
Уралэлектромедь 351 37 %
Русская медная компания 166 18 %

К указанным производителям меди в России в 2009 году присоединился Холдинг «Металлоинвест», выкупивший права на разработку нового месторождения меди «Удоканское»[19]. Мировое производство меди в 2007 году составляло[20] 15,4 млн т, а в 2008 году — 15,7 млн т Лидерами производства были:

  1.  Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
  2.  США (1,170/1,310),
  3.  Перу (1,190/1,220),
  4.  КНР (0,946/1,000),
  5.  Австралия (0,870/0,850),
  6.  Россия (0,740/0,750),
  7.  Индонезия (0,797/0,650),
  8.  Канада (0,589/0,590),
  9.  Замбия (0,520/0,560),
  10.  Казахстан (0,407/0,460),
  11.  Польша (0,452/0,430),
  12.  Мексика (0,347/0,270).

Смотрим также более полный список стран по производству меди.

По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Способы добычи

Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, на Украине, в Сибири, на Алтае.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров.

Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика.

Эскондида — самый большой в мире карьер, в котором добывают медную руду. Расположен в Чили.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20—40 % железа, 22—25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.

С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4—99,4 % меди, 0,01—0,04 % железа, 0,02—0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0—99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5—12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах[21].

Влияние на экологию

При открытом способе добычи после её прекращения карьер становится источником токсичных веществ. Самое токсичное озеро в мире — Беркли Пит — образовалось в кратере медного рудника.

Интересные факты

  • Индейцы культуры Чонос (Эквадор) ещё в XV—XVI веках выплавляли медь с содержанием 99,5 % и употребляли её в качестве монеты в виде топориков 2 мм по сторонам и 0,5 мм толщиной. Данная монета ходила по всему западному побережью Южной Америки, в том числе и в государстве Инков[22].
  • В Японии медным трубопроводам для газа в зданиях присвоен статус «сейсмостойких».
  • Инструменты, изготовленные из меди и её сплавов не создают искр, а потому применяются там, где существуют особые требования безопасности (огнеопасные, взрывоопасные производства).
  • В организме взрослого человека содержится до 80 мг меди.
  • Польские учёные установили, что в тех водоёмах, где присутствует медь, карпы отличаются крупными размерами. В прудах или озёрах, где меди нет, быстро развивается грибок, который поражает карпов[23].

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — М.: Советская энциклопедия, 1992. — Т. 3. — С. 7. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8
  2. Медь самородная в БСЭ
  3. Крупнейшие мономинеральные месторождения (рудные районы, бассейны)
  4. при 20 °С 394,279 Вт/(м·К), то есть 0,941 кал/(см·сек·°С)
  5. 1 2 Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006. — C. 246. — ISBN 5-93037-157-1
  6. Применение меди
  7. ГОСТ Р 52318-2005 Трубы медные круглого сечения для воды и газа. Технические условия
  8. Смирягин А. П.,Смирягина Н. А., Белова А. В. Промышленные цветные металлы и сплавы. 3-е изд. — Металлургия, 1974. — С. 321. — 488 с.
  9. СП 31-116-2006 Проектирование и устройство кровель из листовой меди
  10. Цена меди
  11. Медь и рост человека // Наука и жизнь. — М.: «Правда», 1990. — № 1. — С. 17.
  12. 1 2 CHEMICAL FACT SHEETS  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  13. US EPA
  14. В США наблюдается вспышка инфекции MRSA за пределами госпиталей
  15. British Scientist Shares Expertise on Swine Flu Control in Beijing
  16. 1 2 3 Производство меди
  17. В 2005 г. мировая добыча меди увеличится на 8 % до 15,7 млн т. — Новости металлургии
  18. Стратегия развития металлургической промышленности Российской Федерации на период до 2020 года. Минпромэнерго РФ (18 марта 2009). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  19. Металлонвест оплатил лицензию за Удокан
  20. MINERAL COMMODITY SUMMARIES 2009
  21. Получение меди
  22. Espinoza Soriano, Waldemar. Etnohistoria ecuatoriana: estudios y documentos. — Quito: Abya-Yala, 1988. — p. 135.
  23. Интересные факты о меди и медных трубах

Литература

  • Данные на начало XX века : Медь // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Фримантл М. Химия в действии. — М.: «Мир», 1991. — Т. 2.
  • Р. А. Лидин, В. А. Молочко, Л. Л. Андреева. Химические свойства неорганических веществ. — «Химия», 2000. — С. 286.

Ссылки

  • Медь на Webelements
  • Медь в Популярной библиотеке химических элементов
  • Российский Центр Меди, некоммерческий
  • Медь в месторождениях
  • Некоммерческий ресурс о меди (eng)
  • Свойства меди
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Щелочные металлы  Щёлочноземельные металлы  Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы

Соединения меди

Азид меди(II) (Cu(N3)2) • Арсенат меди(II) (Cu3(AsO4)2) • Ацетат меди(I) (СН3СООCu) • Ацетат меди(II) ((СН3СОО)2Cu) • Ацетиленид меди(I) (Cu2C2) • Ацетиленид меди(II) (CuC2) • Бромид меди(I) (CuBr) • Бромид меди(II) (CuBr2) • Бромат меди(II) (Cu(BrO3)2) • Гексафторокупрат(III) калия (K3[CuF6]) • Гексафторосиликат меди(I) (Cu2[SiF6]) • Гексафторосиликат меди(II) (Cu[SiF6]) • Гидрид меди(I) (CuH) • Гидроксид меди(I) (CuOH) • Гидроксид меди(II) (Cu(OH)2) • Дигексателлуратокупрат(III) натрия (Na9[Cu(TeO6)2]) • Дигидроксодикарбонат меди(II) (Cu3(OH)2(CO3)2) • Дигидроксокарбонат меди(II) ((CuOH)2CO3) • Диортопериодатокупрат(III) калия (K7[Cu(IO6)2]) • Дифосфид тримеди (Cu3P2) • Иодид меди(I) (CuI) • Иодат меди(II) (Cu(IO3)2) • Карбонат меди(II) (CuCO3) • Купрат(III) калия (KCuO2) • Метаборат меди(I) (CuBO2) • Метаборат меди(II) (Cu(BO2)2) • Нитрат меди(I) (CuNO3) • Нитрат меди(II) (Cu(NO3)2) • Нитрид меди (Cu3N) • Оксалат меди(II) (CuC2O4) • Оксид меди(I) (Cu2O) • Оксид меди(II) (CuO) • Оксид меди(III) (Cu2O3) • Ортофосфат меди(II) (Cu3(PO4)2) • «Парижская зелень» (Cu(CH3COO)2•3Cu(AsO2)2) • Периодады меди(II) • Полииодиды меди(II) (CuIn) • Роданид меди(I) (CuSCN) • Роданид меди(II) (Cu(SCN)2) • Селенат меди(II) (CuSeO4) • Селенид меди(I) (Cu2Se) • Селенид меди(II) (CuSe) • Силицид димеди (Cu2Si) • Силицид пентамеди (Cu5Si) • Силицид тетрамеди (Cu4Si) • Сульфат меди(I) (Cu2SO4) • Сульфат меди(II) (CuSO4) • Сульфид меди(I) (Cu2S) • Сульфид меди(II) (CuS) • Сульфит меди(I) (Cu2SO3) • Теллурид меди(I) (Cu2Te) • Фенилмедь (CuC6H5) • Фосфат меди(I) (Cu3PO4) • Фосфаты меди(II) • Фосфид димеди (Cu2P) • Фосфид тримеди (Cu3P) • Фторид меди(I) (CuF) • Фторид меди(II) (CuF2) • Хлорат меди(II) (Cu(ClO3)2) • Хлорид меди(I) (CuCl) • Хлорид меди(II) (CuCl2) • Цианид меди(I) (CuCN) • Цианид меди(II) (Cu(CN)2) • Этилмедь (CuC2H6) •

 

Медь | это.

.. Что такое Медь?

29

Медь

Cu

63,546

3d104s1

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
  • 3 Физические свойства
  • 4 Изотопы меди
  • 5 Химические свойства
    • 5.1 Возможные степени окисления
    • 5.2 Простое вещество
    • 5.3 Соединения меди(I)
    • 5.4 Соединения меди(II)
    • 5. 5 Соединения меди(III) и меди(IV)
    • 5.6 Аналитическая химия меди
  • 6 Применение
    • 6.1 В электротехнике
    • 6.2 Теплообмен
    • 6.3 Для производства труб
    • 6.4 Сплавы
      • 6.4.1 Сплавы на основе меди
      • 6.4.2 Сплавы, в которых медь значима
      • 6.4.3 Ювелирные сплавы
    • 6.5 Соединения меди
    • 6.6 Другие сферы применения
  • 7 Стоимость
  • 8 Биологическая роль
    • 8.1 Токсичность
    • 8.2 Бактерицидность
    • 8.3 Органолептические свойства
  • 9 Производство, добыча и запасы меди
    • 9.1 Способы добычи
    • 9.2 Современные способы добычи
      • 9.2.1 Влияние на экологию
  • 10 Интересные факты
  • 11 Примечания
  • 12 Литература
  • 13 Ссылки

История и происхождение названия

Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков считают русское слово медь (польск. miedz, чешск. med) родственным древненемецкому smida (металл) и Schmied (кузнец, англ. Smith). От этого слова произошли и родственные названия — медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь «венера» (Venus). В более древние времена встречается название «марс» (Mars).

См. также: История меди и бронзы

Нахождение в природе

Самородная медь

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн[2]. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси)[3].

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвертой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C 55,5-58 МСм/м[5]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Изотопы меди

Основная статья: Изотопы меди

Природная медь состоит из двух стабильных изотопов — 63Cu 65Cu с распространённостью 69 и 31 атомных процентов соответственно. Известны более двух деясятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

Химические свойства

Возможные степени окисления

Диаграмма Пурбе для меди

В соединениях медь проявляет две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например [Cu(NH3)2]+. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23−, полученных в 1994 году.

Простое вещество

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди(II):

Реагирует с концентрированной холодной серной кислотой:

С концентрированной горячей серной кислотой:

С безводной серной кислотой при 200 °C:

C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:

Реагирует с концентрированной азотной кислотой:

С разбавленной азотной кислотой:

С царской водкой:

C разбавленной хлороводородной кислотой в присутствии кислорода:

С газообразным хлороводородом при 500—600 °C:

С бромоводородом:

Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:

Медь растворяется в концентрированном гидроксиде аммония, с образованием аммиакатов:

Окисляется до оксида меди(I) при недостатке кислорода и 200 °C и до оксида меди(II), при избытке кислорода и температурах порядка 400—500 °C:

Медный порошок реагирует с хлором, серой (в жидком сероуглероде) и бромом (в эфире), при комнатной температуре:

При 300—400 °C реагирует с серой и селеном:

C оксидами неметаллов:

Медь реагирует с цианидом калия с образованием дицианокупрата(I) калия, щелочи и водорода:

С концентрированной соляной кислотой и хлоратом калия:

Соединения меди(I)

Степени окисления +1 соответствует оксид Cu2O красно-оранжевого цвета. Соответствующий гидроксид CuOH (жёлтого цвета) быстро разлагается с образованием оксида. Гидроксид CuOH проявляет основные свойства.

Многие соединения меди +1 имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе Сu+ все пять Зd-орбиталей заполнены парами электронов.

Ионы меди(I) в водном растворе неустойчивы и легко диспропорционируют:

В то же время медь(I) встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат(I)-ион [CuCl2] устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

Свойства соединений меди (I) похожи на свойства соединений серебра (I). В частности, CuCl, CuBr и CuI нерастворимы. Также существует нестабильный сульфат меди(I)

Соединения меди(II)

Степень окисления II — наиболее стабильная степень окисления меди. Ей соответсвует чёрный оксид CuO и голубой гидроксид Cu(OH)2, который при стоянии легко отщепляет воду и при этом чернеет:

Гидроксид меди (II) носит преимущественно основный характер и только в концентрированной щелочи частично растворяется с образованием синего гидроксокомплекса. Наибольшее значение имеет реакция гидроксида меди (II) с водным раствором аммиака, про которой образуется так называемый реактив Швейцера (растворитель целлюлозы):

Соли меди(II) образуются при растворении меди в кислотах-окислителях (азотной, концентрированной серной). Большинство солей в этой степени окисления имеют синюю или зелёную окраску.

Медный купорос

Соединения меди(II) обладают слабыми окислительными свойствами, что используется в анализе (например, использование реактива Фелинга).

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди и медных сплавов при взаимодействии оксидной плёнки с углекислым газом воздуха в присутствии воды. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид.

Оксид меди (II) используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников.

Соединения меди(III) и меди(IV)

Степени окисления III и IV являются малоустойчивыми степенями окисления и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

Возбуждённые атомы меди окрашивают пламя в голубовато-зелёный цвет

Медь можно обнаружить в растворе по зелёно-голубой окраске пламени бунзеновской горелки, при внесении в него платиновой проволочки, смоченной исследуемым раствором.

  • Традиционно количественное определение меди в слабокислых растворах проводилось с помощью пропускания через него сероводорода, при этой сульфид меди выпадает в далее взвешиваемый осадок .
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими и спектральными методами.

Применение

В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м[5]), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %[6].

Теплообмен

Система охлаждения из меди на тепловых трубках в ноутбуке

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005[7], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы

Сплавы на основе меди

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллейрийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности.

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевый сплав (мельхиор) используются для чеканки разменной монеты[8].

Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости.

Медь является важным компонентом твёрдых припоев — сплавов с температурой плавления 590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей, особенно, из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей

Сплавы, в которых медь значима

Дюраль (дюралюминий) определяют, как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы

В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения

Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006[9].

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 511 и 578 нм.

Стоимость

На 2011 год стоимость меди составляет около $8900 за тонну[10].

Биологическая роль

Продукты, богатые медью.

Метаболизм меди у человека. Поступление в энтероцит с помощью транспортёра CMT1, перенос с помощью ATOX1 в сеть транс-Гольджи, при росте концентрации — высвобождение с помощью АТФ-азы ATP7A в воротную вену. Поступление в гепатоцит, где ATP7B нагружает ионами меди белок церулоплазмин, а избыток выводит в желчь.

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина.

Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем молекулярный кислород белке гемоцианине. В крови всех головоногих и большинства брюхоногих моллюсков и членистоногих медь входит в состав гемоцианина в виде имидазольного комплекса иона меди, роль, аналогичная роли порфиринового комплекса железа в молекуле белка гемоглобина в крови позвоночных животных.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

При недостатке меди в хондро- и остеобластах снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей[11].

Токсичность

Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен. Всемирная Организация Здравоохранения (ВОЗ) сформулировала в 1998 году это правило так: «Риски для здоровья человека от недостатка меди в организме многократно выше, чем риски от её избытка».

В 2003 году в результате интенсивных исследований ВОЗ пересмотрела прежние оценки токсичности меди. Было признано, что медь не является причиной расстройств пищеварительного тракта[12].

Существовали опасения, что Гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова) сопровождается накоплением меди в организме, так как она не выделяется печенью в желчь. Эта болезнь вызывает повреждение мозга и печени. Однако причинно-следственная связь между возникновением заболевания и приёмом меди внутрь подтверждения не нашла[12]. Установлена лишь повышенная чувствительность лиц, в отношении которых диагностировано это заболевание к повышенному содержанию меди в пище и воде.

Бактерицидность

Бактерицидные свойства меди и её сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью[13] (агентство подчёркивает, что использование меди в качестве бактерицидного вещества может дополнять, но не должно заменять стандартную практику инфекционного контроля). Особенно выражено бактерицидное действие поверхностей из меди (и её сплавов) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, известного как «супермикроб» MRSA[14]. Летом 2009 была установлена роль меди и сплавов меди в инактивировании вируса гриппа A/h2N1 (т. н. «свиной грипп»)[15].

Органолептические свойства

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2—10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приёма внутрь воды с излишним содержанием меди.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн т[16][17]. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т подтверждённые запасы[16], на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов[16]. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн[18]. Основными производителями меди в России являлись:

Компания тыс. тонн %
Норильский никель 425 45 %
Уралэлектромедь 351 37 %
Русская медная компания 166 18 %

К указанным производителям меди в России в 2009 году присоединился Холдинг «Металлоинвест», выкупивший права на разработку нового месторождения меди «Удоканское»[19]. Мировое производство меди в 2007 году составляло[20] 15,4 млн т, а в 2008 году — 15,7 млн т Лидерами производства были:

  1.  Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
  2.  США (1,170/1,310),
  3.  Перу (1,190/1,220),
  4.  КНР (0,946/1,000),
  5.  Австралия (0,870/0,850),
  6.  Россия (0,740/0,750),
  7.  Индонезия (0,797/0,650),
  8.  Канада (0,589/0,590),
  9.  Замбия (0,520/0,560),
  10.  Казахстан (0,407/0,460),
  11.  Польша (0,452/0,430),
  12.  Мексика (0,347/0,270).

Смотрим также более полный список стран по производству меди.

По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Способы добычи

Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, на Украине, в Сибири, на Алтае.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров.

Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика.

Эскондида — самый большой в мире карьер, в котором добывают медную руду. Расположен в Чили.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20—40 % железа, 22—25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.

С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4—99,4 % меди, 0,01—0,04 % железа, 0,02—0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0—99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5—12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах[21].

Влияние на экологию

При открытом способе добычи после её прекращения карьер становится источником токсичных веществ. Самое токсичное озеро в мире — Беркли Пит — образовалось в кратере медного рудника.

Интересные факты

  • Индейцы культуры Чонос (Эквадор) ещё в XV—XVI веках выплавляли медь с содержанием 99,5 % и употребляли её в качестве монеты в виде топориков 2 мм по сторонам и 0,5 мм толщиной. Данная монета ходила по всему западному побережью Южной Америки, в том числе и в государстве Инков[22].
  • В Японии медным трубопроводам для газа в зданиях присвоен статус «сейсмостойких».
  • Инструменты, изготовленные из меди и её сплавов не создают искр, а потому применяются там, где существуют особые требования безопасности (огнеопасные, взрывоопасные производства).
  • В организме взрослого человека содержится до 80 мг меди.
  • Польские учёные установили, что в тех водоёмах, где присутствует медь, карпы отличаются крупными размерами. В прудах или озёрах, где меди нет, быстро развивается грибок, который поражает карпов[23].

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — М.: Советская энциклопедия, 1992. — Т. 3. — С. 7. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8
  2. Медь самородная в БСЭ
  3. Крупнейшие мономинеральные месторождения (рудные районы, бассейны)
  4. при 20 °С 394,279 Вт/(м·К), то есть 0,941 кал/(см·сек·°С)
  5. 1 2 Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006. — C. 246. — ISBN 5-93037-157-1
  6. Применение меди
  7. ГОСТ Р 52318-2005 Трубы медные круглого сечения для воды и газа. Технические условия
  8. Смирягин А. П.,Смирягина Н. А., Белова А. В. Промышленные цветные металлы и сплавы. 3-е изд. — Металлургия, 1974. — С. 321. — 488 с.
  9. СП 31-116-2006 Проектирование и устройство кровель из листовой меди
  10. Цена меди
  11. Медь и рост человека // Наука и жизнь. — М.: «Правда», 1990. — № 1. — С. 17.
  12. 1 2 CHEMICAL FACT SHEETS  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  13. US EPA
  14. В США наблюдается вспышка инфекции MRSA за пределами госпиталей
  15. British Scientist Shares Expertise on Swine Flu Control in Beijing
  16. 1 2 3 Производство меди
  17. В 2005 г. мировая добыча меди увеличится на 8 % до 15,7 млн т. — Новости металлургии
  18. Стратегия развития металлургической промышленности Российской Федерации на период до 2020 года. Минпромэнерго РФ (18 марта 2009). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  19. Металлонвест оплатил лицензию за Удокан
  20. MINERAL COMMODITY SUMMARIES 2009
  21. Получение меди
  22. Espinoza Soriano, Waldemar. Etnohistoria ecuatoriana: estudios y documentos. — Quito: Abya-Yala, 1988. — p. 135.
  23. Интересные факты о меди и медных трубах

Литература

  • Данные на начало XX века : Медь // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Фримантл М. Химия в действии. — М.: «Мир», 1991. — Т. 2.
  • Р. А. Лидин, В. А. Молочко, Л. Л. Андреева. Химические свойства неорганических веществ. — «Химия», 2000. — С. 286.

Ссылки

  • Медь на Webelements
  • Медь в Популярной библиотеке химических элементов
  • Российский Центр Меди, некоммерческий
  • Медь в месторождениях
  • Некоммерческий ресурс о меди (eng)
  • Свойства меди
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Щелочные металлы  Щёлочноземельные металлы  Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы

Соединения меди

Азид меди(II) (Cu(N3)2) • Арсенат меди(II) (Cu3(AsO4)2) • Ацетат меди(I) (СН3СООCu) • Ацетат меди(II) ((СН3СОО)2Cu) • Ацетиленид меди(I) (Cu2C2) • Ацетиленид меди(II) (CuC2) • Бромид меди(I) (CuBr) • Бромид меди(II) (CuBr2) • Бромат меди(II) (Cu(BrO3)2) • Гексафторокупрат(III) калия (K3[CuF6]) • Гексафторосиликат меди(I) (Cu2[SiF6]) • Гексафторосиликат меди(II) (Cu[SiF6]) • Гидрид меди(I) (CuH) • Гидроксид меди(I) (CuOH) • Гидроксид меди(II) (Cu(OH)2) • Дигексателлуратокупрат(III) натрия (Na9[Cu(TeO6)2]) • Дигидроксодикарбонат меди(II) (Cu3(OH)2(CO3)2) • Дигидроксокарбонат меди(II) ((CuOH)2CO3) • Диортопериодатокупрат(III) калия (K7[Cu(IO6)2]) • Дифосфид тримеди (Cu3P2) • Иодид меди(I) (CuI) • Иодат меди(II) (Cu(IO3)2) • Карбонат меди(II) (CuCO3) • Купрат(III) калия (KCuO2) • Метаборат меди(I) (CuBO2) • Метаборат меди(II) (Cu(BO2)2) • Нитрат меди(I) (CuNO3) • Нитрат меди(II) (Cu(NO3)2) • Нитрид меди (Cu3N) • Оксалат меди(II) (CuC2O4) • Оксид меди(I) (Cu2O) • Оксид меди(II) (CuO) • Оксид меди(III) (Cu2O3) • Ортофосфат меди(II) (Cu3(PO4)2) • «Парижская зелень» (Cu(CH3COO)2•3Cu(AsO2)2) • Периодады меди(II) • Полииодиды меди(II) (CuIn) • Роданид меди(I) (CuSCN) • Роданид меди(II) (Cu(SCN)2) • Селенат меди(II) (CuSeO4) • Селенид меди(I) (Cu2Se) • Селенид меди(II) (CuSe) • Силицид димеди (Cu2Si) • Силицид пентамеди (Cu5Si) • Силицид тетрамеди (Cu4Si) • Сульфат меди(I) (Cu2SO4) • Сульфат меди(II) (CuSO4) • Сульфид меди(I) (Cu2S) • Сульфид меди(II) (CuS) • Сульфит меди(I) (Cu2SO3) • Теллурид меди(I) (Cu2Te) • Фенилмедь (CuC6H5) • Фосфат меди(I) (Cu3PO4) • Фосфаты меди(II) • Фосфид димеди (Cu2P) • Фосфид тримеди (Cu3P) • Фторид меди(I) (CuF) • Фторид меди(II) (CuF2) • Хлорат меди(II) (Cu(ClO3)2) • Хлорид меди(I) (CuCl) • Хлорид меди(II) (CuCl2) • Цианид меди(I) (CuCN) • Цианид меди(II) (Cu(CN)2) • Этилмедь (CuC2H6) •

 

Медь | это.

.. Что такое Медь?

29

Медь

Cu

63,546

3d104s1

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
  • 3 Физические свойства
  • 4 Изотопы меди
  • 5 Химические свойства
    • 5.1 Возможные степени окисления
    • 5.2 Простое вещество
    • 5.3 Соединения меди(I)
    • 5.4 Соединения меди(II)
    • 5. 5 Соединения меди(III) и меди(IV)
    • 5.6 Аналитическая химия меди
  • 6 Применение
    • 6.1 В электротехнике
    • 6.2 Теплообмен
    • 6.3 Для производства труб
    • 6.4 Сплавы
      • 6.4.1 Сплавы на основе меди
      • 6.4.2 Сплавы, в которых медь значима
      • 6.4.3 Ювелирные сплавы
    • 6.5 Соединения меди
    • 6.6 Другие сферы применения
  • 7 Стоимость
  • 8 Биологическая роль
    • 8.1 Токсичность
    • 8.2 Бактерицидность
    • 8.3 Органолептические свойства
  • 9 Производство, добыча и запасы меди
    • 9.1 Способы добычи
    • 9.2 Современные способы добычи
      • 9.2.1 Влияние на экологию
  • 10 Интересные факты
  • 11 Примечания
  • 12 Литература
  • 13 Ссылки

История и происхождение названия

Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков считают русское слово медь (польск. miedz, чешск. med) родственным древненемецкому smida (металл) и Schmied (кузнец, англ. Smith). От этого слова произошли и родственные названия — медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь «венера» (Venus). В более древние времена встречается название «марс» (Mars).

См. также: История меди и бронзы

Нахождение в природе

Самородная медь

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн[2]. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси)[3].

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвертой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C 55,5-58 МСм/м[5]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Изотопы меди

Основная статья: Изотопы меди

Природная медь состоит из двух стабильных изотопов — 63Cu 65Cu с распространённостью 69 и 31 атомных процентов соответственно. Известны более двух деясятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

Химические свойства

Возможные степени окисления

Диаграмма Пурбе для меди

В соединениях медь проявляет две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например [Cu(NH3)2]+. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23−, полученных в 1994 году.

Простое вещество

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди(II):

Реагирует с концентрированной холодной серной кислотой:

С концентрированной горячей серной кислотой:

С безводной серной кислотой при 200 °C:

C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:

Реагирует с концентрированной азотной кислотой:

С разбавленной азотной кислотой:

С царской водкой:

C разбавленной хлороводородной кислотой в присутствии кислорода:

С газообразным хлороводородом при 500—600 °C:

С бромоводородом:

Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:

Медь растворяется в концентрированном гидроксиде аммония, с образованием аммиакатов:

Окисляется до оксида меди(I) при недостатке кислорода и 200 °C и до оксида меди(II), при избытке кислорода и температурах порядка 400—500 °C:

Медный порошок реагирует с хлором, серой (в жидком сероуглероде) и бромом (в эфире), при комнатной температуре:

При 300—400 °C реагирует с серой и селеном:

C оксидами неметаллов:

Медь реагирует с цианидом калия с образованием дицианокупрата(I) калия, щелочи и водорода:

С концентрированной соляной кислотой и хлоратом калия:

Соединения меди(I)

Степени окисления +1 соответствует оксид Cu2O красно-оранжевого цвета. Соответствующий гидроксид CuOH (жёлтого цвета) быстро разлагается с образованием оксида. Гидроксид CuOH проявляет основные свойства.

Многие соединения меди +1 имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе Сu+ все пять Зd-орбиталей заполнены парами электронов.

Ионы меди(I) в водном растворе неустойчивы и легко диспропорционируют:

В то же время медь(I) встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат(I)-ион [CuCl2] устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

Свойства соединений меди (I) похожи на свойства соединений серебра (I). В частности, CuCl, CuBr и CuI нерастворимы. Также существует нестабильный сульфат меди(I)

Соединения меди(II)

Степень окисления II — наиболее стабильная степень окисления меди. Ей соответсвует чёрный оксид CuO и голубой гидроксид Cu(OH)2, который при стоянии легко отщепляет воду и при этом чернеет:

Гидроксид меди (II) носит преимущественно основный характер и только в концентрированной щелочи частично растворяется с образованием синего гидроксокомплекса. Наибольшее значение имеет реакция гидроксида меди (II) с водным раствором аммиака, про которой образуется так называемый реактив Швейцера (растворитель целлюлозы):

Соли меди(II) образуются при растворении меди в кислотах-окислителях (азотной, концентрированной серной). Большинство солей в этой степени окисления имеют синюю или зелёную окраску.

Медный купорос

Соединения меди(II) обладают слабыми окислительными свойствами, что используется в анализе (например, использование реактива Фелинга).

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди и медных сплавов при взаимодействии оксидной плёнки с углекислым газом воздуха в присутствии воды. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид.

Оксид меди (II) используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников.

Соединения меди(III) и меди(IV)

Степени окисления III и IV являются малоустойчивыми степенями окисления и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

Возбуждённые атомы меди окрашивают пламя в голубовато-зелёный цвет

Медь можно обнаружить в растворе по зелёно-голубой окраске пламени бунзеновской горелки, при внесении в него платиновой проволочки, смоченной исследуемым раствором.

  • Традиционно количественное определение меди в слабокислых растворах проводилось с помощью пропускания через него сероводорода, при этой сульфид меди выпадает в далее взвешиваемый осадок .
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими и спектральными методами.

Применение

В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м[5]), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %[6].

Теплообмен

Система охлаждения из меди на тепловых трубках в ноутбуке

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005[7], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы

Сплавы на основе меди

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллейрийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности.

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевый сплав (мельхиор) используются для чеканки разменной монеты[8].

Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости.

Медь является важным компонентом твёрдых припоев — сплавов с температурой плавления 590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей, особенно, из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей

Сплавы, в которых медь значима

Дюраль (дюралюминий) определяют, как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы

В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения

Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006[9].

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 511 и 578 нм.

Стоимость

На 2011 год стоимость меди составляет около $8900 за тонну[10].

Биологическая роль

Продукты, богатые медью.

Метаболизм меди у человека. Поступление в энтероцит с помощью транспортёра CMT1, перенос с помощью ATOX1 в сеть транс-Гольджи, при росте концентрации — высвобождение с помощью АТФ-азы ATP7A в воротную вену. Поступление в гепатоцит, где ATP7B нагружает ионами меди белок церулоплазмин, а избыток выводит в желчь.

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина.

Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем молекулярный кислород белке гемоцианине. В крови всех головоногих и большинства брюхоногих моллюсков и членистоногих медь входит в состав гемоцианина в виде имидазольного комплекса иона меди, роль, аналогичная роли порфиринового комплекса железа в молекуле белка гемоглобина в крови позвоночных животных.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

При недостатке меди в хондро- и остеобластах снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей[11].

Токсичность

Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен. Всемирная Организация Здравоохранения (ВОЗ) сформулировала в 1998 году это правило так: «Риски для здоровья человека от недостатка меди в организме многократно выше, чем риски от её избытка».

В 2003 году в результате интенсивных исследований ВОЗ пересмотрела прежние оценки токсичности меди. Было признано, что медь не является причиной расстройств пищеварительного тракта[12].

Существовали опасения, что Гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова) сопровождается накоплением меди в организме, так как она не выделяется печенью в желчь. Эта болезнь вызывает повреждение мозга и печени. Однако причинно-следственная связь между возникновением заболевания и приёмом меди внутрь подтверждения не нашла[12]. Установлена лишь повышенная чувствительность лиц, в отношении которых диагностировано это заболевание к повышенному содержанию меди в пище и воде.

Бактерицидность

Бактерицидные свойства меди и её сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью[13] (агентство подчёркивает, что использование меди в качестве бактерицидного вещества может дополнять, но не должно заменять стандартную практику инфекционного контроля). Особенно выражено бактерицидное действие поверхностей из меди (и её сплавов) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, известного как «супермикроб» MRSA[14]. Летом 2009 была установлена роль меди и сплавов меди в инактивировании вируса гриппа A/h2N1 (т. н. «свиной грипп»)[15].

Органолептические свойства

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2—10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приёма внутрь воды с излишним содержанием меди.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн т[16][17]. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т подтверждённые запасы[16], на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов[16]. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн[18]. Основными производителями меди в России являлись:

Компания тыс. тонн %
Норильский никель 425 45 %
Уралэлектромедь 351 37 %
Русская медная компания 166 18 %

К указанным производителям меди в России в 2009 году присоединился Холдинг «Металлоинвест», выкупивший права на разработку нового месторождения меди «Удоканское»[19]. Мировое производство меди в 2007 году составляло[20] 15,4 млн т, а в 2008 году — 15,7 млн т Лидерами производства были:

  1.  Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
  2.  США (1,170/1,310),
  3.  Перу (1,190/1,220),
  4.  КНР (0,946/1,000),
  5.  Австралия (0,870/0,850),
  6.  Россия (0,740/0,750),
  7.  Индонезия (0,797/0,650),
  8.  Канада (0,589/0,590),
  9.  Замбия (0,520/0,560),
  10.  Казахстан (0,407/0,460),
  11.  Польша (0,452/0,430),
  12.  Мексика (0,347/0,270).

Смотрим также более полный список стран по производству меди.

По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Способы добычи

Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, на Украине, в Сибири, на Алтае.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров.

Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика.

Эскондида — самый большой в мире карьер, в котором добывают медную руду. Расположен в Чили.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20—40 % железа, 22—25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.

С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4—99,4 % меди, 0,01—0,04 % железа, 0,02—0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0—99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5—12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах[21].

Влияние на экологию

При открытом способе добычи после её прекращения карьер становится источником токсичных веществ. Самое токсичное озеро в мире — Беркли Пит — образовалось в кратере медного рудника.

Интересные факты

  • Индейцы культуры Чонос (Эквадор) ещё в XV—XVI веках выплавляли медь с содержанием 99,5 % и употребляли её в качестве монеты в виде топориков 2 мм по сторонам и 0,5 мм толщиной. Данная монета ходила по всему западному побережью Южной Америки, в том числе и в государстве Инков[22].
  • В Японии медным трубопроводам для газа в зданиях присвоен статус «сейсмостойких».
  • Инструменты, изготовленные из меди и её сплавов не создают искр, а потому применяются там, где существуют особые требования безопасности (огнеопасные, взрывоопасные производства).
  • В организме взрослого человека содержится до 80 мг меди.
  • Польские учёные установили, что в тех водоёмах, где присутствует медь, карпы отличаются крупными размерами. В прудах или озёрах, где меди нет, быстро развивается грибок, который поражает карпов[23].

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — М.: Советская энциклопедия, 1992. — Т. 3. — С. 7. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8
  2. Медь самородная в БСЭ
  3. Крупнейшие мономинеральные месторождения (рудные районы, бассейны)
  4. при 20 °С 394,279 Вт/(м·К), то есть 0,941 кал/(см·сек·°С)
  5. 1 2 Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006. — C. 246. — ISBN 5-93037-157-1
  6. Применение меди
  7. ГОСТ Р 52318-2005 Трубы медные круглого сечения для воды и газа. Технические условия
  8. Смирягин А. П.,Смирягина Н. А., Белова А. В. Промышленные цветные металлы и сплавы. 3-е изд. — Металлургия, 1974. — С. 321. — 488 с.
  9. СП 31-116-2006 Проектирование и устройство кровель из листовой меди
  10. Цена меди
  11. Медь и рост человека // Наука и жизнь. — М.: «Правда», 1990. — № 1. — С. 17.
  12. 1 2 CHEMICAL FACT SHEETS  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  13. US EPA
  14. В США наблюдается вспышка инфекции MRSA за пределами госпиталей
  15. British Scientist Shares Expertise on Swine Flu Control in Beijing
  16. 1 2 3 Производство меди
  17. В 2005 г. мировая добыча меди увеличится на 8 % до 15,7 млн т. — Новости металлургии
  18. Стратегия развития металлургической промышленности Российской Федерации на период до 2020 года. Минпромэнерго РФ (18 марта 2009). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  19. Металлонвест оплатил лицензию за Удокан
  20. MINERAL COMMODITY SUMMARIES 2009
  21. Получение меди
  22. Espinoza Soriano, Waldemar. Etnohistoria ecuatoriana: estudios y documentos. — Quito: Abya-Yala, 1988. — p. 135.
  23. Интересные факты о меди и медных трубах

Литература

  • Данные на начало XX века : Медь // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Фримантл М. Химия в действии. — М.: «Мир», 1991. — Т. 2.
  • Р. А. Лидин, В. А. Молочко, Л. Л. Андреева. Химические свойства неорганических веществ. — «Химия», 2000. — С. 286.

Ссылки

  • Медь на Webelements
  • Медь в Популярной библиотеке химических элементов
  • Российский Центр Меди, некоммерческий
  • Медь в месторождениях
  • Некоммерческий ресурс о меди (eng)
  • Свойства меди
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Щелочные металлы  Щёлочноземельные металлы  Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы

Соединения меди

Азид меди(II) (Cu(N3)2) • Арсенат меди(II) (Cu3(AsO4)2) • Ацетат меди(I) (СН3СООCu) • Ацетат меди(II) ((СН3СОО)2Cu) • Ацетиленид меди(I) (Cu2C2) • Ацетиленид меди(II) (CuC2) • Бромид меди(I) (CuBr) • Бромид меди(II) (CuBr2) • Бромат меди(II) (Cu(BrO3)2) • Гексафторокупрат(III) калия (K3[CuF6]) • Гексафторосиликат меди(I) (Cu2[SiF6]) • Гексафторосиликат меди(II) (Cu[SiF6]) • Гидрид меди(I) (CuH) • Гидроксид меди(I) (CuOH) • Гидроксид меди(II) (Cu(OH)2) • Дигексателлуратокупрат(III) натрия (Na9[Cu(TeO6)2]) • Дигидроксодикарбонат меди(II) (Cu3(OH)2(CO3)2) • Дигидроксокарбонат меди(II) ((CuOH)2CO3) • Диортопериодатокупрат(III) калия (K7[Cu(IO6)2]) • Дифосфид тримеди (Cu3P2) • Иодид меди(I) (CuI) • Иодат меди(II) (Cu(IO3)2) • Карбонат меди(II) (CuCO3) • Купрат(III) калия (KCuO2) • Метаборат меди(I) (CuBO2) • Метаборат меди(II) (Cu(BO2)2) • Нитрат меди(I) (CuNO3) • Нитрат меди(II) (Cu(NO3)2) • Нитрид меди (Cu3N) • Оксалат меди(II) (CuC2O4) • Оксид меди(I) (Cu2O) • Оксид меди(II) (CuO) • Оксид меди(III) (Cu2O3) • Ортофосфат меди(II) (Cu3(PO4)2) • «Парижская зелень» (Cu(CH3COO)2•3Cu(AsO2)2) • Периодады меди(II) • Полииодиды меди(II) (CuIn) • Роданид меди(I) (CuSCN) • Роданид меди(II) (Cu(SCN)2) • Селенат меди(II) (CuSeO4) • Селенид меди(I) (Cu2Se) • Селенид меди(II) (CuSe) • Силицид димеди (Cu2Si) • Силицид пентамеди (Cu5Si) • Силицид тетрамеди (Cu4Si) • Сульфат меди(I) (Cu2SO4) • Сульфат меди(II) (CuSO4) • Сульфид меди(I) (Cu2S) • Сульфид меди(II) (CuS) • Сульфит меди(I) (Cu2SO3) • Теллурид меди(I) (Cu2Te) • Фенилмедь (CuC6H5) • Фосфат меди(I) (Cu3PO4) • Фосфаты меди(II) • Фосфид димеди (Cu2P) • Фосфид тримеди (Cu3P) • Фторид меди(I) (CuF) • Фторид меди(II) (CuF2) • Хлорат меди(II) (Cu(ClO3)2) • Хлорид меди(I) (CuCl) • Хлорид меди(II) (CuCl2) • Цианид меди(I) (CuCN) • Цианид меди(II) (Cu(CN)2) • Этилмедь (CuC2H6) •

 

Факты о меди | Dartmouth Toxic Metals

Что такое медь?

Медь представляет собой светло-красновато-коричневый металлический элемент с символом «Cu» и атомным номером 29 в периодической таблице элементов. Название «медь» происходит от слова «Кипр» — острова, где римляне добывали медь. Это был первый металл, широко используемый людьми.

Встречающаяся в природе чистая медь называется «самородной медью». Медь также встречается в природе в смеси с другими элементами в виде ряда соединений, многие из которых отличаются своим сине-зеленым цветом. Бирюза, малахит и азурит — три ярко окрашенных соединения меди, используемые в качестве драгоценных камней. Сульфат меди и оксид меди являются двумя важными соединениями меди, используемыми в промышленности и сельском хозяйстве. Медь можно смешивать с другими металлами для образования сплавов, таких как бронза (медь и олово) и латунь (медь и цинк).

Окисленная медь или медь, подвергшаяся воздействию воздуха, образует зеленый налет или «патину», которую можно увидеть на старых медных монетах, Статуе Свободы и медных крышах.

Где находится медь?

Медь естественным образом присутствует в горных породах либо в чистом виде, либо в виде соединений. Геологические, метеорологические и биологические процессы рассеивают медь в воздухе, почве и воде, а также в организмах.

Крупнейшие известные месторождения медной руды в мире находятся в Чукикамата в чилийских Андах, а крупнейшее месторождение самородной меди находится на Верхнем полуострове Мичигана. Основными производителями меди являются Чили, которая поставляет 35 процентов мировой меди, и Соединенные Штаты, которые производят примерно 11 процентов. Канада, страны бывшего Советского Союза, Замбия, Китай, Польша и Демократическая Республика Конго также являются производителями меди.

Большая часть меди, которая содержится сегодня в воздухе, почве и воде, приходится на деятельность человека. Промышленные предприятия, такие как плавильные заводы, литейные заводы, электростанции, мусоросжигательные заводы и другие источники сжигания, выбрасывают медь в атмосферу, где она может возвращаться на землю в виде осадков. Плавильные заводы и другие предприятия по производству меди выбрасывают высокие концентрации меди в окружающий воздух и почву. Медные рудники могут быть значительным источником загрязнения. Медь и другие минералы, присутствующие в хвостах — отходы, оставшиеся после извлечения руды из породы, — попадают в почву и водоемы. Вода также может быть загрязнена рядом других источников меди, в том числе сельскохозяйственными стоками с ферм, использующих пестициды на основе меди.

Медь является важным элементом для всех живых организмов, поэтому она присутствует в пище, которую мы едим, будь то растения или животные, а также в тканях человека.

Каково использование меди?

Люди используют медь почти десять тысяч лет. С древних времен медь использовалась сама по себе и в сочетании с другими металлами для изготовления оружия, инструментов, предметов домашнего обихода и произведений искусства.

Высокая проводимость меди сделала ее предпочтительным металлом для развития электротехники в 18-19 вв.вв. Медь является третьим по потреблению металлом в мире после стали и алюминия. Сегодня наибольшее потребление меди приходится на строительство. Медь используется в строительстве домов и других зданий, производстве автомобилей и самолетов, а также для водопроводных труб. Промышленность по производству электротехники и электротехнической продукции является следующим по величине потребителем меди. Медь также используется в телекоммуникациях. Значительное количество меди, используемой в Соединенных Штатах, поступает из переработанного лома и лома, оставшегося от производства меди.

Американский пенни из медного сплава 1936 года, пенни из оцинкованной стали 1943 года и современный цинковый пенни с медным покрытием 2004 года. Фото предоставлено Дартмутской программой исследования токсичных металлов

Пенни США изготавливались из чистой меди с 1793 по 1837 год. В последующие годы они изготавливались из различных медных сплавов, включая бронзу и латунь. В 1943 году, когда поставки меди были направлены на военные нужды Второй мировой войны, большинство отчеканенных пенни были из оцинкованной стали. С 1982 года монеты содержат всего 2,5 процента меди — это цинк с тонким медным покрытием.

Сульфат меди, природная и промышленная соль меди, используется в качестве фунгицида для сельскохозяйственных культур, в качестве пестицида для уничтожения улиток и слизней, а также для обработки воды для уничтожения водной растительности. Это химическое вещество обладает серьезной хронической токсичностью и имеет последствия для сельскохозяйственных рабочих и окружающей среды.

Современные браслеты из меди или медного сплава из Зимбабве. Фото предоставлено: Dartmouth Toxic Metals Research Program

Соединения меди также используются для защиты древесины и в качестве химикатов для дубления кожи, а также в качестве протравы (закрепителя) при окрашивании текстиля. Медь до сих пор используется для изготовления произведений искусства и ювелирных изделий по всему миру. В некоторых частях Африки медные браслеты и произведения искусства изготавливаются из выброшенной медной проволоки и обрезков. Во многих частях Южной и Юго-Восточной Азии медь, латунь и бронза широко используются в кухонной посуде, посуде, религиозных статуях и произведениях искусства. Навахо и другие племенные народы юго-запада США иногда используют медь в ювелирных изделиях.

Нужна ли нам медь для здоровья?

Продукты, содержащие медь. Фото предоставлено Дартмутской программой исследования токсичных металлов

. Медь является важным питательным веществом для всех живых существ. Медь является компонентом более 30 ферментов в организме человека, в том числе некоторых из них, участвующих в синтезе коллагена. У людей медь необходима для здорового развития соединительной ткани, нервных оболочек и костей. Он также участвует как в метаболизме железа, так и в энергетическом обмене. Дефицит меди, хотя и редко, может вызвать анемию и аномалии соединительной ткани, костей и нервной системы.

Рекомендации по рекомендуемому потреблению с пищей (DRI), установленные в 2001 году Советом США по пищевым продуктам и питанию Института медицины Национальной академии, устанавливают как рекомендуемые нормы потребления (RDA), так и верхние уровни потребления меди. Рекомендация группы составляет 0,9 миллиграмма меди в день для взрослых, больше для кормящих женщин (1,3 миллиграмма) и меньше для детей (0,34 миллиграмма для детей до трех лет и 0,44 миллиграмма для детей от четырех до восьми лет). Верхний предел составляет 10 миллиграммов в день для здоровых взрослых. Поскольку организм не синтезирует медь, этот необходимый уровень меди должен поступать из пищи.

Хорошими источниками диетической меди являются печень и другие субпродукты, устрицы, орехи, семена, темный шоколад и цельнозерновые продукты. Некоторое количество меди также присутствует в картофеле, изюме, грибах, нуте и других бобовых. Питьевая вода, подаваемая по медным трубам, может способствовать потреблению меди.

Чрезмерное потребление цинка с пищей может вызвать дефицит меди.

Может ли медь представлять опасность для здоровья?

Точно так же, как некоторое количество меди необходимо для хорошего здоровья, слишком много меди может быть вредным. Здоровый человек может выделять некоторое количество избыточной меди. Однако высокие дозы, длительное воздействие и определенные пути воздействия могут подавлять биологические процессы, выводящие из организма избыток меди.

Вдыхание медной пыли и паров (от предприятий по производству и переработке меди) может повлиять на дыхательные пути, вызывая кашель, чихание и боль в груди. Это также может негативно повлиять на желудочно-кишечный тракт, вызывая тошноту и диарею. Также могут быть затронуты печень и эндокринная функция. Некоторые исследования показали изменения в крови, включая снижение гемоглобина и количества эритроцитов после воздействия меди при вдыхании. Медная пыль и пары могут вызвать раздражение глаз, головную и мышечную боль.

Проглатывание большого количества соединений меди (например, сульфата меди) может привести к смерти от нервной системы, печеночной и почечной недостаточности. Некоторые исследования показали, что потребление меди также может быть связано с ишемической болезнью сердца и высоким кровяным давлением, хотя другие исследования показали, что дефицит меди может играть роль в развитии ишемической болезни сердца. Высокие уровни меди в питьевой воде могут вызывать рвоту, боли в животе, тошноту, диарею, и сообщалось о таких случаях у людей, пьющих воду из медных труб.

Цинк и хелатирующие агенты можно использовать для удаления избытка меди из организма.

Неизвестно, что медь играет роль в развитии рака или врожденных дефектов.

Кто подвергается опасности отравления медью?

Большие дозы медьсодержащих соединений, таких как сульфат меди, ядовиты даже для людей со здоровой печенью. Однако некоторые люди подвергаются большему риску отравления медью. Люди с некоторыми заболеваниями печени и люди с наследственной неспособностью метаболизировать медь особенно чувствительны к токсичности меди, например, люди с болезнью Менкеса, наследственной ацерулоплазминемией и болезнью Вильсона.

Пеницилламин, химическая структура которого показана здесь, используется в качестве хелатирующего агента при лечении болезни Вильсона. Фото предоставлено: Dartmouth Toxic Metals Research Program

Люди с болезнью Вильсона, рецессивной наследственной неспособностью выводить медь из организма, особенно подвержены риску развития токсичных уровней меди в тканях, особенно в печени и мозге. Без лечения это состояние может привести к печеночной недостаточности, серьезным неврологическим или психическим проблемам и смерти.

Болезнь Вильсона можно эффективно лечить с помощью ацетата цинка, который блокирует всасывание меди. Хелатирующие агенты также эффективны, связывая медь в организме и позволяя ей выводиться с мочой. Оба вида лечения должны быть постоянными на протяжении всей жизни пациента. Сокращение содержания меди в пище также может уменьшить симптомы, хотя само по себе это не является эффективным лечением. Носители болезни — люди с одной копией дефектного гена — не заболевают, но могут иметь слегка аномальный метаболизм меди. Хотя болезнь Вильсона обнаруживается только у одного из 30 000 человек во всем мире, ген этого заболевания может быть у одного из 100 человек. Существует несколько методов диагностики заболевания, например, анализ мочи и биопсия печени. Пока не существует генетического скрининга для выявления лиц, подверженных риску, поскольку заболевание вызывается любой из 200 мутаций.

Существуют и другие состояния, связанные с отравлением медью, которые, по-видимому, имеют генетическую связь. Индийский детский цирроз печени, который поражает детей в странах Южной Азии, по-видимому, является результатом генетической предрасположенности к чувствительности к меди в сочетании с высоким воздействием меди (часто из молока, кипяченого в медных или латунных кастрюлях). Подобные условия у детей появились в других частях мира, где вода содержала большое количество меди. Опять же, эти дети, по-видимому, имеют генетическую предрасположенность к плохому метаболизму меди.

Люди, которые живут вблизи или работают на предприятиях по производству меди, таких как рудники, плавильные или рафинирующие предприятия, или на предприятиях по производству меди, подвержены повышенному риску воздействия чрезмерного количества меди. Воздействие может происходить при вдыхании медной пыли и паров меди.

Представляет ли медь в окружающей среде риск для здоровья?

Ответ на этот вопрос сложен. Медь является необходимым питательным веществом и естественным образом встречается в окружающей среде в горных породах, почве, воздухе и воде. Мы вступаем в контакт с медью из этих источников каждый день, но ее количество обычно ничтожно мало. Часть этой меди, особенно в воде, может быть поглощена и использована организмом. Но большая часть меди, с которой мы соприкасаемся, прочно связана с другими соединениями, что делает ее ни полезной, ни токсичной. Важно помнить, что токсичность вещества зависит от степени воздействия на организм, продолжительности и пути воздействия.

В окружающей среде есть источники меди, представляющие опасность для здоровья. Известно, что примерно половина объектов опасных отходов в списке национальных приоритетов Агентства по охране окружающей среды содержит медь. Воздух и почва вблизи предприятий по переработке меди, таких как плавильные заводы, обычно содержат гораздо больше меди, чем в других местах. Сельскохозяйственные стоки могут содержать пестициды на основе меди. Они могут представлять опасность для здоровья человека. Однако медь очень легко связывается с соединениями в почве и воде, снижая ее биодоступность для человека.

Потенциальным источником чрезмерного воздействия меди на человека является питьевая вода, поступающая по медным трубам и латунным приспособлениям для раковины. Небольшие количества меди из сантехники попадают в воду, особенно в горячую воду и воду, которая находилась в трубах в течение нескольких часов или в течение ночи. Кислая вода (с низким pH) выщелачивает больше меди, чем более щелочная (с высоким pH) вода. Мягкая вода, вероятно, содержит больше меди, чем жесткая вода, потому что она не содержит минералов, которые создают защитный слой на внутренней поверхности труб, предотвращая выщелачивание меди. Сине-зеленые пятна воды под кранами являются индикатором содержания меди в воде. Некоторые люди, которые пьют воду с высоким содержанием меди, могут испытывать тошноту, рвоту, боль в животе и диарею. Количество меди, которое обычно содержится в воде из медных водопроводов, обычно не представляет угрозы для здоровья.

Использование только холодной воды для питья и приготовления пищи может уменьшить количество меди, вымываемой из водопровода. Запуск воды до тех пор, пока она не станет очень холодной после того, как она простояла трубы в течение ночи или более шести часов, также снизит уровень меди. Убедитесь, что никакие электроприборы не заземлены на сантехнику, чтобы уменьшить коррозию труб. Фильтры для воды также могут удалять медь из воды. Проверьте этикетку производителя фильтра, чтобы узнать, не является ли медь одним из отфильтрованных химических веществ.

Существуют ли федеральные нормы или стандарты на медь?

В соответствии с федеральным Законом о безопасной питьевой воде Агентство по охране окружающей среды США (EPA) ограничивает количество меди в питьевой воде до 1,3 мг на литр. В соответствии с Законом о суперфонде EPA считает 5000 фунтов меди или 10 фунтов сульфата меди в районе «опасным веществом».

Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) допускает содержание меди не более 1 мг на литр бутилированной воды. Национальный институт безопасности и гигиены труда (NIOSH) и Управление по охране труда (OSHA) имеют свои собственные стандарты количества меди и медных паров, допустимых на рабочем месте.

Где я могу узнать больше о меди?

Агентство по регистрации токсических веществ и заболеваний (ATSDR) Центров США по контролю и профилактике заболеваний имеет превосходное заявление общественного здравоохранения о меди в Интернете, доступное в Агентстве по регистрации токсических веществ и заболеваний.

Агентство по регистрации токсичных веществ и заболеваний (ATSDR) Центров США по контролю и профилактике заболеваний имеет подробный токсикологический профиль меди в Агентстве по регистрации токсичных веществ и заболеваний.

Является ли медь чистым веществом?

Медь или Cu представляет собой химический элемент, встречающийся в природе.

Название «медь» происходит от слова «coper», которое является старым английским названием меди. Медь происходит от латинского слова «Cyprium aes», что означает «металл с Кипра».

В этой статье мы обсудим, является ли медь чистым веществом или нет.

Далее рассмотрим понятия чистого вещества, смеси, элемента, соединения, гомогенного и гетерогенного вещества.

Итак, медь — это чистое вещество или смесь? Да, медь — чистое вещество, так как медь обладает определенными свойствами. Он состоит только из атомов одного вида. Вещество, имеющее один или несколько атомов в одинаковой пропорции по всему веществу, является чистым веществом.

Это металл d-блока с атомным номером 29. Электронная конфигурация Cu: [Ar] 3s2 3p6 4s1 3d10. Электронная конфигурация отличается от нормальной для достижения стабильной, полностью заполненной конфигурации d10.

Красновато-коричневый цвет, твердое вещество при комнатной температуре. Температура плавления составляет около 1084,2°C.

Наиболее важным источником меди являются такие минералы, как борнит и халькопирит. Медь является одним из важнейших металлов для человеческого организма.

Cu реагирует с кислородом воздуха с образованием оксида меди черного цвета.

Медь была первым металлом, из которого был изготовлен сплав. Медь довольно легко перерабатывается, и почти 70% меди, которую мы используем, было переработано.

 

Что такое Материя?

Существуют различные определения материи, но здесь изложено самое простое.

Материя — это все, что занимает пространство и имеет массу. Вещество далее классифицируется на твердое, жидкое и газообразное в зависимости от физического состояния вещества.

Аналогичным образом вещество классифицируется на чистые вещества и смеси на основе состава.

Последнюю классификацию мы обсудим в этой статье.

 

Что такое чистое вещество?

Чистые вещества имеют фиксированное значение различных свойств, таких как температура плавления, температура кипения, плотность и т. д. Они состоят только из частиц одного типа.

Все чистые вещества однородны, т. е. их состав остается однородным по всему объему.

Чистые вещества не могут подвергаться дальнейшему расщеплению с образованием различных продуктов. Например] золото, медь, серебро и т. д.

Чистые вещества далее классифицируются как элементы и соединения.

Чистые вещества очень полезны. Они нужны для производства лекарств, приготовления химикатов в промышленных масштабах, для научных целей и поддержания хорошего здоровья человека.

 

Что такое смесь?

Смеси изготавливаются из чистых веществ. Смеси образуются при физическом соединении двух или более чистых веществ (элементов или соединений).

Они могут быть разделены обратно на чистые вещества, используемые для образования смеси, потому что нет химической связи.

При наличии в смеси чистого вещества его свойства сохраняются.

Определенных свойств смеси нет. Их состав изменчив.

Например, поваренная соль и черный перец хранятся вместе в миске, соль в воде и т. д.

Смеси далее делятся на гомогенные смеси и гетерогенные смеси.

 

Почему медь является чистым веществом?

Медь является элементом, подпадающим под категорию чистого вещества.

Подобно чистому веществу-

Cu обладает определенными свойствами, такими как точка кипения, точка плавления и т. д.

• Состав медного элемента остается неизменным независимо от условий.

• Ни в коем случае нельзя конвертировать во что-то более простое.

Из-за этих свойств медь нельзя считать смесью.

 

Что такое элемент?

Элемент — это чистая субстанция, которую нельзя разложить ни на что более простое, чем она сама.

Все атомы в элементе одинаковы; у них одинаковое количество протонов в ядрах.

Каждый элемент имеет свои уникальные свойства.

Элемент — основная форма материи или строительные блоки материи.

Например] Cu, Ag, Au и т. д.

 

Что такое соединение?

Соединение также является чистым веществом. Он образуется путем химического соединения двух или более элементов в фиксированном соотношении по массе.

Их можно разложить на более простые вещества только химическими средствами.

Например, h3O, CuO и т. д.

 

Является ли медь соединением или элементом?

Медь относится к категории элементов, так как медь не может подвергаться дальнейшему разложению.

Все атомы в медном элементе имеют 29протонов в ядрах. Медь является строительным материалом для многих соединений меди.

Это не соединение, так как в Cu есть только один тип атома.

 

Что такое гомогенное вещество?

Вещество, имеющее однородный состав по всему объему, является однородным веществом. Обычно имеет одну фазу.

Например,] смесь соли в воде образует однородный раствор при тщательном перемешивании.

Если вынуть 1мл этого раствора с любой стороны, он будет иметь тот же состав. Мы не можем отличить соль от воды.

Другими примерами являются золото, серебро, вода и т. д.

 

Что такое гетерогенное вещество?

Вещество, имеющее неоднородный по объему состав, является гетерогенным веществом. Он имеет более одной фазы.

Например, смесь соли в воде образует негомогенный раствор, если ее тщательно не перемешать. Если мы возьмем 1 мл этого раствора с любой стороны, он не будет иметь тот же состав.

Можно различить твердую соль и воду.

Другими примерами являются смесь соли и перца, песка и шнека и т. д.

Чистые вещества всегда гомогенны, но смеси могут быть гомогенными или гетерогенными.

Однородные смеси, такие как соленая вода в примере, можно легко спутать с чистым веществом.

 

Является ли медь гомогенным или гетерогенным веществом?

Медь является однородным веществом, так как состав остается однородным по всему объему.

Обычно все элементы и соединения однородны.

 

Является ли оксид меди чистым веществом?

Да, оксид меди считается чистым веществом.

Оксид меди образуется при взаимодействии меди с кислородом воздуха. Он черного цвета.

Цвет меди со временем темнеет из-за образования CuO на поверхности Cu. CuO имеет фиксированный состав по массе.

Между Cu и O существует химическая связь. CuO может снова превратиться в Cu при обработке газообразным водородом.

Это не может быть элементом, потому что в образце CuO имеется более одного типа ядер. Это не может быть смесь, потому что между Cu и O образуется химическая связь.

Это соединение, потому что два элемента присутствуют в фиксированной массовой пропорции. Соединение – это чистое вещество.

 

Свойства меди

Физические свойства

Ковкость — можно ковать в тонкие листы без разрушения.

Ductile- можно втягивать в провода.

Звонкий- при сильном ударе издает звонкий звук.

Lustrous- свежая поверхность меди блестящая. Через некоторое время образуется черный слой CuO, и блеск уменьшается.

Soft- Легко режется сталью.

• Обладает высокой тепло- и электропроводностью.

Плотное вещество – медь имеет плотность 8,96 г/см3.

Биостатический- не позволяет бактериям расти рядом с собой.

• Медь обладает хорошей прочностью на растяжение.

• Медь не обладает магнитными свойствами. Я также написал специальную статью об этом. Проверьте магнетизм меди.

 

Химические свойства

• Соединения меди могут выступать в качестве катализатора в различных реакциях.

Например, CuCl2 катализирует синтез акрилонитрила из ацетилена и цианистого водорода.

• Медь образует различные соединения в состояниях +1 и +2.

• Реагирует с кислородом воздуха в соответствии со следующей реакцией

2Cu + O2 ➔ 2CuO

• Медь зеленеет под воздействием влажного воздуха из-за реакции с водой, углекислым газом и кислородом.

• Медь имеет более низкий восстановительный потенциал, чем водород. Поэтому он не реагирует с кислотами. Проверьте, реагирует ли медь с кислотой.

 

Использование меди

Медь находит применение в различных областях. Некоторые из них

1. Чистая медь смешивается с другими металлами для образования сплавов, которые обычно используются. • Монеты некоторых стран представляют собой сплавы меди

Золотые украшения на самом деле представляют собой сплав золота и меди, поскольку золото очень мягкое для использования в качестве драгоценного камня.

• Олово и медь образуют бронзу.

2. Медь часто втягивается в провода и используется в электрическом оборудовании, таком как двигатели, из-за ее свойств пластичности и проводимости.

3. Медь используется в строительстве

Кровля

• Сантехника

4. В различном промышленном оборудовании, таком как теплообменники, используется медь.

5. Сульфат меди производится из Cu, который используется в качестве

Сельскохозяйственный яд

• Альгицид при очистке воды.

6. В качестве реактива Фелинга А используется водный раствор сульфата меди.

Используется для различения альдегидов и кетонов. Cu имеет различное применение в лаборатории.

 

Заключение

Медь — чистое вещество.

Чистые вещества подразделяются на элементы и соединения.

Cu относится к классу элементов.

Чистый Вещества и элементы в большинстве случаев однородны, следовательно, Cu однородна. CuO является чистым веществом и относится к классу соединений.

Cu — очень полезный элемент для промышленности и здоровья человека.

Надеюсь, вам понравилось. Пожалуйста, поделитесь им со своими школьными друзьями. Не стесняйтесь задавать свои вопросы в разделах комментариев.

Спасибо и удачного обучения!

Химия меди — Химия LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    3722
    • Джим Кларк
    • Школа Труро в Корнуолле

    Медь относится к тому же семейству периодической таблицы, что и серебро и золото, поскольку у каждого из них есть один s-орбитальный электрон поверх заполненной электронной оболочки, которая образует металлические связи. Это сходство электронной структуры делает их похожими по многим характеристикам. Все они обладают очень высокой тепло- и электропроводностью и являются ковкими металлами. Среди чистых металлов при комнатной температуре медь имеет вторую по величине электрическую и теплопроводность после серебра.

    Введение

    Использование меди восходит к глубокой истории. Медные бусы были найдены на территории современного Ирака, датируемого 9000 годом до нашей эры. Металл относительно легко добывать и очищать, что способствует его раннему и широкому использованию. Однако, будучи мягким, он непригоден для изготовления надежных инструментов и оружия. Первые кузнецы еще за 3000 лет до нашей эры научились сочетать медь с другими металлами для получения более прочных сплавов. Латунь (медь и цинк) и бронза (медь и олово) являются двумя примерами. Символ и название меди происходят от латинского 9.0464 cuprum , что буквально означает «с острова Кипр», ранний источник медной руды.

    До 1982 года пенни США были из чистой меди. Теперь они в основном цинковые с тонкой оболочкой из меди. Большая часть добываемой сегодня меди очищается и вытягивается в проволоку для использования в электротехнической промышленности. Значительная часть также используется в производстве водопроводных труб. Медь, конечно же, имеет характерный цвет, который знаком большинству людей. Он является одним из лучших электрических проводников и устойчив к коррозии от большинства кислот (кроме азотной и горячей концентрированной серной). При воздействии элементов в течение определенного периода времени на нем образуется зеленоватый налет или патина, представляющая собой карбонат меди (II), защитное покрытие, предотвращающее дальнейший износ.

    Залежи и добыча меди

    Медь встречается как в связанном, так и в свободном состоянии, а также во многих рудах. Важными рудами меди являются медный пирит (\(CuFeS_2\)), куприт и медный глянец. Медные руды в основном находятся на севере Индии. Извлечение меди также включает в себя множество стадий. Руда, используемая для добычи, представляет собой медный колчедан, который измельчается, концентрируется и затем нагревается в присутствии воздуха. При нагревании влага удаляется, а колчедан меди превращается в сульфид железа и сульфид меди.

    \[ 2CuFeS_2 + O_2 \rightarrow Cu_2S + 2FeS + SO_2 \]

    Доменная печь предназначена для нагрева смеси обожженной руды, порошкообразного кокса и песка. В доменной печи происходят реакции окисления. Сульфид железа образует оксид железа, который соединяется с кремнеземом и образует шлак (\(FeSiO_2\)).

    \[ 2FeS + 3O_2 \rightarrow 2FeO + 2SO_2\]

    \[ FeO + SiO_2 \rightarrow FeSiO_3\]

    Сульфид меди образует закись меди, которая частично превращается в сульфид меди.

    \[ Cu_2S + 3 O_2 \rightarrow 2Cu_2O + 2SO_2\]

    \[ Cu_2O + FeS \rightarrow Cu_2S + FeO\]

    Этот сульфид меди содержит некоторое количество сульфида железа и называется штейном. Штейн удаляют из основного выхода доменной печи. Удаленный штейн переводится в бессемеровский конвертер, который внутри футерован оксидом магния. Этот преобразователь имеет трубы, через которые подается горячий воздух и \(SiO_2\). В этом конвертере \(Cu_2S\) преобразуется в \(Cu_2O\), а \(FeS\) превращается в \(FeO\). Закись железа образует шлак с \(SiO_2\). Образующийся оксид меди реагирует с Cu2S и образует медь.

    \[ 2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2\]

    Полученную медь очищают электролизом.

    Реакции ионов меди(II) в растворе

    Простейшим ионом, который медь образует в растворе, является типичный синий ион гексааквамеди(II) — [Cu(H 2 O) 6 ] 2+ .

    Реакции ионов гексааквамеди(II) с ионами гидроксида

    Ионы гидроксида (например, из раствора гидроксида натрия) удаляют ионы водорода из водных лигандов, присоединенных к иону меди. Как только ион водорода был удален из двух молекул воды, у вас остался комплекс без заряда — нейтральный комплекс. Он нерастворим в воде, и образуется осадок.

    Цветовая кодировка показывает, что это не реакция обмена лиганда. Кислороды, которые первоначально были связаны с медью, все еще связаны в нейтральном комплексе.

    В пробирке изменение цвета:

    Реакция ионов гексааквамеди(II) с раствором аммиака

    Аммиак действует как основание и как лиганд. При небольшом количестве аммиака ионы водорода отрываются от гексаакваиона точно так же, как и в случае гидроксид-иона, с образованием того же нейтрального комплекса. 9{2+} + H_2O\]

    Примечание

    Вы можете удивиться, почему это второе уравнение дается исходя из исходного гексаакваиона, а не нейтрального комплекса. Объяснить, почему осадок снова растворяется, довольно сложно. Полное объяснение вы найдете на странице о реакциях между ионами гексааква и раствором аммиака.

    Изменения цвета:

    Реакция ионов гексааквамеди(II) с ионами карбоната

    Вы просто получаете осадок того, что вы можете представить как карбонат меди(II). 9{2-} + 6H_2O\]

    Поскольку реакция обратима, вы получаете смесь цветов из-за обоих комплексных ионов. Цвет иона тетрахлоркупрата (II) можно также описать как оливково-зеленый или желтый. Если к зеленому раствору добавить воду, он снова станет синим.

    Реакция ионов гексааквамеди(II) с ионами йодида

    Ионы меди(II) окисляют ионы йодида до молекулярного йода, и в процессе сами восстанавливаются до йодида меди(I).

    9- (aq)\]

    Когда раствор тиосульфата натрия вливается из бюретки, окраска йода тускнеет. Когда почти все кончится, добавьте немного раствора крахмала. Он обратимо реагирует с йодом, образуя темно-синий комплекс крахмал-йод, который гораздо легче увидеть.

    Медленно добавляйте последние несколько капель раствора тиосульфата натрия, пока не исчезнет синяя окраска. Если вы проследите пропорции реакции с помощью двух уравнений, вы обнаружите, что на каждые 2 моля ионов меди (II), с которыми вы должны были начать, вам нужно 2 моля раствора тиосульфата натрия. Зная концентрацию раствора тиосульфата натрия, легко рассчитать концентрацию ионов меди(II).

    Некоторые важные химические вещества меди(I)

    Диспропорционирование ионов меди(I) в растворе

    Химия меди(I) ограничивается реакцией, которая протекает с участием простых ионов меди(I) в растворе. Это хороший пример диспропорционирования — реакции, при которой что-то окисляется и восстанавливается. Ионы меди (I) в растворе диспропорционируют с образованием ионов меди (II) и осадка меди. Реакция:

    Любая попытка получить простое соединение меди(I) в растворе приводит к этому. Например, если вы взаимодействуете с оксидом меди (I) с горячей разбавленной серной кислотой, вы можете ожидать получения раствора сульфата меди (I) и воды. На самом деле вы получаете коричневый осадок меди и синий раствор сульфата меди (II) из-за реакции диспропорционирования.

    \[ Cu_2O + H_2SO_4 \rightarrow Cu + CuSO_4 + H_2O\]

    Стабилизация степени окисления меди(I)

    Мы уже видели, что йодид меди(I) образуется в виде не совсем белого осадка, если добавить раствора иодида калия в раствор, содержащий ионы меди(II). Иодид меди(I) практически нерастворим в воде, поэтому реакции диспропорционирования не происходит. Точно так же хлорид меди (I) может быть получен в виде белого осадка (реакция описана ниже). Если его отделить от раствора и как можно быстрее высушить, он останется белым. Однако при контакте с водой он медленно становится синим по мере образования ионов меди (II). Реакция диспропорционирования происходит только с простыми ионами меди (I) в растворе.

    Образование комплексов меди(I) (кроме комплексов с водой в качестве лиганда) также стабилизирует степень окисления меди(I). Например, как [Cu(NH 3 ) 2 ] + , так и [CuCl 2 ] представляют собой комплексы меди(I), которые не являются непропорциональными . Хлорсодержащий комплекс образуется при растворении оксида меди(I) в концентрированной соляной кислоте. Вы можете представить, что это происходит в два этапа. Сначала образуется хлорид меди(I): 9-_{(aq)}\]

    Вы можете получить белый осадок хлорида меди(I) (упомянутый выше), добавив к этому раствору воду. Это обращает последнюю реакцию, удаляя лишний хлорид-ион.

    Авторы и авторство


    Эта страница под названием «Химия меди» распространяется по незаявленной лицензии, ее автором, ремиксом и/или куратором является Джим Кларк.