Медь электропроводность и теплопроводность: Свойства меди: плотность, теплоемкость, теплопроводность

Теплопроводность меди и применение этого качества

28.07.2022

Медь считается одним из наиболее теплопроводных материалов, конкурировать с которым может только серебро. Но оно стоит гораздо дороже, поэтому в промышленности медь нашла широкое применение в тех областях, где требуется ускоренный отвод тепла или наоборот приток тепловой энергии.

Какая теплопроводность меди

Под теплопроводностью подразумевается перемещение тепловой энергии от нагретых частиц материала к более холодным. Это происходит за счет хаотического движения молекул. По мере нагрева они начинают перемещаться еще быстрее, сталкиваясь с более медленными холодными молекулами. Благодаря этому физическому явлению и происходит передача тепла.

Был выработан единый стандарт определения характеристики ― коэффициент теплопроводности. За основу берется образец изделия толщиной 1 м с площадью поверхности 1 м². Теплопроводность равна количеству тепла, проходящему через этот образец за фиксированную единицу времени при температуре 1 Кельвин. Значение прописывается как Вт/(м·K).

Повышение температуры окружающей среды приводит к замедлению передачи тепла, поскольку вся поверхность нагревается, и наоборот. Добавление в металл примесей селена, фосфора, железа, сурьмы, кислорода снижает значение характеристики, что можно увидеть из сравнения:

  • У меди теплопроводность составляет 401 Вт/(м·K).
  • У серебра значение чуть выше ― 430 Вт/(м·K).
  • У алюминия показатель меньше в 2 раза ― 202 Вт/(м·K).
  • Железо передает тепло гораздо хуже ― 92 Вт/(м·K).
  • Титан почти не нагревается ― 21,9 Вт/(м·K).

При добавлении в медь цинка получается латунный сплав. У него способность проводить тепло гораздо хуже ― 111 Вт/(м·K), но материал более устойчив к истиранию, поэтому нашел применение в сантехнике.

Сферы применения меди из-за ее высокой теплопроводности

Повышенная характеристика меди по теплопроводности позволяет применять ее в следующих устройствах:

  • Автомобильные радиаторы. Обдуваются ветром или вентилятором для ускоренного удаления тепла из антифриза.
  • Автомобильные печки. Быстро передают тепло от охлаждающей жидкости в салон машины.
  • Радиаторы холодильников и кондиционеров. Обеспечивают правильную работу фреона, чтобы он переходил из жидкой в газообразную фазу и обратно при нужном давлении.
  • Радиаторы микросхем и компьютерного оборудования. Забирают лишнее тепло от процессоров, видеокарт и других электронных устройств. Могут быть в виде пластин или игольчатого типа.
  • Теплообменники. Встраиваются в котлы, газовые колонки для ускоренного нагрева теплоносителя. По такому же типу изготавливаются промышленные теплообменники для подогрева воды и других жидкостей.

Еще бывают медные радиаторы отопления, размещаемые в помещении. У них высокий процент отдачи тепла, только трубы к ним следует надежно изолировать (если они тоже выполнены из меди). За счет эластичности меди можно создавать очень тонкостенные теплообменники, что содействует более быстрой передаче тепловой энергии без потери герметичности.

Оставить заявку

Наша продукция

Медная
лента

Профили
фасонные

Медная
катанка

Медный
прокат

Наши сертификаты

Медь имеет высокую электропроводность и теплопроводность


На чтение 3 мин Просмотров 3 Опубликовано
Обновлено

Медь имеет высокую электропроводность и теплопроводность. По показателям этих свойств она уступает только серебру. Пластичность меди позволяет легко обрабатывать ее прокаткой, штамповкой и волочением. С развитием электротехники медь стала основным материалом для проводов, шин, контактов и других токопроводящих изделий.

Высокая теплопроводность меди позволяет применять ее во всяких устройствах, проводящих тепло – в нагревателях и холодильниках. В химической промышленности из меди делают змеевики для нагревания или охлаждения растворов, варочные котлы, трубопроводы и другие детали аппаратуры.

Даже малые примеси других элементов сильно снижают электропроводность, теплопроводность и коррозионную стойкость меди. Для полного использования этих свойств необходим металл, содержащий не более 0,05 % примесей.

Однако чистая медь слишком мягка для строительных конструкций, деталей машин и арматуры. Сплавы ее с другими металлами имеют значительно большую прочность и твердость, многие из них превосходят медь и по другим ценным свойствам, например, по коррозионным и антифрикционным.

Сплавы меди с 10–40 % Zn – латуни дешевле чистой меди. Вместе с тем они хорошо обрабатываются давлением и резанием, более прочны, тверды и стойки против коррозии. Небольшие добавки железа, алюминия и марганца в различных комбинациях придают латуням еще большую прочность и твердость, а присадки олова, алюминия, марганца и никеля усиливают антифрикционность. В виде листов, прутков, труб и разных отливок латуни широко применяются в химическом и общем машиностроении, судостроении и военной технике.

Бронзами раньше называли только сплавы меди с 6–20 % Sn, известные высокими механическими свойствами, коррозионной стойкостью и антифрикционностью. Позднее из-за дефицитности олова подобные сплавы научились получать, добавляя к меди другие металлы. Теперь, помимо оловянных бронз, широко пользуются бронзами алюминиевыми (5–11) % Аl, свинцовистыми (25–33) % Рb, кремниевыми (4–5) % Si, бериллиевыми (1,8–2,3) % Be, кадмиевыми до 1 % Cd и др. Все эти сплавы содержат небольшие количества вторичных легирующих компонентов, которые усиливают те или иные свойства меди.

Каждый вид бронзы ценен в своей области применения: алюминиевые бронзы с добавками свинца нужны для подшипников, а бериллиевые идут для изготовления пружин.

Латуни и бронзы, подобно многим другим сплавам, подразделяются на литейные и деформируемые, пригодные для литья либо для обработки давлением, прокаткой, ковкой, штамповкой, волочением.

Медноникелевые и медноникелевоцинковые сплавы: мельхиор (5–35 % Ni) и нейзильбер (5–30 % Ni и 13–45 % Zn) особенно стойки в агрессивных средах, содержащих активные химические вещества. В виде ленты, листов и проволоки эти сплавы идут на изготовление медицинских инструментов, изделий точной механики, столовых приборов, бытовых и художественных изделий.

Медь известна с древних времен – бронзовый век был периодом быстрого развития материальной культуры. Впоследствии бронзу вытеснило более дешевое и доступное железо. С возникновением крупной промышленности производство и потребление меди вновь стало быстро увеличиваться.

До 1958 г. медь занимала первое среди цветных металлов место по масштабам мирового производства. Теперь она уступает в этом алюминию, но все еще остается дефицитным металлом, требующим заменителей. В электротехнике часть меди стали заменять алюминием – менее электропроводным, но более легким. Это выгодно: расход алюминия по массе почти в два раза меньше, чем меди. На железнодорожном транспорте медь и бронзу частично заменяют цинковыми сплавами. В военной технике патронные гильзы вместо латуни начали делать из стали и только покрывают их слоем латуни – плакируют. Замена меди другими, менее дефицитными металлами и сплавами — важная проблема нашего времени.

Что такое теплопроводность?

Медь известна многими свойствами: коррозионной стойкостью, электропроводностью, противомикробными свойствами, возможностью вторичной переработки и теплопроводностью. Но что такое теплопроводность и почему она так важна для определенных отраслей? Давайте посмотрим вместе.

Вы когда-нибудь внимательно рассматривали чайник и сомневались в его конструкции? Хотя большая часть этого предмета сделана из нержавеющей стали, ручка и крышка часто изготавливаются из пластика. Почему это? Ну, причина кроется в разной теплопроводности двух материалов. Нержавеющая сталь, как и практически все металлы, хорошо проводит тепло. Это важно для чайника, так как его задача — нагревать воду. Тем не менее, вы не хотите обжечь руки при кипячении воды. Поэтому ручка сделана из пластика, так как этот материал очень плохо проводит тепло. Таким образом, чайник выполняет именно ту цель, которую он должен выполнять.

Старинный медный чайник с деревянной ручкой

Что такое теплопроводность металлов?

Теплопроводность определяется как способность передавать тепло от горячего объекта к холодному объекту. Каждый материал имеет разную теплопроводность. Это зависит от трех факторов: пористости, содержания воды и плотности. В неметаллических твердых телах теплопроводность в значительной степени основана на механическом соединении соседних атомов и связанной с этим передачей колебательной энергии.

С другой стороны, в металлах электроны проводимости в значительной степени ответственны за теплопроводность. Те же самые электроны проводимости ответственны за электронную проводимость. Они гарантируют, что металлы имеют очень хорошую теплопроводность.

Свободные электроны сталкиваются с частицами решетки. Поскольку они вибрируют более сильно в точке нагрева, они передают часть своей избыточной энергии другим электронам при ударе. Они могут свободно перемещаться в решетке металла и, следовательно, передавать ранее поглощенную дополнительную энергию частицам решетки вне точки нагрева при их столкновении с ними. Твердые тела, которые не состоят из металла, не имеют свободных электронов — поэтому они не проводят электрический ток — и поэтому гораздо хуже проводят тепло.

Медь и ее теплопроводность

Медь очень хорошо проводит электричество и используется для изготовления электрических кабелей во многих областях. Гораздо менее известно, что медь также хорошо проводит тепло. И не случайно кастрюли и сковороды из меди пользуются популярностью для приготовления пищи.

Лишь немногие материалы лучше проводят тепло, чем медь. Одним из них, например, является алмаз. Ни один другой материал не обладает лучшей теплопроводностью, чем алмаз. Алмаз достигает своей непревзойденной теплопроводности благодаря своей уникальной кристаллической структуре – схеме расположения атомов. В отличие от металлов, в алмазах тепло переносится колебаниями решетки, а не электронами проводимости.

Из-за своей высокой теплопроводности медь является популярным материалом для труб отопления.

Серебро – единственный металл, имеющий более высокую теплопроводность, чем медь. Однако он лишь незначительно выше. А поскольку и алмаз, и серебро довольно дороги для покупки, медь является наиболее часто используемым металлом для изготовления проводящих устройств. Это связано с его превосходной теплопроводностью, а также с хорошей электропроводностью, высокой температурой плавления и умеренной скоростью коррозии.

Теплопроводность в обрабатывающей промышленности

Хорошая теплопроводность делает медь востребованным материалом в промышленности. Медь является лучшим выбором там, где требуется быстрая теплопередача. Часто забывают, что медь не только превосходно поглощает тепло, но и рассеивает его. Это делает медь отличным охлаждающим материалом. Например, медь используется в теплообменниках систем кондиционирования воздуха, автомобильных радиаторах или в качестве процессорных кулеров в компьютерах. И даже в производстве пластмасс медные сплавы, такие как AMPCOLOY®, могут помочь сделать процесс более эффективным.

Хотите узнать больше о металлургии меди и сплавов на основе меди? Download now a free extract of our book «Metallurgy of Copper and Copper Alloys»

 

 

 

 

 

 

 

 

 

 


Conduction — Energy Education

Energy Education

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рис. 1. Обычные металлы, такие как медь, обладают как теплопроводностью, так и электропроводностью. [1]

Проводимость может относиться к:

  • Теплопроводность: физическое свойство тепла, проходящего через материал [2]
  • Электропроводность: физическое свойство электричества, проходящего через материал [3]

Слово проводник обычно означает материал с высокой электропроводностью (низким удельным сопротивлением). Однако большинство электрических проводников (обычно металлов) также являются хорошими теплопроводниками. [4] Например, медь является отличным проводником тепла и электричества. Простая модель, объясняющая эту взаимосвязь (хорошая концептуальная модель, но пропускающая некоторые важные детали), предполагает, что электроны в металле ведут себя как газ, который может свободно двигаться и переносить как электрический ток, так и тепло.
92}[/математика]

  • [math]\kappa[/math] — теплопроводность материала
  • [математика]\сигма[/математика] — электропроводность материала
  • [math]T[/math] — температура материала в Кельвинах
  • [math]k[/math] — постоянная Больцмана
  • [math]e[/math] — элементарный заряд электрона
  • Обратное обычно, но не всегда верно; [4] например, алмазы являются отличными теплопроводниками (даже лучше, чем медь), но обычно являются электрическими изоляторами. Хотя при очень низких температурах исследовательская группа обнаружила [6] , показывающий, что алмазы могут становиться сверхпроводниками при температурах ниже 4 К (сверхпроводимость — это, в частности, описание электропроводности, а не теплопроводности).

    Для дальнейшего чтения

    • Теплопроводность
    • Электропроводность
    • Проводник
    • Значение R
    • Волокнистая изоляция
    • Или просмотрите случайную страницу

    Ссылки

    1. ↑ Pixabay. (2013). Медная проволока [Онлайн]. Доступно: http://pixabay.com/p-113249/?нет_перенаправления.
    2. ↑ Бостонский университет. (1998). Теплопередача и первый закон термодинамики [онлайн]. Доступно: http://physics.bu.edu/~duffy/py105/notes/Heattransfer.html
    3. ↑ Университет Вирджинии. Электропроводность [Онлайн]. Доступно: http://www.virginia.edu/bohr/mse209/chapter19.htm
    4. 4.0 4.