Покрытие хромовое: Гальваническое хромирование — СПГ-Композит

Содержание

Свойства и применение хромовых покрытий

Свойства и применение хромовых покрытий

В зависимости от назначения хромовые покрытия разделяют на декоративные и функциональные. Первые наносят в виде тонких (<1 мкм) слоев на грубом промежуточном подслое, а вторые наносят прямо на стальную или другую подложку. Толщина функциональных покрытий достигает нескольких миллиметров.

Декоративное хромирование имеет огромное применение в автомобильной промышленности и многих других областях техники, где к изделиям предъявляют высокие требования как с эстетической точки зрения, так и в плане коррозионной стойкости.

Функциональное хромирование применяется для покрытия инструмента, шаблонов, форм для отливки под давлением и других деталей, подвергаемых сильному механическому износу. Широкое применение имеет функциональный хром и при восстановлении изношенных деталей машин.

Ванны хромирования

Основной составляющей ванны для хромирования является хромовый ангидрид. Кроме того, необходим так называемый катализатор, которым в традиционных ваннах является серная кислота.

В соответствии с общим правилом содержание серной кислоты по отношению к содержанию хромового ангидрида должно быть в пределах 0,8-1,2 %. В среднем принимают 1 % и, следовательно, в ванне, содержащей хромовый ангидрид (250 г/л), должно быть серной кислоты 2,5 г/л.

Ванны для хромирования имеют очень малый катодный выход по току, в основном <20 % и низкую кроющую способность.

Ванна, содержащая хромовый ангидрид (400 г/л), имеет хорошую электропроводность и, следовательно, не требует такого высокого напряжения при хромировании, как ванны с меньшим содержанием хромового ангидрида. Она рекомендуется для декоративного хромирования изделий сложной формы. Недостатком такой (концентрированной) ванны является низкий выход по току, и, следовательно, она непригодна для функционального хромирования.

Кроме классических хромовых ванн с сульфатным катализатором разработан и ряд других, например, с катализатором, состоящим из солей двух кислот — серной и и кремнийфтористоводородной ограниченной растворимости, что полезно для оптимальной работы ванны. Применение этих ванн, называемых саморегулирующимися должно бы существенно облегчить проведение хромирования ввиду того, что отпадает необходимость аналитического исследования химического состава. Однако это не совсем так, к тому же еще выявились и такие недостатки как значительная агрессивность ванны, требующая очень тщательной изоляции стальных изделий, хромирующихся частично с учетом опасности поражения стали в не изолированных местах.

Работа с растворами хромового ангидрида сопряжена с многими трудностями, обусловленными токсичностью этого вещества и трудоемкой технологией очистки сточных вод.

Необходимость применения довольно высоких температур и тока большой плотности требует оборудования ванн для хромирования эффективной вытяжной системой. Даже ванны, не находящиеся под током, но при рабочей температуре, выделяют вредные для человеческого организма пары.

Второй проблемой являются материальные потери. Большое содержание хромового ангидрида влечет за собой значительные потери за счет уноса электролита из ванны с деталями. Ванны улавливания являются неизбежной необходимостью. Нередко применяют две промывки.

Рациональным способом снижения потерь материала является применение ванны с меньшим содержанием хромового ангидрида. Следует экспериментально установить, нельзя ли для данной продукции применять ванну с меньшим содержанием хромового ангидрида, например, 200 г/л.

Универсальная ванна, пригодная для технического и декоративного хромирования, содержит: хромовый ангидрид (250 г/л) и серную кислоту (2,5 г/л). Декоративные покрытия наносят при ~50°C и средней плотности тока 25 А/дм2, а функциональные покрытия — при 55-60°С и плотности тока 45-60 А/дм2.

Подготовка ванны хромирования.

Раствор электролита готовят в запасной ванне, футерованной изнутри поливинилхлоридом. В ванну вливают половину того количества деминерализованной воды, которое будет необходимо в рабочей ванне. В воду порциями добавляют хромовый ангидрид и перемешивают до полного его растворения. С этого момента возникает проблема, сколько следует добавить серной кислоты, так как введенный хромовый ангидрид уже содержит кислоту.

На хромовый ангидрид для гальванотехнических целей существует стандарт, в соответствии с которым в хромовом ангидриде серной кислоты должно быть не больше, чем 0,4 %. На хромовый ангидрид плавленный технический перечислены четыре сорта хромового ангидрида: S, I, II и III. Содержание серной кислоты не должно превышать для сорта S — 0,1 %, для сорта I — 0,4 %, для сорта II — 0,6 % и для сорта III — 0,8 %.

На каждой упаковке должна находиться надпись с обозначением сорта хромового ангидрида. Если потребитель не знает, каким хромовым ангидридом он располагает, он должен отправить пробу приобретенного товара на анализ. Если это невозможно, то надо подготовить ванну из хромового ангидрида, не добавляя сразу серной кислоты, лишь только сахар (1 г/л).

После нагрева до рабочей температуры проводят пробное хромирование изделий, покрытых блестящим никелем. Если на поверхности появляются радужные налеты, то это означает, что в ванне недостаток серной кислоты. Необходимо добавить на каждые 100 л ванны 25 см3 20 %-ной серной кислоты. После тщательного переметывания ванны возобновляют пробное хромирование, а если радужные налеты остаются и дальше, то необходимо добавить в ванну новую порцию кислоты. Эти операции повторяют до тех пор, пока радужный налет перестает появляться и начнет осаждаться нормальное хромовое покрытие.

Встречаются поставки хромового ангидрида, содержащие >1 % серной кислоты. Это проявляется в виде низкой кроющей способности хромовой ванны. Химический анализ покажет истинную концентрацию серной кислоты, избыток которой необходимо уменьшить, добавив ~2 г карбоната бария на каждый грамм серной кислоты. Более подробные сведения приведены при рассмотрении поддержания стабильности и регенерации хромовой ванны.

Декоративное хромирование

Традиционные ванны для декоративного хромирования в 1 л содержат ~400 г СгО3 и 4 г h3SO4, что связано прежде всего с высокой электропроводностью ванны, позволяющей достигать очень большой плотности тока при относительно невысоком напряжении. Высококонцентрированные ванны характеризуются также хорошей кроющей способностью изделий сложной формы. В них блестящее покрытие образуется уже при 35—40 °C и 15—20 А/дм2, что немаловажно.

Общая тенденция к экономии материалов и снижению степени загрязнения сточных вод требует применения ванн с меньшим содержанием хромового ангидрида. Во многих мастерских с успехом применяют универсальную ванну, содержащую хромовый ангидрид 250 г/л для функционального и декоративного хромирования. Для нанесения только декоративных покрытий можно использовать ванну, содержащую хромовый ангидрид 300 г/л и серную кислоту (3 г/л), что позволит работать при 40 °С, ~20 А/дм2. Уже само снижение температуры равнозначно экономии энергии.

Декоративные хромовые покрытия наносят преимущественно на блестящий никель сразу же после никелирования и тщательной промывки. Следует избегать длительных перерывов, приводящих к высыханию никелевого покрытия под воздействием воздуха и его пассивации. Пассивированный никель активируют катодной обработкой несколько минут в ванне для электролитического обезжиривания и краткой выдержкой в разбавленной серной кислоте. При хромировании никелевых покрытий, отполированных механическим способом, активация серной кислотой обязательна.

Перед погружением в ванну детали следует подогреть в воде с температурой ванны хромирования, так как на холодной поверхности осаждается матовое покрытие. Некоторые работники без горячей промывки погружают изделие в ванну для хромирования при выключенном токе, ожидая, пока не нагреется поверхность изделий. Такой порядок хромирования допустим лишь при функциональном хромировании, когда предварительное анодное травление предупреждает пассивацию, но при декоративном хромировании передержка изделий без тока может привести к пассивации. При хромировании медных и латунных изделий, отполированных до высокой степени чистоты, предварительный нагрев в воде необходим, так как нагрев в самой ванне хромирования приводит к матовой поверхности.

Плотность тока при декоративном хромировании достигает 15—20 А/дм2, а температура 40—50 °С. Самые эффективные параметры выбираются экспериментально. В начале хромирования изделий сложной формы подают ток значительной плотности, чтобы наложить слои хрома в углубленных местах, а через несколько секунд уменьшают постепенно плотность тока до минимального значения. Следует учитывать, что начальный сильный удар током может привести к пригару покрытия в местах, находящихся близко от анодов, а поэтому параметры этого удара следует определить экспериментально.

В соответствии с основами гальванотехники следовало бы выбирать плотность тока в зависимости от величины поверхности одной загрузки. Предпосылка на первый взгляд очень простая, но в случае изделий сложного профиля подсчет поверхности затруднен.

На промышленных предприятиях этим занимаются конструкторские или технологические бюро, но в ремесленных мастерских гальваник должен рассчитывать лишь на собственную сообразительность и зрительную память, четко фиксировать показания вольтметра и амперметра, помнить требуемые значения и со временем он будет довольно неплохо обходиться без трудоемкого подсчета поверхности. Однако при серийном производстве необходимо вычислить поверхность всей загрузки, учитывая и неизолированные поверхности подвесок.

Функциональное хромирование

Целью функционального хромирования является придание поверхности металлического изделия специальных физических или химических свойств, например, большой твердости, износостойкости, сопротивления воздействию некоторых химических веществ и т. д.

Хром наносится преимущественно на стальную подложку, обработанную механически и термически. Твердость хромового покрытия полезна при очень мягкой подложке. Если твердость материала подложки невозможно повысить, то хромовое покрытие должно быть настолько толстым, чтобы самостоятельно противодействовать механическим нагрузкам.

Режущий инструмент покрывают тонкими (5—10 мкм) слоями. На самом острие хромовое покрытие сошлифовывается. Толщина хромового покрытия на формах для пластмасс 10—25 мкм. Использованные калибры покрывают избытком хрома по толщине и затем сошлифовывают до заданного размера. Подобным образом поступают с изношенными деталями машин.

Хромовые покрытия можно без труда наносить на стали и сплавы меди многих марок. Стальные детали твердостью HRC 40 перед хромированием следует термически обрабатывать для снятия внутренних напряжений. Температура 1—2 ч нагрева достигает 180—200 °С. Для обезжиривания стали применяют общеизвестные щелочные ванны. Углеродистые и молибденовые стали обезжиривают на аноде, а хромоникелевые и быстрорежущие стали — химическим способом. Часто применяют старый и апробированный метод обезжиривания в венской извести.

Химическое, а также и электролитическое обезжиривание производятся на изделиях еще перед выполнением добавочных операций, таких как изолирование, монтаж вспомогательных анодов, экранов и т, д., так как остатки обезжиривающих растворов ванн, остающиеся в щелях вспомогательных устройств отрицательно влияют на качество хромовых покрытий.

Поверхность, не подлежащая хромированию, покрывается химически стойким лаком, который, однако, при длительном хромировании не пригоден. Эффективным способом является обмотка изделий поливинилхлоридом или свинцовой фольгой. Этот последний способ оправдан в том случае, когда фольга служит в качестве добавочного катода, предупреждающего рост дендритов, на границе сталь—фольга.

Если в изделиях, предназначенных для хромирования, имеются отверстия, не подлежащие хромированию, то их следует заполнить свинцовыми пробками или пробками из пластмассы. Резина непригодна для этого, так как она растворяется в хромовой кислоте.

Низкая кроющая способность ванны хромирования требует применения точно продуманных подвесок и соответственно отформованных анодов. Неравномерная толщина покрытия, рассмотренная более подробно в гл. 1, проявляется особенно заметно в случае функционального хромирования. На ребрах и выступах, не защищенных соответствующими экранами, покрытие нарастает в виде толстого дендритного слоя. Без вспомогательных анодов углубленные места покрываются с трудом.

Острые ребра всегда склонны к образованию на них больших наростов, вот почему ребра необходимо закруглять, очевидно, с согласия конструкторов. Кроме того, необходим вспомогательный катод со свинцовой или алюминиевой проволокой. Катод не должен быть очень удален от ребра, так как в этом случае проволока покрывается хромом настолько сильно, что препятствует его осаждению на покрываемой поверхности.

Умение наиболее эффективно выбирать оборудование при техническом хромировании достигается за счет долголетней практики, в первую очередь, под наблюдением хорошего специалиста, а затем за счет самостоятельных идей, не всегда приводящих к желаемому результату, но дающих ценные указания на будущее. Важно поддержание ванны в надлежащем состоянии, так как в плохой ванне даже хороший специалист не достигнет хороших результатов.

Стальные изделия для хромирования (укрепленные на подвесках с соответствующими вспомогательными катодами, экранами и добавочными анодами) подвешивают в рабочей ванне и, не включая тока, ожидают, пока они не нагреются до температуры ванны. Затем переводят переключатель тока в положение, соответствующее соединению изделия с анодом и источником тока, и включают выпрямитель для так называемого анодного травления. При U = 6 В травление длится ~30 с. После травления необходима выдержка в несколько секунд, чтобы пузырьки кислорода, скопившиеся на поверхности изделий во время анодного цикла, оторвались, а затем можно включить катодный ток. В течение первых пяти минут подается так называемый ударный ток при напряжении 8 В, после чего напряжение постепенно снижают до получения силы тока, соответствующей данной поверхности.

Чугунные изделия очищают вручную (лучше всего смесью извести с пумексом) и без травления помещают в хромовую ванну. Вначале плотность тока поддерживают большой (80—100 А/дм2), а после нескольких минут ее постепенно уменьшают до 40—60 А/дм2.

Медные и латунные изделия нельзя выдерживать в хромовой ванне без тока, так как они подвергаются травлению, следовательно, их следует предварительно подогреть в горячей воде и загружать в ванну под током.

Эксплуатация ванн хромирования

Эксплуатация ванн хромирования на первый взгляд очень проста, однако доставляет порой много забот. Значительным облегчением была бы возможность аналитического исследования состава ванны, однако не каждая мастерская имеет соответствующую лабораторию.

Содержание основного компонента в ванне — хромового ангидрида постепенно уменьшается по следующим причинам: из-за нерастворимости анодов хром вырабатывается из ванны; электролит уносится из ванны изделиями, поступающими на промывку; значительные количества электролита уносятся вентиляционным устройством. Суммарные потери очень велики, и необходимо через определенное время пополнять ванну хромовым ангидридом.

Если окажется, что необходима добавка хромового ангидрида, то возникают такие же затруднения, как и при составлении ванны, а именно неопределенность в отношении загрязнения хромового ангидрида серной кислотой. Простой, но не дешевый способ заключается в осаждении серной кислоты карбонатом бария и добавлении очищенного таким образом хромового ангидрида в ванну без опасения превышения концентрации серной кислоты. Если это невозможно, то необходимо периодически восполнять недостаток хромового ангидрида, наблюдая одновременно при работе ванны, нет ли избытка серной кислоты.

Концентрация серной кислоты влияет на работу ванны для хромирования. Химический анализ является наилучшим показателем правильного или неправильного соотношения между серной кислотой и хромовым ангидридом. (Опытный работник гальванической мастерской, однако, может больше рассказать, исходя из собственных наблюдений).

Бронзовые и радужные налеты на поверхности хромированных изделий свидетельствуют о малой концентрации серной кислоты, и, следовательно, добавлять ее необходимо малыми порциями вплоть до исчезновения налета, одновременно доливая концентрированную серную кислоту: 10 см3 на 100 л ванны. Перед доливкой кислоты следует, соблюдая осторожность, разбавить дистиллированной водой в отношении 1 : 5. После каждой добавки кислоты ванну перемешивают и проводят пробное хромирование.

При функциональном хромировании на поверхности покрытий могут возникнуть мелкие углубления или наросты в виде песчинок. Серную кислоту следует добавлять как рекомендовано выше.

Избыток серной кислоты ухудшает кроющую способность ванны, приводит к снижению катодного выхода по току и к появлению матовых пятен на поверхности деталей. Визуально избыток кислоты проявляется по дискретному проявлению пены, вследствие сильного газовыделеиия на поверхности изделия.

Избыток серной кислоты нейтрализуют карбонатом бария. На каждый грамм серной кислоты требуется ~2 г карбоната. Его добавляют порциями в виде водяной кашицы к горячей ванне при постоянном перемешивании и включенной вентиляции. Следует помнить, что карбонат бария реагирует медленно и часть его остается в ванне, приводя к дальнейшей нейтрализации серной кислоты в виде сульфата бария. На практике следовало бы вводить карбонат бария малыми порциями и наблюдать при этом, как улучшается работа ванны.

Могут однако быть определенные затруднения с приобретением карбоната бария, необходимого для устранения избытка кислоты. В таких случаях можно поступить следующим образом. Из рабочей ванны отливают определенное количество раствора и взамен доливают дистиллированную воду с растворенным в ней хромовым ангидридом в количестве, необходимом для поддержания нормальной концентрации рабочей ванны. Можно предположить, что хромовый ангидрид настолько сильно загрязнен серной кислотой, что вместо улучшения ситуации может наступить ее ухудшение. Единственным советом является применение хромового ангидрида с известным химическим составом.

Отлитый из рабочей емкости (ванны) раствор можно использовать для побочных целей, например, для травления сплавов меди после доливки в него серной кислоты (~10 см3/л).

Для правильной работы ванны следует соблюсти соответствующее соотношение между поверхностью анода и поверхностью загружаемых изделий. Поверхность анодов должна быть в полтора раза больше. Если обстоятельства заставляют применять меньшие аноды, например, при хромировании внутренних поверхностей труб, то со временем в ванне накапливается избыточное количество трехвалентного хрома, что значительно ухудшает качество покрытий: они становятся матовыми, шероховатыми и хрупкими при одновременном ухудшении кроющей способности ванны.

Малое количество трехвалентного хрома (5 г/л) полезно влияет на работу ванны, кроме того, при составлении новой ванны добавляют сахар, который приводит к восстановлению шестивалентного хрома до трехвалентного. Сахар растворяется в воде и в таком виде доливается в ванну малыми порциями при постоянном перемешивании, так как ванна разогревается. Иногда вместо сахара применяют денатурат, но эта замена не полезна для работы хромовой ванны.

Снижение концентрации трехвалентного хрома — довольно трудоемкая операция. На анодных штангах оставляют полный комплект анодов, а на катодную вешают несколько стальных прутков. Плотность катодного тока должна достигать ~60 А/дм2, анодного — <10 А/дм2, а температура ванны ~60 °С. Переработка ванны длится от нескольких до десятков часов. С целью исключения этой длительной операции следует заботиться о стабилизации оптимальных условий хромирования ежедневно, т. е. поддерживать отношение поверхности анодов к поверхности загрузки ~2 : 1.

О загрязнении хромовой ванны избыточным трехвалентным хромом можно судить по цвету ванны. Очень темная окраска раствора, отобранного в стеклянный сосуд, свидетельствует о превышении концентрации вредного вещества и о необходимости регенерации ванны.

Вопрос о загрязнении ванны для хромирования примесными металлами выглядит иначе, чем в случае других ванн. Ванна для хромирования выдерживает без больших осложнений загрязнения железом, медью и цинком даже при нескольких (10—20) граммах на литр. Это не означает, что можно безнаказанно и постоянно допускать рост концентрации примесных металлов, тем более, что для устранения этих загрязнений не существует простых способов.

Ванна загрязняется хлоридами, когда для нее используют водопроводную воду из городской сети или такой водой доливают испарившуюся часть ванны. Немалый также вклад привносит и промывная вода, поступающая с изделий, погружаемых для хромирования.

Хлориды сужают область блеска и могут способствовать травлению металла подложки. Они служат также причиной чрезмерной коррозии анодов или свинцовой обкладки ванны. Хлориды можно удалять, добавляя в ванну оксид серебра, что не окупается, так как значительно дешевле было бы разбавить ванны дистиллированной или деминерализованной водой.

Окончательная обработка хромированных изделий

После выгрузки из ванны для улавливания большие и тяжелые изделия остаются еще теплыми и поэтому их промывают в теплой воде, так как очень холодная вода могла бы привести к возникновению трещин в хромовом слое.

После демонтажа подвесок изделие обычно уже охлаждено и его можно ополаскивать в проточной холодной воде. Пятна засохшего раствора ванны смывают 5 %-ным карбонатом натрия.

При функциональном хромировании выделяется значительное количество водорода, проникающего в покрытие и даже в подложку. Это вызывает так называемую водородную хрупкость.

С целью устранения водорода применяют 2—4 ч выдержку при 180—200 °С в печи или ванне с веретенным маслом. Не следует помещать хромированные изделия в уже нагретую до 200 °С печь, а начинать нагрев нужно со значительно более низкой температуры, например, с 60 °С, постепенно повышая температуру до заданной и только с этого момента надо отсчитывать время выдержки.

Термическая обработка — очень важная операция, оказывающая большое влияние на шлифование хромового слоя. При восстановлении деталей машин их обычно хромируют с избытком и, следовательно,возникает необходимость шлифования с целью получения заданных размеров.

Шлифование хромового слоя должен выполнять специалист по механической обработке хрома, так как неправильное выполнение этой операции может привести к шелушению покрытия, в результате чего необходимо полное удаление хрома и повторение всего процесса заново, а повторное хромирование более сложно.

Аноды для хромирования

Для хромирования применяют нерастворимые аноды, из сплава свинца с оловом или сурьмой. Чистый свинец менее пригоден, так как он более склонен к покрытию толстой и плохо проводящей пленкой хромата свинца. В гальванических мастерских, занятых хромированием, применяют преимущественно сплав PbSb7, содержащий 7 % Sb.

Форма анода влияет на его работу в ванне. Лучшими являются круглые или овальные аноды, которые однако необходимо отливать самостоятельно. При необходимости применяют плоские аноды шириной ~50 мм и толщиной 10—15 мм. Тонкие и широкие аноды с технической точки зрения невыгодны, так как на их задней поверхности трудно получить анодный ток, необходимый для поддержания анода в активном состоянии.

Закрепление анода на штанге имеет существенное значение. Часто применяемый способ, заключающийся в загибке анода и навешивании на штанге не обеспечивает хорошего прохождения тока. К аноду следует прочно припаять крюк из медной полосы шириной ~30 мм и толщиной 6—8 мм с резьбой под винт для прижима его к плоской токовой штанге. Полезно покрыть соединение химически стойким лаком.

Новые аноды следует формовать следующим образом. На катодную штангу навешивают стальные полосы, включают ток, добавляют напряжение до 5 В, а на анодных штангах размещают аноды один за другим, повышая постепенно напряжение до 8 В. В этих условиях проводят электролиз в течение часа, что достаточно для образования слоя диоксида свинца черно-бронзового цвета, характерного для анодов, работающих нормально.

Если на анодах образуется желтый налет, то его следует устранить, сначала смягчая в 25%-ном растворе поваренной соли, в течение ночи, затем, устраняя шлам стальными щетками. При сухой очистке анодов образуется очень вредная для человеческого организма пыль. Очищенные аноды, как и новые, обрабатывают током под большим напряжением.

В случае длительного перерыва в работе, например, по случаю отдыха, аноды следует вынуть из ванны, промыть и протереть волосяной щеткой, высушить и оставить на воздухе. Во время более коротких перерывов в работе, например, в течение ночи, изъятие анодов обременительно, поэтому их оставляют в ванне, а перед началом хромирования активируют, т. е. работают ~30 мин.при напряжении 8 В после навешивания на катодной штанге стальных листов или прутков.

Вспомогательные аноды изготовляют из легкоизгибаемого тонкого свинцового листа или свинцовой проволоки. Иногда вспомогательные аноды изготовляют из стали или никеля, но они служат один раз, так как сильно травятся во время электролиза.

Снятие хромовых покрытий

Широко применяемый способ снятия хрома заключается в химическом его растворении 50 %-ной НСl при 30—35 °С.

Тонкие декоративные покрытия, осажденные на блестящем никеле, растворяются очень быстро, о чем свидетельствует прекращение выделения газовых пузырьков. После промывки никелированные изделия можно хромировать заново.

Более толстые покрытия функционального хрома удаляют в соляной кислоте под контролем, так как чрезмерно длительная выдержка в кислоте может привести к глубокому травлению стальной подложки.

Электролитический метод анодного удаления хрома состоит в обработке в ванне, содержащей NaOH (100—150 г/л), при 20—30 °С, 4—6 В и катодах из стали.

Если ванна для анодного удаления хрома загрязнена хлоридами, что часто наблюдается при использовании водопроводной городской воды, то нарушается гладкость стальной подложки, особенно при удалении толстых функциональных покрытий.

Для удаления декоративного хрома на никелевом подслое анодная обработка непригодна, так как приводит к пассивированию никеля. В некоторых мастерских хромовые покрытия удаляют в промышленной ванне для хромирования, навешивая хромированные изделия на анодную штангу. Эта технология нежелательна, так как хром растворяется в виде трехвалентного металла и после определенного времени ухудшает работу хромовой ванны.

Инжиниринговые компании, инжиниринговые услуги, развитие предприятий, продвижение решений, оборудования, услуг

Контакты:   +7(495)380-19-85 или [email protected]

Наноалмазное износостойкое хромовое покрытие

Что это такое?  Инновационная технология нанесения износостойкого алмазно-кластерного покрытия (наноалмазный хром) обеспечивает более высокие значения характеристик износостойкости, микротвёрдости и адгезии по сравнению с существующими гальваническими покрытиями. Ноу-хау технологии заключается в управлении технологическими параметрами процесса нанесения с целью формирования на изделиях металл-алмазных покрытий со свойствами, заданными для конкретных условий эксплуатации.

В чем особенность?  Ключевой особенностью технологии является возможность ее тиражирования на существующих гальванических линиях без существенного изменения состава оборудования для нанесения традиционных хромовых покрытий при обновлении на предприятии измерительной базы и системы контроля качества.

Как это работает?

Принцип действия износостойкого покрытия

В основу технологии нанесения защитного покрытия положен способ, сущность которого заключается в изменении механизма осаждения металла, в частности хрома, за счёт введения в электролит коллоидных частиц кластерного (ультрадисперсного) наноалмаза. Кластерные материалы (наноалмазы) существенно меняют процесс гальванического осаждения металлов, что, в свою очередь, изменяет структуру износостойкого покрытия. Вследствие этого качественно улучшается адгезия хрома и достигается полное копирование микрорельефа покрываемой поверхности, что значительно увеличивает предельные напряжения сдвигового и нормального отрыва гальванического покрытия от основы.

Получение наноалмазного хрома основано на способности наноалмазов размерами 4-6 нм соосаждаться с металлами при их электрохимическом и химическом восстановлении из растворов их солей. Это приводит к образованию двухфазного композиционного электрохимического покрытия, состоящего из металлической матрицы и внедренных в нее дисперсных частиц наноалмазов.

В чем преимущества?

Преимущества наноалмазного гальванического покрытия:


Сцепление с материалом поверхности на уровне прочности базового металла. Нанесение осуществляется на любые углеродистые, инструментальные, штамповые стали, чугун, медь, латунь. 

Стоимость покрытия при этом (за счёт уменьшения толщины) снижается в 2-3 раза по сравнению со стандартными гальваническими покрытиями.

Где это применяется?

Любые элементы промышленного оборудования, за исключением материала «твердосплав»:

  •    детали узлов трения машин и механизмов
  •    фильеры станков-экструдеров
  •    фильеры для волочильного оборудования
  •    пресс-формы
  •    матрицы
  •    пуансоны в т.ч. для монет и медалей
  •    свёрла, метчики, долбяки, резцы
  •    металлорежущие фрезы

Пластиковое хромирование — вакуумная металлизация

Что такое пластиковое хромирование?

Многие ошибочно думают, что хромировать можно только металлические детали. Однако хромирование пластика позволяет придать пластиковой детали тот же блеск, что и традиционной хромированной детали.

Процесс хромирования пластика

К сожалению, хромирование пластика не так просто, как нанесение слоя хрома на деталь. Как правило, мы сначала покрываем деталь слоем меди или никеля посредством процесса, называемого гальванопокрытием. Это означает, что мы не используем электрический ток для нанесения покрытия. Нанесение этого покрытия делает деталь эластичной, что позволяет впоследствии нанести хромирование.

Думайте об этом как о грунтовке, которую вы наносите на стену перед покраской. Этот базовый слой подготавливает деталь к методам гальванического покрытия, которые мы используем для нанесения хромового покрытия. Без него мы не сможем привязать хромирование к пластиковой детали.
Как правило, весь процесс состоит из следующих шести шагов.

Шаг 1 – Травление

Погружаем деталь в емкость, содержащую смесь концентрированной серной и хромовой кислот. Во время этого процесса кислотная смесь вытравливает серьезные микроскопические отверстия вдоль поверхности пластиковой детали. Именно эти крошечные отверстия будут содержать металлическое покрытие, нанесенное в процессе гальванического покрытия.

Этап 2 – Нейтрализация

После извлечения детали из кислотной смеси погружаем ее в щелочную смесь. Это нейтрализует кислоты, чтобы они не продолжали разъедать пластиковую деталь. Эта нейтрализация также имеет решающее значение для обеспечения того, чтобы оставшиеся кислоты не нарушали процессы металлизации в дальнейшем.

Этап 3 – Катализирование и ускорение

Мы наносим каталитическую пленку на поверхность пластиковой детали, чтобы подготовить ее к процессу гальванического покрытия. Однако, прежде чем мы это сделаем, мы также должны погрузить деталь в последнюю ванну, которая удалит все химические вещества, оставшиеся после предыдущих процессов. Эта ванна также ускоряет пленку, а это значит, что она гораздо быстрее будет реагировать на металлическое покрытие, которое мы наносим на деталь.

Этап 4. Химическое покрытие

Мы используем описанную выше технику химического покрытия для нанесения очень тонкого слоя меди или никеля на деталь. Цель этого сделать деталь токопроводящей, что позволит принять хромирование.

Этап 5 – гальваническое покрытие

По завершении процесса нанесения покрытия без электроосаждения мы наносим отрицательный заряд на новое металлическое покрытие. Затем мы погружаем отрицательно заряженную часть в резервуар с положительно заряженными ионами хрома. Эти ионы притягиваются к отрицательно заряженному слою меди или никеля, что заставляет их прикрепляться к детали. После присоединения ионы возвращаются к своей нейтральной металлической форме. Это гарантирует, что слой хромированной пластины останется ровным.

По завершении процесса гальваники снимаем деталь с хрома и даем ей остыть.

Этап 6. Проверка качества

Мы проводим тщательную проверку качества детали, чтобы убедиться, что процесс выполнен правильно. Эта проверка проверяет ровность хромового покрытия, а также гарантирует, что процесс не привел к каким-либо несоответствиям в самой детали.
Для больших производственных циклов мы используем процесс отслеживания ошибок, чтобы гарантировать исправление любых ошибок до того, как они затронут всю партию.

4 типа хромовых покрытий

by Jane McMullen 20 апреля 2020 г.

Хромирование — это метод, который заключается в гальванопокрытии тонкого слоя химического элемента на металле для обеспечения защиты от износа и коррозии. Эта популярная процедура использует хромовое вещество для покрытия различных металлических поверхностей и используется для широкого спектра творческих и промышленных целей. К ним относятся гидравлические цилиндры и поршни, автомобильные и механические детали, пресс-штампы и инструменты, горнодобывающая и сельскохозяйственная техника, валы и роторы, текстиль и печатные инструменты, а также пресс-формы и винты.
Вот четыре различных типа приложений хрома. Все четыре могут обеспечить долговечность и устойчивость к коррозии, износу и ударам, сохраняя при этом элегантный дизайн.

1. Твердое хромовое покрытие

Твердое хромирование — это электролитический метод, при котором хром осаждается на нижележащий слой. Может наноситься на все природные технические сплавы, обеспечивая высокий уровень сцепления с подложкой. Твердый хром повышает долговечность, износостойкость и твердость, в то же время создавая низкий элемент сопротивления, что делает его лучшим выбором для использования металла и скольжения по металлу. Твердое хромовое покрытие часто наносится на внешние поверхности для упрощения последующей обработки и достижения большей пористости благодаря его толщине. 2. Хромовое покрытие без трещин

2. Хромовое покрытие без трещин

Хромирование гальванопокрытием представляет собой улучшенную версию твердого хрома, устойчивую к коррозии и применимую для пестрых и неоднородных форм. Хромовое покрытие без трещин можно использовать даже при низких температурах с широким спектром металлов, включая нержавеющую сталь, медь и латунь. В то время как все хромированные покрытия можно использовать на мягких и твердых поверхностях, этот подход больше подходит для более твердых поверхностей, где практически отсутствует опасность отслоения или отслаивания.

3. Декоративное покрытие

Декоративное покрытие имеет более ограниченные функции, чем твердое хромирование, но играет решающую роль в ряде отраслей. Несмотря на его пониженную прочность и долговечность, он по-прежнему обеспечивает тонкое защитное покрытие при использовании на автомобильных деталях, инструментах, кухонной утвари и музыкальных инструментах. Декоративное хромирование также защищает металлы от ржавчины и износа, особенно когда они находятся во влажных или коррозионных условиях. Он обеспечивает гладкую и блестящую поверхность, которую легко чистить, что делает его идеальным решением для некоторых потребительских товаров. Декоративное хромирование очень удобно из-за его крошечного размера по сравнению с более прочным твердым хромированием.

4.