Разновидности электродов: Виды сварочных электродов. Какие марки применять в конкретном случае

Содержание

Сварочные электроды | Классификация и типы электродов для сварки

Добиться нужного качества сваривания невозможно без правильного выбора электродов. Избежать ошибки поможет четкое понимание рынка. Необходимо знать о видах продукции от разных производителей, рекомендациях относительно применения конкретной марки, принципах маркировки электродов.

СОДЕРЖАНИЕ

  • Назначение сварочных электродов
  • Какие бывают электроды для сварки
  • Классификация электродов согласно ГОСТу 9466-75
    • Виды электродов по назначению
    • По толщине покрытия
    • Типы покрытия электродов
    • По пространственному расположению наплава
    • По виду и полярности тока
  • Из чего состоит электрод для сварки
    • Плавящиеся и неплавящиеся электроды
    • Электроды для точечной сварки
  • Виды и состав обмазки сварочных электродов
  • Правила маркировки
  • Сушка и прокалка электродов
  • Как научиться варить

Назначение сварочных электродов

Роль электродов сводится к формированию дуги в электродуговой сварке. Качество электродов напрямую влияет на эффективность работы и результат. Насколько стабильной будет дуга, как глубоко прогреется металл, легко ли разжечь дугу и другие нюансы во время сварки определяются выбором электродов. Они должны:

  • поддерживать во время работы стабильную дугу;
  • плавиться равномерно;
  • формировать аккуратный шов с нужным химическим составом;
  • создать условия для минимизации разбрызгивания раскаленного металла;
  • способствовать повышению эффективности сварочных работ;
  • обеспечивать прочность стыка;
  • обладать низкой степенью токсичности.

Помимо этого, должен легко удаляться шлак, который образуется в процессе сварочных работ.

Какие бывают электроды для сварки

Все представленные на отечественном рынке электроды делятся на типы, которые предназначаются для работы с различными металлами. Есть отдельная группа продукции для сварки по разным маркам стали, по чугуну, цветным металлам, алюминию и его сплавам. Благодаря такому делению сварщику легче выбрать оборудование и оптимальный режим при работе с конкретным металлом. Есть еще и отдельная группа электродов, которые используются исключительно для так называемой «наплавки металлов».

Особенности ручных технологических операций тоже являются определяющим фактором, который влияет на классификацию электродов. Ведь сварочные работы могут выполняться с разным расположением электрода, степенью проплавления металла, глубиной сварочной ванны и другими особенностями.

Толщина электрода определяет его принадлежность к изделиям тонким (М), толстым (Д) или среднего размера (С). В зависимости от типа обмазки продукция делится на четыре группы:

  • кислая – маркируется А;
  • целлюлозная – Ц;
  • основная – Б;
  • рутиловая – Р;
  • комбинированная или смешанная. Маркируется в зависимости от того, какие виды обмазок использованы – РБ, РЦ, АР или другое.

Если электрод обладает покрытием, которое выходит за рамки приведенной классификации, он обозначается буквой «П» – прочие. В состав обмазки включаются добавки, которые предназначаются для улучшения качества сварного шва из конкретного материала. К примеру, рутиловое покрытие электрода препятствует образованию пустот и трещин в области сварного шва. Еще электроды классифицируются в зависимости от полярности питающего тока, величины напряжения, диаметра, длины стержня.

В случае возникновения крайней необходимости электроды можно изготовить самостоятельно. Для этого понадобится стальная проволока диаметром в диапазоне от 1,6 до 6 мм. Из нее делаются отрезки длиной около 35 сантиметров. Для обмазки подойдет смесь мела и силикатного клея.

Классификация электродов согласно ГОСТу 9466-75

Предназначенные для ручной дуговой сварки металлические покрытые электроды делятся на группы по нескольким параметрам: назначению, химическому составу и механическим свойствам, толщине и виду нанесенного покрытия. Помимо этого, принимаются во внимание и сварочно-технологические показатели.

Для улучшения качества и увеличения скорости работ, вы всегда можете воcпользоваться нашими сварочными столами собственного производства от компании VTM.

Виды электродов по назначению

В зависимости от сферы использования продукция предназначается:

  • для работы с углеродистыми или низкоуглеродистыми материалами, степень сопротивления на разрыв которых не превышает 600 Мпа. Они маркируются литерой «У»;
  • для соединения заготовок из конструкционной легированной стали, сопротивление на разрыв которых не превышает 600 Мпа. Электроды маркируются буквой «Л»;
  • для сваривания легированной стали, устойчивой к высоким температурам. Продукты обозначаются литерой «Т»;
  • для сварки высоколегированной стали, обладающей особыми характеристиками. Визуальный маркер — буква «В»;
  • для создания наплавляемого слоя на поверхности материалов с особыми свойствами. Электроды имеют обозначение — литеру «Н».

Перечисленными стандартами электроды разделяются на типы в зависимости от химического состава наплавленного металла и в соответствии с механическими характеристиками обрабатываемого материала. В маркировке присутствуют цифры, обозначающие минимальное сопротивление на разрыв в кгс/мм2: Э42, Э42А, Э50 и другие. Буква после цифрового маркера обозначает высокие пластические характеристики, хорошую вязкость и ограничения по химическим составляющим.

По толщине покрытия

По данному показателю предусмотрено деление продуктов с учетом соотношения D/d, где D соответствует диаметру покрытия, а d — величине окружности металлического стержня. Принято различать электроды по толщине покрытия:

  • тонкое. Соотношение диаметров меньше 1,2. Маркируются буквой «М»;
  • среднее. Результат находится в диапазоне 1,2 < х < 4,5. Обозначаются литерой «С»;
  • толстое. Коэффициент меньше 1,8, но больше 1,45. Маркер — «Д»;
  • особо толстое. Число, полученное от деления двух диаметров, выше 1,8. Маркировка «Г» является отличительной особенностью продукта.

Согласно положениям ГОСТа 9466 — 75 предусмотрено деление на три группы, которые отличаются по качеству. Оно определяется состоянием покрытия, точностью исполнения покрытия и стержня, содержанием фосфора и серы в наплаве.

Типы покрытия электродов

Значения приведены в таблице ниже:












Тип покрытияОбозначение по ГОСТ 9466-75Международное обозначение ISO
КислоеАA
ОсновноеБB
РутиловоеРR
ЦеллюлозноеЦC
Смешанные покрытия
Кисло-рутиловоеАРAR
Рутилово-основноеРБRB
Рутилово-целлюлозноеРЦRC
Прочие (смешанные)ПS
Рутиловые с железным порошкомРЖRR

 

По пространственному расположению наплава

Электроды следует подбирать в зависимости от пространственного расположения стыка:

  • рекомендуется для работы в любом положении — обозначается «1»;
  • допускается расположение сварного шва в любом положении кроме направления сверху-вниз — «2»;
  • для следующего пространственного расположения: вертикаль, горизонталь, низ и вертикаль снизу-вверх — «3»;
  • для работы в нижнем положении, в том числе способом в лодочку — «4».

По виду и полярности тока

Все значения собраны в виде таблицы:













Рекомендуемая полярность постоянного токаНапряжение холостого хода источника переменного тока, ВОбозначение
Номинальное напряжениеПредельное отклонение
Обратная0
Любая50±51
Прямая2
Обратная3
Любая70±104
Прямая5
Обратная6
Любая90±57
Прямая8
Обратная9

 

Из чего состоит электрод для сварки

По большому счету электрод представляет собой отрезок проволоки, по которому во время сварки проходит электрический ток. Поверхность укрыта специальным химическим составом, определяющим свойства продукта. Есть электроды, которые представляют собой только кусок проволоки и не имеют дополнительного покрытия. Они так и называются — непокрытыми.

Плавящиеся и неплавящиеся электроды

Стержень внутри электроды выполнен из металлического и реже — из медного прутка. Его задача состоит в том, чтобы заполнить сварочною ванну расплавом, соединяющим две заготовки между собой. Обмазка вокруг металлического стержня определяет химические характеристики электрода и содержит вещества, улучшающие качество шва.

Неплавящиеся электроды изготавливают из порошкообразных материалов. Наиболее часто используется уголь или вольфрам. Они повышают качество сцепления соединяемых частей. Шов формируется без расплава металлического стержня, а материал электрода расходуется как присадочная проволока. Наиболее распространенный материал, который применяется в производстве таких электродов — аморфный уголь. Готовый продукт представляет собой удлиненный овальный стержень.

Такого рода угольные электроды применяются для формирования швов с высокими эстетическими показателями. Они востребованы и для воздушно-дуговой резки толстых металлических заготовок.

Электроды для точечной сварки

Отдельно нужно уделить внимание оборудованию, предназначенное для точечной сварки. Особенности технологии заключаются в том, чтобы сохранить начальную форму соединяемых частей и обеспечить нужную степень электропроводности.

Для решения задач подобного рода предусмотрены специальные аппараты, работающие без привычных электродов. Их роль замещена специальными медными контактами, выполненными в форме заостренных стержней. В домашних условиях такие контакты можно изготовить самостоятельно. К примеру, приспособить отработанные жала от мощных паяльников.

Виды и состав обмазки сварочных электродов

Для ручной дуговой сварки применяются электроды, состоящие из стержней длиной 25-45 см, на поверхность которых нанесен слой специального покрытия. На рынке представлено их несколько классов:

  • стабилизирующие. В своем составе имеют элементы, которые отлично ионизируют сварочную дугу. В большинстве своем покрытие наносится на стержни тонком слоем — тонкопокрытые электроды;
  • защитные. Покрытие выполнены из смеси разных материалов. Основная задача состава — защитить зону расплава от воздействия атмосферного воздуха. Помимо этого, они способствуют стабильному горению дуги, рафинируют и легируют шов;
  • магнитные. Наносятся на стержень непосредственно в процессе выполнения сварочных работ. Напыление осуществляется под воздействием электромагнитных сил, которые образуются между проволокой под напряжением и ферримагнитным порошком, засыпанным в специальный бункер. Проволока или стержень подаются в сварочную зону именно через этот бункер.

Существуют такие основные виды электродных покрытий:

  • руднокислые. В их составе есть окислы марганца и железа, кремнезема и много ферромарганца. Чтобы создать защитную среду в состав включаются органические вещества — крахмал, древесная мука, целлюлоза и прочие;
  • рутиловые. Становятся все более популярными, благодаря развитию технологий по добыче рутиловых минералов. Основной его компонент — двуокись титана (TiO2). Помимо рутила в покрытиях содержатся и другие элементы: карбонаты калия и магния, ферромарганец, кремнезем;

  • фтористо-кальциевые. В состав включены карбонаты кальция и магния, ферросплавов и плавикового шпата;
  • органические. В составе преимущественно органические соединения. Чаще всего используется оксицеллюлоза с добавлением шлакообразующих материалов, раскислителей и легирующих присадок.

Правила маркировки

Для маркировки всех типов существующих электродов используется определенная схема. Согласно ее построению, первая цифра определяет тип электрода, следующая позиция информирует о марке продукта, а за ней следует обозначение диаметра.

Четвертой в данной схеме идет шифр, определяющий назначение, а пятым – толщину покрытия. Шестым расположен шифр, который характеризует сварочный шов или наплав металла. Далее можно прочитать информацию о покрытии стержня. Восьмая позиции предоставляет сведения о пространственном расположении электрода во время сварки, а девятая – о напряжении и виде тока.

Для большего понимания стоит рассмотреть конкретный пример:

Первые четыре символа «Э46А» несут информацию о виде электродного стержня. Расшифровывается она так:

  • Э – предназначен для электродугового способа сваривания;
  • 46 – единица сопротивляемости разрыва дуги согласно нормативов ГОСТ 9467-75;
  • А – усовершенствованный класс стержня.

Следующий в маркировке индекс «У» обозначает то, что электрод может использоваться в работе с легированной и низкоуглеродистой сталью. «Д2» присвоена второй группе продуктов по толщине покрытия.

Маркировка в знаменателе 432(5) – это параметр наплавленного соединения, которое формирует шов. «Б» — тип покрытия электрода основной. Положение электрода во время выполнения работ соответствует значению «1». Токовый режим «0» — это обратная полярность постоянного тока.

Ниже приведена таблица о значении маркировок покрытия металлического стержня:











Тип покрытияМаркировка по ГОСТ 9466-75Международная маркировка по ISOМаркировка по старому ГОСТ 9467-60
кислоеАAР (руднокислое)
основноеБBФ (фтористокальциевое)
рутиловоеРRТ (рутиловое (титановое))
целлюлозноеЦCО (органическое)
смешанные типы покрытия
кислорутиловоеАРAR 
рутилово-основноеРБRC 
смешанные прочиеПS 
рутиловые с железным порошкомРЖRR 

 

Сушка и прокалка электродов

Во время транспортировки или хранения электроды могут отсыреть. В таком случае нужна предварительная сушка, а еще лучше – прокалка. Это очень важная процедура, которая в конечном итоге положительно влияет на загорание дуги.

Не стоит часто прибегать к прокалке электродов, поскольку неоднократное нагревание способно повредить покрытие стержня. Подвергать процедуре желательно только требуемое для текущих работ количество электродов. Или же их должно остаться совсем немного.

Прокалывание практично еще и тем, что поднимает температуру электродов непосредственно перед работой. Это важно, например, для сварки труб или при работе с толстыми заготовками. Предварительный прогрев дает возможность получать герметичные стыки во время «сварки под давлением». Но следует иметь ввиду, что важен постепенный нагрев. При резком перепаде температуры не исключено образование известкового налета.

Прокалка связана с предельными сроками и длительностью хранения электродов. Согласно общепринятым нормативам максимальный срок годности отечественной продукции составляет пять лет. На практике электроды могут храниться несколько дольше, не теряя при это своих характеристик.

Как научиться варить

Практика и еще раз практика – это наиболее действенный способ обучения сварочным работам. Несложный с теоретической точки зрения процесс требует навыков и профессиональной ловкости. На первых порах можно просто наблюдать, как работы выполняют специалисты, чтобы потом использовать их приемы самостоятельно.

Держатель нужно брать так, чтобы не заслонять обзор зоны сварки. Потом нужно наклонить электрод по отношению к рабочей поверхности под углом 30 градусов. Делается несколько скользящих движений электродом по детали, чтобы инициировать розжиг дуги. В этот момент важно выдержать расстояние между стержнем и заготовкой, чтобы не разорвать дугу и не допустить «залипание» электрода.

Через небольшой промежуток времени в зоне сварки появится красное пятно – результат плавления флюса. Примерно через 2-3 секунды посредине красного пятна проявится оранжевый цвет. Его яркость будет заметно выше, а по краям проявляется мелкая рябь. Именно эта часть называется сварочной ванной – место, где металл расплавляется и после остывания формируется сварочный шов.

Читайте также: Маркировка электродов для ручной дуговой сварки

Виды электродов с покрытием и их применение

Главная |

Статьи |

Виды электродов с покрытием и их применение

Ассортимент плавящихся электродов с покрытием для ручной сварки довольно разнообразен. Все разновидности выпускаемой продукции имеют вид прутков. Все они обладают достоинствами и недостатками и подбираются в зависимости от условий работы и требуемого результата.


Согласно ГОСТу и ISO, электроды подразделяются по составу покрытия на несколько групп. По названию каждой группы можно определить, какие именно компоненты преобладают. Разбираясь в маркировке и обладая необходимыми знаниями, можно добиться высокого качества шва и прочности соединения.

ВИДЫ ПОКРЫТИЙ И ИХ МАРКИРОВКА


Кислые покрытия (А) состоят в основном из шлакообразующих оксидов железа, марганца, кремния, с небольшим включением оксида алюминия. Газообразующими добавками служат органические вещества, например, крахмал или целлюлоза, а связующим — жидкое стекло. Образующийся при плавлении шлак имеет характерные кислотные свойства, что и дало название этой группе.


Главными компонентами основных или щелочных покрытий (Б) являются мрамор и плавиковый шпат, в состав которых входят кальций и фтор. Для образования при сварке шлака вводятся рутил и кварцевый песок. При разложении мрамора выделяется углекислый газ, защищающий дугу и сварочную ванну от попадания воздуха. Для стабильности горения применяются добавки карбонатов и щелочных металлов. Этот вид покрытий называется основным, так как в результате плавления образуется шлак с ярко выраженными основными свойствами.


В составе целлюлозных покрытий (Ц) содержится более 50 % целлюлозы и других органических компонентов, служащих для газообразования. В процессе сварки выделяется окись углерода и водород.


Рутиловые покрытия (Р) на 50 % и более состоят из оксида титана — рутила, который является шлакообразующим веществом. В качестве добавок используются карбонаты, полевой шпат, каолин. Рутиловые составы могут применяться в смеси с любыми другими видами покрытий. Получающаяся в результате этого продукция маркируется двумя буквами в соответствии с компонентами: АР, РБ, РЦ. К рутилу также добавляют порошкообразное железо. Такое покрытие маркируется буквами РЖ.

ПРЕИМУЩЕСТВА ЭЛЕКТРОДОВ С ПОКРЫТИЕМ И ИХ ПРИМЕНЕНИЕ

Электроды с кислым покрытием (А) не имеют в составе дорогостоящих компонентов. Они характеризуются стабильным горением дуги и подходят для сварки как постоянным, так и переменным током. Кислое покрытие обладает стойкостью к увлажнению и прочностью к механическому воздействию. К недостаткам продукции этого вида относят разбрызгивание металла и повышенное выделение токсинов, вызывающих силикоз. Образующийся шов имеет невысокую пластичность и склонность к старению. По механическим характеристикам он сопоставим с марками кипящей стали невысокой прочности. Этот вид электродов не подходит для сварки высоколегированной стали и стали с высоким содержанием углерода и серы. Они применяются для конструкций с невысокой нагрузкой.

Электроды с щелочным покрытием (Б) позволяют получить шов, сопоставимый по свойствам со спокойной сталью с повышенными механическими характеристиками и пластичностью. При необходимости в покрытие можно добавлять легирующие компоненты для придания соединению особых свойств. Электродами удобно работать в любом пространственном положении. Лучше всего основные электроды подходят для сварки постоянным током. Для работы с аппаратами на переменном токе выпускается продукция с сильными стабилизирующими компонентами. Без них постоянной дуги добиться сложно. Основные покрытия гигроскопичны, поэтому эти электроды требуют соблюдения правил хранения. В их состав входят дорогостоящие компоненты, что отражается на цене. Электроды применяются при сварке ответственных конструкций, для получения жестких соединений. Они подходят для работы с углеродистой и легированной сталью.

Электроды с целлюлозным покрытием (Ц) характеризуются стабильностью дуги и подходят для работы на любом токе и во всех пространственных положениях. Этот вид продукции предпочтителен для сваривания тонколистовых деталей. При этом нужно учесть, что покрытие не обеспечивает достаточной защиты от воздуха и отличается высоким влагопоглощением. Металл при сварке сильно разбрызгивается. Электроды с целлюлозным покрытием востребованы для работ на газонефтепроводах.

Рутиловое покрытие (Р) не выделяет токсичных веществ и поддерживает стабильную дугу при любом токе. Металл при сварке не разбрызгивается, а шов образует плавный переход к свариваемым деталям. Прочность соединения выше, чем при работе с кислым электродом, но и стоит рутиловая продукция дороже. Применяют ее для сварки низколегированной стали. Для повышения прочности шва без излишних затрат для работы используют электроды с кисло-рутиловым покрытием (АР).

Электрод — Введение, типы и использование

Электроды являются хорошими проводниками электричества. Электроды используются для обеспечения контакта между неметаллическими частями цепи, такими как электролиты, полупроводники, воздух и т. д. Слово «электрод» состоит из двух греческих слов «электрон», что означает «янтарь», и «капюшон», что означает «прочь». Слово Электрод было придумано Уильямом Уэвеллом.

 

Что такое электрод?

Электрод можно определить как точку, в которой ток входит или выходит из электролита или цепи. Когда ток выходит из электрода, он известен как катод, а когда ток входит в электрод, он известен как анод.

Электроды являются основным компонентом электрохимических элементов. Электрод должен быть хорошим проводником электричества. Хотя существуют и инертные электроды, которые не участвуют в реакции. Электрод может быть из золота, платины, углерода, графита, металла и т. д. Электрод обеспечивает поверхность для окислительно-восстановительных реакций в клетках.

 

Катод и анод в электрохимических элементах

В электрохимическом элементе электрод называется катодом или анодом. Анод можно определить как электрод, на котором электроны покидают ячейку и происходит окисление, а катод можно определить как электрод, на котором электроны входят в ячейку и происходит восстановление. Любой из двух электродов может стать анодом или катодом в зависимости от направления тока через ячейку. Электрод, который может функционировать как анод в одной ячейке и как катод в другой, называется биполярным электродом.

Первичные элементы – это такие электрохимические элементы, в которых происходят необратимые реакции; вот почему эти тождества катода и анода фиксированы. В этих ячейках анод всегда будет отрицательным, иначе в этот момент произойдет окисление. При этом катод всегда будет положительным или при такой скорости будет происходить снижение. Примером первичной ячейки является гальванический элемент.

Аккумуляторы или электролитические элементы перезаряжаемые; это означает, что в этих клетках происходят обратимые химические реакции. В этих ячейках анод всегда положительный, а катод всегда отрицательный.

 

Типы электродов

Электроды в основном бывают двух типов – реактивные электроды и инертные электроды 

Реактивные электроды – это те электроды, которые принимают участие в реакции, протекающей в ячейке, и могут растворяться в электролите. Примеры реактивного электрода — медный электрод, серебряный электрод, цинковый электрод, медный электрод и т. Д. Они в основном используются в потенциометрической работе.

Инертные электроды – это такие электроды, которые не участвуют в реакции. Примеры инертных электродов – угольный электрод, платиновый электрод и т. д.

 

Использование электродов

  • Электроды используются для обеспечения контакта между неметаллическими компонентами цепи в ячейке.

  • Электроды используются для измерения проводимости.

  • Используются в топливных элементах транспортных средств.

  • Они используются в медицинских целях, таких как ЭЭГ, ЭКГ, ЭСТ и дефибриллятор.

  • Они используются для электрофизиологических методов в биомедицинских исследованиях.

  • Используются при изготовлении электрических стульев.

  • Используются для гальваники.

  • Используются для дуговой сварки.

  • Используются для заземления.

  • Используются в электрохимии.

  • Используются для химического анализа веществ.

  • Используются в сборке мембранных электродов.

  • Используется в электрошоковом оружии.

Вы также можете прочитать другие связанные статьи, доступные на Vedantu, такие как «Катод и анод», «Электрохимическая ячейка» и т. д. Если вы хотите получить бесплатные PDF-файлы с решениями NCERT, заметками о пересмотре, учебными материалами, зарегистрируйтесь на Vedantu или загрузите обучающее приложение Vedantu. для классов 6-10 IIT JEE и NEET.

Электрод – типы, определение, применение

Что такое электрод в химии?

Электрод представляет собой тип электронного проводника, обычно из металлов, частично погруженных в раствор электролита, и передает или принимает электроны из среды в аккумуляторной батарее, твердом, газовом или вакууме. Электроды обычно используются в электрохимических элементах, полупроводниках, таких как диоды, и различных типах медицинских устройств. При электролизе гальванических элементов электрическая энергия внешних источников используется для осуществления химического превращения или окислительно-восстановительной реакции.

Отрицательный электрод, на котором происходит окисление, называется анодом, а положительный электрод, на котором происходит восстановление, в химии или химической науке называется катодом.

Типы электродов

Ионы с током разряжаются на электроде из химического раствора. В водном растворе, когда отрицательные ионы трудно выводятся из-за высокого потенциала осаждения и осаждаются гидроксильные ионы. Когда положительные ионы трудно разряжаются, из раствора выделяются ионы водорода. По реактивности электроды бывают двух типов

  • Инертные электроды
  • Реакционные электроды

Инертные электроды

Эти электроды не участвуют в реакции электролиза, но помогают переносить электроны от катода к аноду. Платина (Pt) и золото являются примерами таких типов электродов. Когда сульфат меди (CuSO 4 ) подвергается электролизу между платиновым электродом, металлическая медь осаждается на катоде, получая два электрона, а ион гидроксила (OH ) осаждается на аноде. Из-за высокого потенциала осаждения сульфат-ионы (SO 4 −2 ) не будет разряжаться на аноде.

Реактивные электроды

Они участвуют в реакциях электролиза либо внося ионы в раствор, либо принимая из раствора выброшенные ионы. Когда раствор сульфата меди подвергается электролизу между двумя медными электродами, медь, как обычно, осаждается на катоде, но эквивалентное количество меди растворяется. Анод и процесс используются для очистки чистой меди от ее нечистой формы.

Электрод в электрохимической ячейке

Электрохимическая ячейка — это устройство, которое вырабатывает электрическую энергию в результате химической реакции ячейки или использует электрическую энергию для проведения химической реакции. Электрохимическая ячейка в основном бывает двух типов:

  • Первичная ячейка
  • Вторичная ячейка

Что такое первичная ячейка?

Первичная ячейка — это устройство, в котором электрод, такой как катод и анод, зафиксирован, и реакция ячейки не может быть обращена вспять. Когда элемент заряжается, анод становится положительным, а катод становится положительным, а при разряде он работает как первичный элемент, где анод отрицателен, а катод является положительным электродом.

Что такое вторичная ячейка?

Вторичный элемент, такой как перезаряжаемая батарея, представляет собой химический элемент, в котором химические реакции являются обратимыми. Литий-ионные батареи являются примерами вторичных перезаряжаемых химических элементов.

Использование электродов

  • Различные типы электродов, такие как золотые, платиновые, медные и серебряные, используются для определения электропроводности во время электролиза.
  • Стеклянный электрод используется для измерения шкалы рН раствора.
  • Батареи — это устройства, которые содержат различные электроды в зависимости от типа. Например, свинцово-кислотные батареи содержат свинцовые электроды, угольно-цинковые батареи содержат цинковые и угольные электроды, а литий-полимерные батареи содержат твердые литий-полимерные электроды.
  • Электрод также используется в сварке, мембранный катод и ЭКГ, ЭСТ, ЭЭГ, а также дефибриллятор в биохимических исследованиях.
Темы химии

Проводимость

Проводимость и электрическое сопротивление
Проводимость или электропроводность обратны сопротивлению (G = 1/R) и описывают свойство раствора электролита, которое помогает.