Схема электрическая принципиальная сварочного инвертора: Схема сварочного инвертора – принципиальная схема инверторной сварки
Содержание
Схема сварочного инвертора и дополнительная информация
главная » ОБОРУДОВАНИЕ » Инвертор
Инвертор
На чтение 5 мин
Содержание
- Принципиальная схема сварочного аппарата
- Конструкция сварочного инвертора
- Процессы в электрической схеме
- Защитные элементы в системе
- Достоинства и недостатки оборудования
- Принципы сборки инвертора
Схема сварочного инвертора имеет ряд важных отличий от таковой у устаревшего образца — трансформаторного аппарата. Ранее в основе прибора лежало понижающее устройство, делающее его габаритным и тяжелым. Инверторные агрегаты обладают компактными размерами, расширенным набором функций.
Разбирающийся в электросхемах сварщик может собрать аппарат самостоятельно.
Принципиальная схема сварочного аппарата
Электрическая цепь включает трансформатор на феррите. Для первичной обмотки используют 100 витков кабеля ПЭВ сечением 0,3 мм, вторичная состоит из провода толщиной 1 мм. Он наматывается 15 раз.
Верхний слой формируют из ПЭВ-кабеля сечением 0,35 мм. Обмотку создают по всей ширине каркаса, что помогает получить стабильное напряжение.
Другой важный элемент схемы — дроссель L2 — делается на сердечнике Ш20х28. Для обмотки используют феррит толщиной 2000 Нм. Зазор между витками составляет 0,5 мм. Силовой мост устанавливают на 2 радиатора, взятых из старого компьютера. В принципиальную схему инвертора включают 12-14 конденсаторов по 0,15 мкФ. Части моста соединяют короткими проводниками. Как должна выглядеть электрическая цепь, можно увидеть на фото.
Конструкция сварочного инвертора
Строение самодельного сварочного инвертора, определяющее функциональность и технические данные, включает следующие компоненты:
- Блок питания, подающий ток к силовой части прибора. Элемент состоит из фильтра, преобразователя и зарядной цепи нелинейного типа.
- Силовая установка. Собирается на основе конвертера. В эту часть цепи также внедряют силовой трансформатор, выпрямитель, дроссель.
- Блок, питающий компоненты слаботочной системы инвертора.
- ШИМ-контроллер. В состав этого узла входит датчик нагрузочного тока.
- Блок, необходимый для защиты от перегрева. Данная часть электрической схемы управляет вентиляторами охлаждения. В нее входят термодатчики, быстро реагирующие на изменение параметра.
- Индикационные и управляющие элементы.
Процессы в электрической схеме
Сварочный аппарат должен вырабатывать ток высокой силы, помогающий удерживать дугу. Последняя расплавляет края соединяемых деталей и присадочную проволоку, формируя шов.
Принцип действия электрической схемы сварочного инвертора:
- Переменный электроток попадает в преобразователь. Здесь он превращается в постоянный и подвергается обработке, помогающей сгладить перепады напряжения. Для этого используется выходной выпрямитель.
- Постоянный электроток попадает в инвертор, где преобразуется в переменный. На этом же этапе наблюдается повышение частоты.
- На последнем этапе задействуется трансформатор, снижающий напряжение, сохраняя при этом силу и частоту тока. Это способствует усилению мощности электрической дуги.
Защитные элементы в системе
Для предотвращения выхода из строя основных компонентов оборудования используют такие средства:
- Радиаторы. Устанавливаются рядом с выпрямителем для снижения риска перегрева этой детали.
- Термореле. Размещается на диодном мосту. Предохранитель прекращает подачу электрической энергии при нагреве узла до +80…+90 °С.
- Электромагнитный фильтр. Используется для отсеивания высокочастотных помех, возникающих при работе сварочного агрегата. В состав фильтра входят несколько конденсаторов и дроссель. Узел препятствует проникновению помех в электрическую сеть.
Устройства на основе электрической схемы инверторного сварочного аппарата имеют следующие положительные характеристики:
- Компактные размеры готового аппарата. Устройства весят не более 12 кг, что облегчает сварку сложных конструкций и работу в труднодоступных местах.
- Высокий коэффициент полезного действия, что объясняется сниженным потреблением энергии, необходимой для нагрева механизмов. Устройства старого образца быстро выходят из строя по причине постоянного повышения температуры трансформатора.
- Наличие дополнительных функций, исключающих возникновение ошибок при сварке. К ним относят защиту от залипания, автоматический розжиг дуги.
- Наличие возможности программирования некоторых инверторов. Эта функция позволяет сварщику быстро настраивать оборудование на нужный режим, соответствующий виду свариваемых материалов.
- Универсальность. Регулировка тока в широком диапазоне позволяет использовать инверторы для сварки элементов из различных металлов по любой технологии.
Инверторные приборы имеют и недостатки:
- Высокая стоимость агрегатов. Самостоятельное изготовление помогает удешевить устройство.
- Выход из строя транзисторов при сборке сварочного инвертора своими руками. Особенно часто такое наблюдается при использовании доступных деталей китайского производства.
- Затраты на обслуживание и ремонт оборудования.
- Особенности электрических схем, не позволяющие применять аппарат в сложных условиях, например в морозную или ветреную погоду. Для работы на улице требуется организация закрытого отапливаемого рабочего места.
Принципы сборки инвертора
Процесс создания сварочного аппарата своими руками включает следующие этапы:
- Сборка корпуса. Можно выбрать готовый элемент, взяв его от нерабочей бытовой техники, либо изготовить его из металлического листа. Толщина стенок должна составлять не менее 4 мм.
- Подготовка основания. Для установки трансформатора и других компонентов электрической цепи применяют лист гетинакса толщиной более 5 мм. Блоки удерживаются на основании за счет скоб. Крепежные элементы изготавливают из медной проволоки сечением 3 мм.
- Создание печатной платы. Деталь изготавливают из фольгированного текстолита толщиной 1 мм. При установке магнитопроводов необходимо оставлять достаточное расстояние — это обеспечивает циркуляцию воздуха, препятствующую перегреву.
- Установка контроллера. Этот элемент используется для управления инвертором, поддержания тока стабильной силы. От контроллера зависит напряжение подаваемого электричества.
Для удобства пользования аппарат снабжают управляющим блоком.
Он может иметь вид кнопки включения, ручки регулировки параметров, сигнального диода или зажима для кабеля.
Порядок сборки самодельных сварочных инверторов своими руками, схемы и описание тестирования
Инверторные сварочные аппараты получили широкое применение в строительной сфере благодаря их высокой производительности и небольшому весу. Однако не каждый может позволить себе такой инструмент. Единственный выход — сделать сварочный инвертор своими руками. В интернете существует множество схем таких устройств. Многие из них отличаются сложностью и высокими затратами, но есть и бюджетные модели.
- Общие сведения о сварочном инверторе
- Назначение и особенности функционирования
- Принцип работы оборудования
- Изготовление резонансного инвертора
- Схема оборудования
- Предотвращение залипания электрода
- Простой сварочный прибор
- Схема и комплектующие
- Блок питания и силовая часть
- Инверторный блок и охлаждение
- Пайка, настройка и проверка работоспособности
- Простейшее инверторное устройство для сварки
Общие сведения о сварочном инверторе
Традиционные сварочные аппараты имеют достаточно низкую цену, легкую ремонтоспособность, однако очень существенный недостаток не только их вес, но и зависимость от напряжения. Ввод электронного счетчика ограничен мощностью от 4 до 5 кВт. Для сварки толстого металла аппарат потребляет значительную мощность и зачастую выполнение работ становится невозможным. На смену им пришли инверторные сварочные аппараты.
Назначение и особенности функционирования
Применяется для проведения сварочных работ в домашних условиях, а также на предприятиях, обеспечивает стабильное горение и поддержание сварочной дуги, используя ток высокой частоты (отличной от 50 Гц).
Сварочный инвертор является обыкновенным импульсным блоком питания, работа которого основана на следующих принципах:
- Входное напряжение (сетевое питание сварочного инверторного аппарата 220 В переменного тока) преобразуется в постоянное.
- Постоянный ток преобразовывается в высокочастотный переменный.
- Происходит процесс преобразования напряжения путем его снижения.
- Выпрямление тока и преобразование для сварочных работ с сохранением частоты.
Благодаря этим моментам происходит снижение массы и габаритов аппарата. Для того чтобы собрать инверторную сварку своими руками необходимо знать принцип работы этого аппарата.
Принцип работы оборудования
В предыдущих моделях основным элементом являлся огромный мощный силовой трансформатор, позволяющий получать во вторичной обмотке мощные токи, необходимые для сварочных работ. Для получения такой силы тока необходимо использовать провод большим диаметром, что сказывается на весе сварочного аппарата.
С изобретением импульсного блока питания решить проблему с массой и размерами оказалось проще, ведь размеры и вес самого трансформатора снижаются в несколько десятков или сотен раз. Например, при увеличении частоты в 6 раз можно снизить габариты трансформатора в 3 раза. Это приводит к значительной экономии материала.
Благодаря мощным ключевым транзисторам, применяемым в инверторной схеме, происходит переключение с частотой от 50 до 80 кГц. Эти транзисторы работают только от постоянного напряжения.
Как известно из курса физики, для получения постоянного напряжения применяется простейший полупроводниковый прибор — диод. Диод пропускает ток в одном направлении, отсекая отрицательные значения синусоидального напряжения. Но применение одного диода приводит к большим потерям, поэтому применяется группа, состоящая из мощных диодов, которая называется диодным мостом.
На выходе диодного моста получается постоянное пульсирующее напряжение. Для получения нормального постоянного напряжения применяется конденсаторный фильтр. После этих преобразований на выходе фильтра появляется напряжение постоянного тока свыше 220 В.
Блок, состоящий из выпрямительного моста и фильтрующих элементов, называется блоком питания (БП).
БП служит источником питания инверторной схемы. Транзисторы подключены к понижающему трансформатору, который является импульсным и работает на частотах в диапазон от 50 до 90кГц. Мощность такого трансформатора примерно такая же, как и у его огромного собрата — сварочного силового трансформатора.
Модернизация такого прибора становится более легкой, потому что благодаря его размерам и массе, появляется дополнительные возможности по увеличению стабильности работы сварочного аппарата.
Существует огромное количество изготовления самодельных сварочных инверторов, схемы которых разнообразны по функциональности и способам монтажа. Разберем каждую из самодельных моделей подробно.
Изготовление резонансного инвертора
За основу необходимо использовать блок питания компьютера форм-фактора AT, от которого потребуется кулер и радиаторы. Детали берутся из элементарной базы мониторов и телевизоров, в противном случае, если их нет, то покупаются на рынке. Все компоненты имеют низкую стоимость.
Рекомендации по изготовлению:
- Для упрощения схемы ШИМ полностью исключить, так как потребуется стабилизированное напряжение, получаемое задающим генератором.
- Использовать стабилитроны KC213 для предотвращения выхода из строя транзисторов.
- Для снижения наводок и помех необходимо монтировать рядом с трансформатором силовые транзисторы высокочастотного типа.
- Дорожки для силового моста и силового блока на плате из толстого текстолита (не менее 4 мм) необходимо сделать шире (протекают токи до 30 А) и залудить тугоплавким припоем (не менее 2 мм).
- Кабель питания использовать не менее 3 квадратов.
- Использовать двойную изоляцию (несгораемые слюдяные или стекловолоконные кембрики) для высоковольтных цепей.
- Дроссель должен быть без металлического кожуха.
- Хорошая постоянная вентиляция.
- Силовые диоды (выходные) необходимо защитить от пробоя с помощью RC-цепочки.
После чего необходимо определиться с параметрами инверторной сварки своими руками. А также возможно использовать и такие характеристики:
- Выходной ток нагрузки: от 5 до 120 А.
- Напряжение (при холостом ходе): 90 В.
- Продолжительность нагрузки может изменяться. Все зависит от диаметра электрода: 2 мм = 100%, 3 мм = 80%. Необходимо учесть влияние высокой температуры.
- Входная сила тока: около 10А.
- Приблизительная масса: около 3 кг.
- Должен присутствовать регулятор силы тока при сварке.
- Тип вольт-амперной характеристики, обеспечивающей работу в полуавтоматическом режиме: падающая.
Схема оборудования
Основная часть — задающий генератор собран на микросхеме SG3524, которая применяется во всех источниках бесперебойного питания. Инвертор обладает низкой потребляемой мощностью около 2,5 кВт, благодаря чему, возможно применение в квартире.
Трансформатор необходимо собрать на сердечниках типа Е42, который применяется в старых ламповых мониторах. Для изготовления необходимо примерно 5 штук таких трансформаторов.
Еще один трансформатор следует использовать для дросселя. Остальные элементы индуктивности собираются из сердечника типа 2000НМ. Диоды и транзисторы необходимо установить на радиаторы с термопастой КТП-8 или другого типа. Напряжение холостого хода примерно равно 36 В с длинной дуги от 4 до 5 мм, что позволяет работать с ним начинающим строителям. Выходные кабели следует уложить в ферритовые трубки или кольца из феррита блока питания.
Конструктивной особенностью схемы является возникновение максимального тока в I обмотке во время резонанса.
Схема 1 — Схема сварочного резонансного инвертора
Благодаря малому весу и габаритам появляется возможность модернизировать аппарат.
Предотвращение залипания электрода
Для этого случая применяется транзистор IRF510, являющиеся полевым. Кроме того, он обеспечивает еще плавный пуск и прерывание входа на микросхеме SG3524:
- При высокой температуре срабатывает термодатчик.
- Отключение при помощи тумблера.
- Блокировка при КЗ (коротком замыкании).
Простой сварочный прибор
Эта модель рассчитана на напряжение 220 В и ток величиной в 32А, после преобразования его величина достигнет 280А. Такого значения вполне достаточно для прочного шва на расстоянии до 1,5 сантиметра.
Схема и комплектующие
Основным элементом является трансформатор, который достаточно тяжело сделать, но вполне реально.
Основные данные:
- Состоит из ферритового сердечника (7×7 либо 8×8).
- Первичная обмотка составляет примерно 100 витков и ее диаметр 0,3 мм.
- Вторичные обмотки — 3 штуки: 15 витков и диаметр провода 1 мм; 15 витков — 0,2 мм; 20 витков — 0,35 мм.
- Материалы для трансформатора: медные провода соответствующего диаметра, стеклоткань, текстолит, электротехническая сталь (для железняка), хлопчатобумажный материал.
Для четкого понимания принципа работы необходимо внимательно изучить схему основных узлов.
Рисунок 1 — Структурная схема инверторного сварочного аппарата
Пояснение к схеме:
- Сетевой выпрямитель, выполняющий преобразования переменного напряжения в постоянное.
- Сетевой фильтр сглаживает пульсации.
- Преобразователь частоты выполняется на транзисторах.
- Высокочастотный сварочный трансформатор участвует в преобразовании напряжения.
- Силовой выпрямитель осуществляет выпрямление тока в постоянный заданной частоты.
- Управление преобразователем частоты выполнено в виде регулятора для выставления режима работы.
Блок питания и силовая часть
Блок, состоящий из трансформатора, выпрямителя и фильтра (или системы фильтров) выполняется отдельно от силовой части.
Схема 2 — Принципиальна схема БП
Проводники (длиной не более 15 см) для управления затворками транзисторов необходимо припаивать поближе к последним, причем проводники соединяются попарно между собой, сечение их не играет роли.
Основой силового блока является понижающий трансформатор с сердечником Ш20×208 2000 нм, причем II обмотка наматывается в несколько слоев провода, изоляция которого не повреждена. На вторичку необходимо мотать следующим образом, изолируя слои: 3 слоя, а затем прокладка-фторопласт, затем опять 3 слоя и снова прокладка-фторопласт. Это делается для увеличения сопротивляемости перегрузкам. После чего на II обмотку поставить конденсатор не меньше 1000 В.
Для обеспечения циркуляции воздуха между слоями обмоток необходимо собрать на ферритовом сердечнике трансформатор тока, подключенный к плюсу, и его сердечник следует обмотать термобумагой (кассовая лента). Выпрямительные диоды прикрепить на радиатор.
Схема 3 — Силовая часть инвертора
Инверторный блок и охлаждение
Основным предназначением инверторного блока является процесс преобразования постоянного в переменный высокочастотный ток. Применяются для этого мощные транзисторы, хотя в некоторых случая возможна замена более мощного на 2 или более транзисторов средней мощности.
Немаловажным элементом всего устройства является достаточно хорошее охлаждение. Для этого следует использовать кулера с компьютерной техники, но не следует ограничиваться одним, ведь необходимо обеспечить достаточное охлаждение для силовой схемы, радиаторы которой служат для отвода тепла, но это тепло необходимо рассеивать. Для полной защиты необходимо вмонтировать термодатчик (устанавливается на нагревательном элементе), благодаря которому будет размыкаться питание от сети.
Пайка, настройка и проверка работоспособности
Ключевым фактором является пайка, ведь при правильном размещении деталей зависит размер всего изделия и возможность оптимального охлаждения. Диоды и транзисторы устанавливают на встречном направлении друг к другу. Входная цепь расчитывается с запасом, примерно на 300 В.
Для настройки функционирования необходимо подключить широтно-импульсный модулятор к 15 В для запитки кулера. Реле включается вместе с резистором R11 и должно выдавать 150мА.
После проведенных манипуляций необходимо приступить непосредственно к проверке работоспособности устройства:
- Запитать прибор от сети.
- Задать высокие показатели тока.
- Сверить показания по осциллографу: в нижней петле напряжение около 500 В, но не более 550. При правильной сборке значение этого напряжение будет не менее 350 В.
- Отсоединить осциллограф и отключить инвертор. Подготовить электроды.
- Начинать производить сварочные работы и следить за трансформатором, если он закипает, то еще раз перебрать схему.
- После 3−4 швов радиаторы нагреваются. Для охлаждения необходимо дать остыть прибору, не выключая его из сети (охлаждение выполнит свою функцию).
Если эта схема показалась очень сложной, то рассмотрим схему совсем простого устройства.
Простейшее инверторное устройство для сварки
Модель этого агрегата является очень простой и бюджетной. Собрать ее несложно благодаря простой принципиальной схеме.
Процесс всей сборки можно разделить на этапы, кроме того, необходимо собрать все детали, материалы:
- Намотка трансформатора включает в себя: намотку медной жести 4 см и диаметром 0,3 мм, прокладки из бумаги для кассового аппарата или лакоткань, используя при повторной обмотке 3-и полоски, причем нужно и изолировать их. Вместо медной жести можно применить провод, состоящий из нескольких жил диаметром до 0,7 мм (I — 100 витков, II — 15, II — 15 II — 20).
- Монтируется кулер.
- Основа аппарата для сварки подсоединяется к трансформатору, состоящей из диодов, транзисторов.
- Конденсаторы необходимы для ликвидации резонансных выбросов.
- Необходимо использовать снабберы для рассеивания мощности (свв-81 и к78−2).
- Установить все элементы на гетинаксовую плату, исходя из конфигурационных размеров.
- Вывести светодиоды и переменный резистор (ручку) на панель настройки и индикации.
- Поместить все это в корпус.
Схема 4 — Схема самого простого сварочного инвертора своими руками
После сборки аппарат необходимо настроить и произвести диагностику при первом запуске для выявления погрешностей работы.
Настройка инвертора:
- Подключение 15 В к ШИМ.
- Подключить реле после зарядки конденсаторов для замыкания резистора. При использовании напрямую существует вероятность взрыва!
- При холостом ходе сила тока моста должна быть менее 100мА.
- Проверка корректности установки фаз трансформатора, использовав осциллограф в 2-а луча. Выставить частоту ШИМ 55кГц и в этом случае напряжение не должно превышать 330 В.
- Для определения частоты самого аппарата стоит снизить частоту ШИМ постепенно до тех пор, пока на IGBT не появится заворот, зафиксировав этот показатель (разделить на 2 и прибавить частоту насыщения). Это и есть рабочее колебание частот трансформатора.
- Потребление моста 150мА.
- Трансформатор не должен сильно шуметь, если шумовые эффекты имеются, то обратить внимание на полярность.
- Повышать плавно ток инвертора переменным резистором. При этом показания осциллографа не превышают 550 В. Оптимальным является 340 В.
- Начать сварку с 5 секунд и постепенно увеличить время. Варить не более 3 минут, давая остыть аппарату.
Таким образом, собрать инвертор для сварки можно и своими руками. Необязательно использовать сложные схемы, ведь радиолюбители нашли оптимальное решение в бюджетном варианте. А уровень сложности схем варьируется от достаточно сложных до простых. Для сборки сварочного инвертора своими руками необязательно покупать дорогие детали, а можно использовать подручные средства.
Дизайн интерьера. Машины и оборудование — Элементы дизайна | Электрические символы, электрические схемы | Символы механического чертежа
Начертить собственные схемы склада, производства, распределения, отгрузки, транспортировки и получения готовой продукции всегда проще с помощью специального программного обеспечения, которое может сделать ваши диаграммы очень сложными и профессиональными, даже если у вас нет большого опыта в создании таких блок-схем. С помощью библиотеки машин и оборудования, доступной для вашего использования прямо сейчас, вы можете сделать невероятно выглядящую умную и структурированную диаграмму, используя элементы дизайна.
Как создать электрическую схему? Это очень легко! Все, что вам нужно, это мощное программное обеспечение. Создавать электрические символы и электрические схемы было не так просто, как теперь с символами электрических схем, предлагаемыми библиотеками Electrical Engineering Solution из области промышленной инженерии в парке решений ConceptDraw.
Это решение предоставляет 26 библиотек, которые содержат 926 электрических символов из электротехники: аналоговая и цифровая логика, составные сборки, элементы задержки, электрические схемы, электронные лампы, IGFET, катушки индуктивности, интегральные схемы, лампы, акустика, показания, схема логических элементов, MOSFET. , Техническое обслуживание, Источники питания, Квалификация, Резисторы, Вращающееся оборудование, Полупроводниковые диоды, Полупроводники, Станции, Выключатели и реле, Клеммы и разъемы, Термо, Трансформаторы и обмотки, Транзисторы, Пути передачи, УКВ УВЧ СВЧ.
Решение для машиностроения — доступны 8 библиотек с 602 часто используемыми символами для чертежей в машиностроении, включая библиотеки под названием «Подшипники» с 59 элементами роликовых и шарикоподшипников, валов, шестерен, крюков, пружин, шпинделей и шпонок; Определение размеров и допусков с 45 элементами; Гидроэнергетическое оборудование, содержащее 113 элементов двигателей, насосов, воздушных компрессоров, счетчиков, цилиндров, приводов и датчиков; Гидравлические силовые клапаны, содержащие 93 элемента пневматических и гидравлических клапанов (распределители, клапаны управления потоком, клапаны регулирования давления) и клапаны электрогидравлические и электропневматические; а также многие другие сложные символы и шаблоны для вашего использования.
Термопара представляет собой электрическое устройство, состоящее из двух разных проводников, образующих электрические соединения при разных температурах. Термопара создает зависящее от температуры напряжение в результате термоэлектрического эффекта, и это напряжение можно интерпретировать как измерение температуры. Термопары являются широко используемым типом датчика температуры.
26 библиотек электротехнического решения ConceptDraw DIAGRAM делают ваши электрические схемы простыми, эффективными и действенными. Вы можете просто и быстро перетаскивать готовые к использованию объекты из библиотек в свой документ для создания электрической схемы.
Уточняющий символ — это графика или текст, добавляемые к основному контуру логического символа устройства для описания физических или логических характеристик устройства.
26 библиотек электротехнического решения ConceptDraw DIAGRAM делают ваши электрические схемы простыми, эффективными и действенными. Вы можете просто и быстро перетаскивать готовые к использованию объекты из библиотек в свой документ для создания электрической схемы.
Изобретенные в 1904 году Джоном Амброузом Флемингом электронные лампы были основным компонентом электроники на протяжении всей первой половины двадцатого века, когда распространились радио, телевидение, радары, звукоусиление, звукозапись и воспроизведение, большие телефонные сети, аналоговые и цифровые компьютеры и управление промышленными процессами. С середины 19Твердотельные устройства 50-х годов, такие как транзисторы, постепенно заменили лампы. Однако все еще есть несколько приложений, в которых лампы предпочтительнее полупроводников; например, магнетрон, используемый в микроволновых печах, и некоторые усилители высокой частоты.
26 библиотек электротехнического решения ConceptDraw DIAGRAM делают ваши электрические схемы простыми, эффективными и действенными. Вы можете просто и быстро перетаскивать готовые к использованию объекты из библиотек в свой документ для создания электрической схемы.
Это решение расширяет возможности программного обеспечения для черчения ConceptDraw DIAGRAM.9 (или более поздней версии) образцами символов для механических чертежей, шаблонами и библиотеками элементов конструкции для помощи при составлении чертежей машиностроения или деталей, сборок, пневматики,
Электростанция – промышленный объект для выработки электроэнергии. Большинство электростанций содержат один или несколько генераторов, вращающихся машин, преобразующих механическую энергию в электрическую. Относительное движение между магнитным полем и проводником создает электрический ток. Источники энергии, используемые для вращения генератора, сильно различаются. Большинство электростанций в мире сжигают ископаемые виды топлива, такие как уголь, нефть и природный газ, для выработки электроэнергии. Другие используют ядерную энергию, но все чаще используются более чистые возобновляемые источники, такие как солнечная энергия, ветер, волны и гидроэнергетика.
26 библиотек электротехнического решения ConceptDraw DIAGRAM делают ваши электрические схемы простыми, эффективными и действенными. Вы можете просто и быстро перетаскивать готовые к использованию объекты из библиотек в свой документ для создания электрической схемы.
Дизайн интерьера описывает группу различных, но связанных между собой проектов, которые включают превращение внутреннего пространства в «эффективную среду для целого ряда человеческих действий», которые должны там происходить. План этажа показывает вид сверху на отношения между комнатами, помещениями и другими физическими элементами на одном уровне строения. На нем удобно демонстрировать идеи дизайна интерьера.
Работая дизайнером интерьеров, подразумевая, что акцент делается на функциональном дизайне, эффективном использовании пространства и планировании, выполняя проекты, включающие такие процессы, как организация базовой планировки помещений в каком-либо здании, вы можете найти программа для рисования дизайна интерьера ConceptDraw DIAGRAM.
ConceptDraw DIAGRAM — лучшее программное обеспечение для построения диаграмм и векторной графики. Теперь, дополненный решением для машиностроения из инженерной области ConceptDraw Solution Park, он стал идеальным для создания: технических механических чертежей, машиностроительных схем, пневматических схем, гидравлических схем и т. д.
Найдите наши более 100 примеров и 25 шаблонов для проектирования диаграмм, а также 1493 векторных трафарета из 49 библиотек, чтобы начать использовать программное обеспечение для проектирования чертежей зданий. Вы также можете использовать символы из библиотеки Plumbing, создавая планы сантехники с помощью всего 21 объекта, необходимого для такого рода схем, и вы обнаружите, что ConceptDraw DIAGRAM — единственное достаточно хорошее программное обеспечение для вашего бизнеса.
Инструмент для рисования инфографики в стиле Metro Map. Образец карты лондонского метро.
«Гидравлический контур — это система, состоящая из взаимосвязанного набора дискретных компонентов, которые транспортируют жидкость. Целью этой системы может быть управление потоками жидкости (как в сети трубок хладагента в термодинамической системе) или управление жидкостью. давление (как в гидроусилителях).
… теория гидравлических цепей работает лучше всего, когда элементы (пассивные компоненты, такие как трубы или линии электропередач, или активные компоненты, такие как блоки питания или насосы) являются дискретными и линейными. Обычно это означает, что анализ гидравлических цепей лучше всего подходит для длинных тонких труб с дискретными насосами, как в системах химических процессов или микромасштабных устройствах». [Гидравлическая схема. Википедия]
Пример инженерного чертежа «Гидравлические схемы» был перерисован с использованием программного обеспечения для построения диаграмм и векторной графики ConceptDraw PRO из файла Wikimedia Commons: Hydraulic Circuits.png.
[commons.wikimedia.org/ wiki/ Файл: Hydraulic_circuits.png]
Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.
[creativecommons.org/licenses/by-sa/3.0/deed.en]
Пример инженерного чертежа «Гидравлические контуры» включен в решение «Машиностроение» из области «Инженерное дело» в парке решений ConceptDraw.
Схема гидравлической цепи
Используемые решения
Инжиниринг
>
Машиностроение
Библиотека векторных трафаретов «Машины и оборудование» содержит 24 обозначения промышленных машин и оборудования.
Используйте библиотеку элементов дизайна «Машины и оборудование» для черчения планов внутреннего оформления завода, компоновки производственного оборудования и планов этажей завода с помощью программного обеспечения для построения диаграмм и векторного рисования ConceptDraw PRO.
«Производство — это производство товаров для использования или продажи с использованием труда и машин, инструментов, химической и биологической обработки или рецептуры. Этот термин может относиться к ряду видов человеческой деятельности, от ремесла до высоких технологий, но чаще всего промышленное производство, при котором сырье превращается в готовую продукцию в больших масштабах.
Современное производство включает в себя все промежуточные процессы, необходимые для производства и интеграции компонентов продукта. В некоторых отраслях, таких как производители полупроводников и стали, вместо этого используется термин «производство».
Производственный сектор тесно связан с проектированием и промышленным дизайном.» [Производство. Википедия]
Библиотека форм «Машины и оборудование» включена в решение «Планы компоновки завода» из области «Планы зданий» в ConceptDraw Solution Park.
Символы машин и оборудования
Используемые решения
Строительные планы
>
Планы компоновки завода
«Символы и условные обозначения, используемые в документации по сварке, указаны в национальных и международных стандартах, таких как ISO 2553 Сварные и паяные соединения. Символическое изображение на чертежах и ISO 4063 Сварка и родственные процессы. ссылочные номера Стандартные символы США определены Американским национальным институтом стандартов и Американским обществом сварщиков и отмечены как «ANSI/AWS».
На технических чертежах каждый сварной шов обычно обозначается стрелкой, указывающей на свариваемое соединение. Стрелка снабжена буквами, цифрами и символами, которые указывают точную спецификацию сварного шва. В сложных приложениях, таких как сплавы, отличные от низкоуглеродистой стали, может потребоваться больше информации, чем можно указать с помощью одних только символов. В этих случаях используются аннотации». [Символы и условные обозначения, используемые в документации по сварке. Википедия]
Пример диаграммы «Элементы символа сварки» переработан с использованием программного обеспечения для построения диаграмм и векторного рисования ConceptDraw PRO из файла Википедии: Элементы символа сварки.PNG.
[en.wikipedia.org/ wiki/ File:Elements_ of_ a_ welding_ symbol. PNG]
Пример диаграммы «Расположение элементов символа сварки» содержится в решении «Машиностроение» из области «Инженерия» в парке решений ConceptDraw.
Таблица символов сварных соединений
Используемые решения
Инжиниринг
>
Машиностроение
Библиотека векторных шаблонов «Арматура в сборе» содержит 141 условный знак регуляторов давления и расхода, указателей направления потока, органов управления, а также условные обозначения для проектирования проточных частей регулирующих клапанов.
Используйте эти формы узлов клапанов для проектирования технических чертежей узлов гидравлических и пневматических клапанов в гидравлических системах.
«Регуляторные клапаны — это клапаны, используемые для управления такими условиями, как расход, давление, температура и уровень жидкости, путем полного или частичного открытия или закрытия в ответ на сигналы, полученные от контроллеров, которые сравнивают «уставку» с «переменной процесса», значение которой обеспечивается датчиками, отслеживающими изменения таких условий.
Открытие или закрытие регулирующих клапанов обычно осуществляется автоматически с помощью электрических, гидравлических или пневматических приводов. Позиционеры используются для управления открытием или закрытием привода на основе электрических или пневматических сигналов.
Регулирующий клапан состоит из трех основных частей, каждая из которых существует в нескольких типах и конструкциях: привод клапана, позиционер клапана, корпус клапана.
«[Клапаны регулирующие. Википедия]
Пример формы «» был создан с использованием программного обеспечения для построения диаграмм и векторной графики ConceptDraw PRO, дополненного решением для машиностроения из раздела «Инженерное дело» в парке решений ConceptDraw.
Символы узла клапана
Используемые решения
Инжиниринг
>
Машиностроение
- Диаграмма сварки сварки
- Схема для сварочной машины
- Гриф сварной машины
- Символ Символ
- Дизайн сварочного аппарата со схемой
- Эскиз схемы сварочного аппарата
- Принципиальная схема ленточной пилы
- Символ сварочного аппарата
- Механический рисунок Символы | Символы технологической схемы …
- Электрические символы, Электрические диаграммные символы | Электрические символы …
- Электрическая схема пресса
- Блок-схема запроса материалов. Примеры блок-схем | Дизайн интерьера…
- Нарисуйте механическую схему Ckt для системы
- Как читать электрические схемы сварочного аппарата
- Электрические символы, электрические схемы | Cisco LAN — Vector …
- Машиностроение | Как пользоваться электрическим планом дома …
- Символы сварки | Машиностроение | Элементы дизайна …
- ERD | Диаграммы отношений сущностей, программное обеспечение ERD для Mac и Win
- Блок-схема | Основные символы блок-схемы и их значение
- Блок-схема | Дизайн блок-схемы — символы, фигуры, трафареты и значки
- Блок-схема | Символы блок-схемы
- Электрика | Электрический чертеж — Схемы проводки и цепей
- Блок-схема | Общие символы блок-схем
- Блок-схема | Общие символы блок-схем
9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9008 9005
8 9008 9009. Символ. Схематическая диаграмма в коде сварки
Легко понять инверторный сварочный аппарат с блок-схемой
В этой статье мы узнаем, как работает инверторный сварочный аппарат. Он также известен как сварочный аппарат SMPS. Мы поймем принцип работы этого сварочного аппарата с помощью блок-схемы, поэтому его будет очень легко понять быстро. Аппарат инверторной дуговой сварки эффективнее и легче электросварочного аппарата трансформаторного типа. Он построен на твердотельных силовых электронных устройствах, таких как MOSFET или IGBT. Его принцип работы зависит от высокоскоростного процесса инвертирования мощности переключения, поэтому появился термин инверторный сварочный аппарат или сварочный аппарат SMPS.
Блок-схема инверторной сварочной машины с поддержкой SMPS
Здесь вы можете увидеть блок-схему инверторной дуговой сварочной машины, которая поможет вам очень быстро понять принцип ее работы.
Читая также:
Основные внутренние детали
Основные важные внутренние детали —
- Основной выпрямитель высокого напряжения
- Изучение ретрансляции
- . Файлентр
- Контролированный
- Низковольтный выпрямитель
- Цепь управления или блок обработки данных
- Источник питания
- Цепь датчиков
- Ручной ввод и индикация
. 0098 Понижающий трансформатор
Описание внутреннего соединения
выключатель, такой как MCB.
Выход автоматического выключателя подключен к цепи мостового выпрямителя. Если машина питается от однофазного источника питания, то используется схема однофазного мостового выпрямителя. Если машина питается от трехфазного источника питания, то в ней используется трехфазная схема мостового выпрямителя. Схема выпрямителя построена с использованием PN-диодов.
Выход выпрямителя подключен к конденсаторам фильтра высокого напряжения и большой емкости. Как правило, два или более конденсатора соединены параллельно.
От выпрямителя выведены две клеммы и подключены к конденсаторам, положительный и отрицательный. Отрицательная клемма напрямую подключена к конденсатору, а положительная клемма проходит через резистор NTC и замыкает контакт реле. Резистор NTC серии используется для ограничения высокого пускового тока в начале заряда конденсатора. А контакт реле используется для обхода резистора NTC, когда требуется большой ток.
После этого конденсатор фильтра высокого напряжения постоянного тока (обычно 310 В постоянного тока) подключается к цепи управляемого инвертора и блоку питания SMPS.
Перед схемой инвертора подключается трансформатор тока, который может измерять входной ток и отправлять сигнал на модуль драйвера.
SMPS обеспечивает подачу постоянного тока низкого напряжения на различные узлы сварочного аппарата, такие как охлаждающие вентиляторы, микросхема управления инвертором, схема драйвера или контроллера, блок дисплея и т. д. Реле, которое используется для обхода резистора NTC, также подключается к источнику питания. (обычно 24-25 В постоянного тока) от блока SMPS.
Выход схемы управляющего инвертора подключен к понижающему трансформатору. Эта схема инвертора также подключена к схеме драйвера генерации импульсов или управления рабочим циклом или микросхеме ИС.
Выход понижающего трансформатора подключается к цепи низковольтного выпрямителя, а выход этой цепи выпрямителя используется для сварки или генерирования дуги.
Модуль драйвера также подключен к выходу аппарата через шунтирующий резистор, поэтому он может измерять ток, протекающий на выходе во время сварки.
Управляющие устройства, такие как установка тока (в основном потенциометр), также подключены к модулю драйвера или ИС управления инвертором.
Другие устройства вывода или индикации, такие как светодиод перегрузки по току, светодиод перегрева и дисплей, показывающий ток, подключены к модулю драйвера.
См. также:
Принцип работы
Прежде всего, питание переменного тока высокого напряжения подается в машину и преобразуется в постоянный ток высокого напряжения мостовым выпрямителем, а затем фильтруется конденсаторами фильтра.
Теперь к цепи инвертора подается чистая мощность постоянного тока высокого напряжения. И схема инвертора преобразует этот высоковольтный постоянный ток в высоковольтный высокочастотный переменный ток.
Этот высоковольтный высокочастотный переменный ток преобразуется в низковольтный высокочастотный переменный ток с помощью понижающего трансформатора. Поскольку напряжение уменьшилось, он способен проводить большой ток.
Теперь этот низковольтный высокочастотный источник переменного тока преобразуется в низковольтный постоянный ток с помощью цепи выпрямителя низкого напряжения. И этот низковольтный сильноточный источник постоянного тока используется для сварки.
Как известно, микросхема измеряет выходной ток путем измерения напряжения на шунтирующем резисторе. Таким образом, когда мы устанавливаем ток, вращая ручку измерителя потенциометра, на микросхему управления инвертором подается определенное напряжение. ИС управления сравнивает два напряжения (одно от потенциометра и другое от выходного шунтирующего резистора) и генерирует импульсный сигнал (с определенным рабочим циклом) для управления схемой инвертора.