Схема инвертора электрическая: Схема сварочного инвертора – принципиальная схема инверторной сварки
Содержание
Схема инвертора напряжения 12В — 220 В
На рисунке приведена схема преобразователя напряжения 12В постоянного тока в 220 В переменного. Предлагаемый вариант преобразователя можно использовать для питания магнитолы, телевизионного приемника и других радиоэлектронных устройств с мощностью до 100 Вт.
Принципиальная схема
Преобразователь состоит из задающего генератора, выполненного по схеме симметричного мультивибратора на транзисторах VT1, VT2, и усилителя мощности на транзисторах VT3 — VT8. Он работает следующим образом.
При подаче питания выключателем SB1 мультивибратор начинает генерировать симметричные импульсы (меандр). С коллекторов транзисторов мультивибратора импульсы через цепочки R2C3 и R6C4 поступают на транзисторы двухтактного усилителя мощности. Когда на коллекторе транзистора VT1 высокий уровень напряжения, на коллекторе транзистора VT2 — низкий.
Рис. 1. Принципиальная схема инвертора напряжения с мощностью 100 Ватт.
В течение полупериода транзисторы VT4, VT6 и VT8 открыты через них и обмотку трансформатора Т1 протекает ток от источника питания 12 В. Транзисторы верхнего плеча усилителя мощности закрыты. В течение второго полупериода открыты транзисторы VT3, VT5 и VT7 — и ток протекает через соответствующую обмотку.
Таким образом, на первичной обмотке трансформатора Т1 формируется переменное напряжение прямоугольной формы с амплитудой, примерно равной напряжению источника.
Переменный магнитный поток в магнитопроводе трансформатора индуцирует во вторичной обмотке напряжение, амплитуда которого зависит от соотношения витков вторичной и первичной обмоток.
Диоды VD1 и VD2 служат для устранения импульсов отрицательной полярности, возникающих при работе задающего генератора в моменты переходных процессов. Диоды VD3 и VD4 защищают транзисторы выходной ступени усилителя мощности от напряжений обратной полярности, возникающих за счет самоиндукции.
Трансформатор Т1 выполнен на магнитопроводе ШЗ6хЗ6. Каждая из половин первичной обмотки имеет по 21 витку, намотанных проводом ПЭЛ 2,1, вторичная обмотка имеет 600 витков провода ПЭЛ 0,59.
Вторичная обмотка при выполнении трансформатора укладывается первой, а поверх нее -первичная обмотка, которую для лучшей симметрии следует выполнять одновременно в два провода.
При выполнении транзисторы VT5 и VT7, VT6 и VT8 следует попарно расположить на теплоотводах. Теплоотводы должны быть изолированы друг от друга и от шины общей цепи питания.
Для измерения тока потребления от источника постоянного тока (он не должен превышать 10А) в разрыв провода, идущего от средней точки первичной обмотки трансформатора Т1 к плавкой вставке FU1, желательно включить амперметр с током полного отклонения 10А (на схеме не показан). Это облегчит визуальный контроль при работе с мощными потребителями.
Настройка
Настройка преобразователя состоит в установке частоты задающего генератора переменным резистором R9. Для настройки следует подключить осциллограф или частотомер к коллектору одного из транзисторов мультивибратора и включить питание преобразователя. Регулировкой переменного резистора добиться частоты генерируемых колебаний 50 Гц.
Смонтированное и отрегулированное устройство следует разместить в корпусе, на передней панели которого располагают клеммы для подключения внешнего источника тока (аккумулятора) и нагрузки, держатели плавких вставок, выключатель напряжения задающего генератора, светодиоды индикаторов рабочего состояния — красный (HL2), сигнализирующий подключение внешнего источника тока, и зеленый (HL1 ) — включение задающего генератора.
При изготовлении инвертора напряжения допустимы следующие замены элементов: 2Т6551 — КТ601А, 277531 — KT801A. 2N3055 -КТ819ГМ, 205607 -Д226А. диод КД208А применен российского производства. В качестве индикаторов можно применить светодиоды АЛ307В (зеленый) и АЛ307Б (красный).
A. Стоилов. Инвертор напряжение. Радио, телевизия, електроника», 1998, №6, с. 12, 13 РАДИО № 10. 1998 г., с. 79.
Не секрет, что эффективность переменного тока гораздо выше в сравнении с постоянным током, это доказано как практически, так и теоретически. Но очень часто случается так, что доступен только постоянный ток, например, бортовая сеть автомобиля, аккумуляторы, солнечные батареи и другие альтернативные источники энергии. В то же время, например, при использовании солнечных батарей, в течение дня солнечная энергия поступает в неравных количествах, вечером или в облачную погоду ее значительно меньше, чем днем в ясную погоду. Для выравнивания напряжения в схеме с солнечной батареей используют аккумуляторы, которые при излишках солнечной активности заряжаются, а при недостаточности солнечного света отдают накопленную за предыдущее время энергию. Или бывает необходимость использования переменного тока, но не со стандартными параметрами. Если при помощи трансформатора мы можем понизить или повысить напряжение, то частоту переменного тока, увы, с их помощью не изменишь. Для всех вышеописанных случаев можно применить чудо современной технологии – инвертор электрической энергии. Согласно википедии: Инвертор — устройство для преобразования постоянного в переменный ток с изменением величины частоты или напряжения. По сути инвертор — это преобразователь постоянного тока в переменный ток. Причем получить на выходе можно любой ток, с практически любыми необходимыми параметрами. Ток, получаемый на выходе инвертора, не зависит от входящего. Единственное, что инвертор не может делать – это увеличивать электрическую энергию, дабы не нарушить закон сохранения энергии. Во всем остальном универсальность инверторов огромная, они позволяют получать не статичные параметры тока на выходе, а регулировать его. Принцип работы инвертора, если упростить сам процесс, можно описать так: это трансформатор, к первичной обмотке которого подключены два ключа, которые поочередно открываются и закрываются. В результате работает либо левая, либо правая обмотки. В один момент времени электрический ток движется либо в одну сторону по первой обмотке, либо в противоположную по второй обмотке. В это время во вторичной обмотке индуцируется ток. Токи в обмотке нарастают и уменьшаются, во вторичной обмотке также, но при этом еще и меняя направление тока, в зависимости от того, какая первичная обмотка сейчас активна. Правда, на выходе мы получаем ступенчатую (а), либо апрокисмированую синусоиду (б), а не плавную (в), но это не существенно для работы большинства бытовых приборов. Более дорогие инверторы позволяют получать на выходе и синусоидальную форму выходного напряжения (в). Инверторы можно разделить на автономные и сетевые. Автономные инверторы получают питание от мощных аккумуляторных батарей. Питание от них постоянное. Сетевые инверторы получают питание от постоянного тока, но входное напряжение различается по времени. Например, в случае с солнечными батареями оно может колебаться в диапазоне от 300 до 800 вольт. А вот ток на выходе должен оставаться постоянным по параметрам: и по напряжению и по частоте. А значит, в таких инверторах система контроля и коммутации более совершенная, поскольку в качестве генератора частоты используется сама сеть, и работа инвертора синхронизируется с этой сетью. Итак, с теоретической частью разобрались. Но где же можно встретить инверторы в повседневной жизни? В больших городах трёхфазные инверторы обычно используются для создания тяги троллейбусов, трамваев, да и вообще для питания трёхфазных асинхронных электродвигателей. Однофазные инверторы есть практические в каждом офисе – источники бесперебойного питания. Массовое использование ИБП связано с обеспечением бесперебойной работы компьютеров, позволяющее подключенному к ИБП оборудованию при пропадании электрического тока или при выходе его параметров за допустимые нормы, некоторое непродолжительное время продолжить работу. Самые распространенные бытовые ИБП оборудованы аккумулятором 12 вольт 7,2 А. Конструктивно преобразователи сильно могут отличаться в зависимости от необходимой выходной мощности. Если инвертор с выходной мощностью до 150 ватт можно собрать, как говорится, на коленках дома из подручных радиодеталей, то с более высокими требованиями придется «повозиться». Это связано, как и большей дороговизной и дефицитностью деталей, так и возрастающим количеством выделяемой теплоты. Ниже приведу схему относительно простого, но маломощного инвертора, мощностью не более 100 ватт: От автомобильного аккумулятора такой инвертор может питать устройство мощностью 100 ватт в течение нескольких часов, что является достаточно неплохим показателем. Вот самые необходимые параметры преобразователя: Напряжение питания ——————— 10,5 – 14 В В качестве задающего генератора DA1 в данном варианте используется специализированная микросхема КР1211ЕУ1. Микросхема содержит интегрированный тактовый генератор, частота генерации которого определяется постоянной времени цепи, подключаемой к выводу 7 микросхемы. Для работы системы защиты используется вывод 1 микросхемы. При подаче на него высокого уровня напряжения работа микросхемы блокируется и на выходах устанавливается низкий уровень напряжения. В рабочий режим микросхема переводится либо выключением и включением питания, либо кратковременной подачей низкого уровня напряжения на вывод 3 микросхемы. Выходные импульсы DA1 поочерёдно открывают полевые транзисторы VT4, VT5, которые создают в первичной обмотке трансформатора T1 переменный электрический ток. При этом на выводах вторичной обмотки T1 формируется выходное переменное напряжение. Питание для микросхемы DA1 поступает от маломощного интегрального стабилизатора DA2. Наличие напряжения питания информируется светодиодом VD3. Частота формируемого переменного напряжения определяется номиналами R1, C1. Датчиком перегрузки служат параллельно соединённые резисторы R9 и R10. Протекающий по ним ток создаёт падение напряжения между базой и эмиттером транзистора VT2 через делитель R8, R11. При перегрузке транзистор VT2 открывается и через делитель R6, R5 на вывод 1 микросхемы поступает напряжение высокого уровня. Пороговая величина тока срабатывания защиты определяется номиналами R8, R11 и для данной схемы составляет 10 А. При пониженном напряжении питания открывается транзистор VT1. Ток, протекающий через открытый транзистор VT1 и резисторы R4, R5 создаёт на выводе 1 микросхемы DA1 напряжение высокого уровня. Транзисторы VT4, VT5 должны быть установлены на радиаторы площадью 30-50 кв. см. каждый. При этом необходимо обеспечить электрическую изоляцию между радиатором и корпусом транзистора. Рекомендуется использовать прокладки из слюды или керамики, а также диэлектрические шайбы под винты и теплопроводящую пасту. В качестве Т1 подойдёт понижающий трансформатор мощностью не менее 150 Вт. Рекомендуется использовать трансформатор ТП-190 после его несложной доработки. Доработка трансформатора заключается в том, чтобы, не прибегая к его разборке, отмотать 10 витков каждой секции вторичной обмотки. Для самостоятельного изготовления трансформатора можно рекомендовать сердечник ПЛМ27-40-58. Первичная обмотка должна содержать две секции по 32 витка провода диаметром 2 мм, а вторичная (повышающая) – 700 витков провода диаметром 0,6 мм. Соединения в цепях истоков транзисторов VT4, VT5 первичной обмотки трансформатора Т1, а также конденсатора С8 должны быть выполнены проводом сечением не менее 1,5 кв. мм. Провода, соединяющие преобразователь с источником питания должны иметь сечение не менее 2,5 кв. мм. Резистор R19 устанавливается непосредственно на выводах конденсатора С8, а элементы R19, C9 устанавливаются на клеммах трансформатора Т1. В качестве выключателя SW1 рекомендуется использовать автомат на ток 16 А. Элементы преобразователя, включая печатную плату, рекомендуется закрепить на металлическом шасси, которое следует соединить с «минусом» источника питания. Используемые в преобразователе полевые транзисторы имеют сопротивление открытого канала около 25 МОм, они рассчитаны на довольно большой допустимый ток стока 40 А, поэтому мощность преобразователя может быть увеличена до 250 Вт путем изменения номиналов схемы блокировки и использования соответствующего трансформатора. Настройка инвертора сводится к подбору частотозадающего резистора R1. При отсутствии измерительных приборов частоту формируемого напряжения можно оценить с помощью простого устройства оценки частоты, схема которого приведена на рис. 5. Разъём XР1 подключается к выходу преобразователя, а разъём XР2 – в электросеть 220 В 50 Гц. При этом частота мигания светодиода VD2 соответствует разности частот напряжений преобразователя и электросети. Подбирая резистор R1, следует добиться наиболее редких миганий светодиода. Перечень элементов для сборки данного преобразователя: Позиция Наименование Количество DA1 КР1211ЕУ1 — 1 В качестве корпуса использован блок питания с персонального компьютера, транзисторы КТ315 с любым буквенным индексом, КТ209 можно заменить на КТ361 так же с любым буквенным индексом. Стабилизатор напряжения 7805 лучше заменить на отечественный КР142ЕН5А. Резисторы любые, мощностью от 0,125 до 0,25 вт. Диоды подойдут тоже практически любые низкочастотные, например — КД105 или IN4002. Конденсаторы C1 типа К73-11, К10-17В с малым уходом ёмкости при прогреве. Трансформатор был взят от блока питания персонального компьютера, но можно использовать и от старых ламповых телевизоров, например — «Весна» или «Рекорд», важно, чтобы витки, сечение и железо совпадали. С радиодеталями разобрались, теперь, как всё это собрать воедино. Ниже приведу неплохую схему инвертора: Этот процесс можно описать так: на микросхеме D1 собран генератор прямоугольных импульсов, частота следования которых около 200 гц — диаграмма «A». С вывода 8 микросхемы импульсы поступают далее на делители частоты, собранные на элементах D2.1 — D2.2 микросхемы D2. В результате чего на выводе 6 микросхемы D2 частота следования импульсов становится вдвое меньше — 100 гц — диаграмма «B», а на выводе 8 импульсы становятся равным частоте 50 гц — диаграмма «C». С вывода 9 снимаются неинвертируемые импульсы 50 гц — диаграмма «D». На диодах VD1-VD2 собрана логическая схема «ИЛИ». В результате чего взятые с выводов микросхем D1 вывод 8, D2 вывод 6 импульсы образуют на катодах диодов импульс соответствующий диаграмме «E». Каскад на транзисторах V1 и V2 служит для увеличения амплитуды импульсов необходимых для полного открывания полевых транзисторов. Транзисторы V3 и V4, подключенные к выходам 8 и 9 микросхемы D2 поочерёдно открываются, запирая тем самым то один полевой транзистор V5, то другой V6. В результате чего управляющие импульсы формируются так, что между ними существует пауза, из-за чего исключается возможность протекания сквозного тока через выходные транзисторы и значительно повышается КПД. На диаграммах «F» и «G» показаны сформированные импульсы управления транзисторами V5 и V6. Вот так будет выглядеть печатная плата: Нам остается только подготовить трансформатор от блока питания. Для этого обмотку на напряжение 220 вольт оставляем, а остальные обмотки удаляются. Поверх этой обмотки наматываются две обмотки проводом ПЭЛ — 2 мм. Для лучшей симметрии их следует намотать одновременно в два провода. При подключении обмоток необходимо учесть фазировку. Полевые транзисторы закрепить через слюдяные прокладки на общий радиатор из алюминия. Правильно собранный инвертор начинает работать сразу после подачи питания. Единственное — бывает необходимость выставить частоту 50-60 гц подбором резистора R1 и конденсатора C1. Поделитесь полезными схемами
|
Как работает инвертор? | Колонка продуктов Fuji Electric
Приводы переменного тока (низкое напряжение)
Как работает инвертор?
Как и чем управляет инвертор? Краткое объяснение, чтобы понять основную структуру.
- Начнем со схемы преобразователя и схемы инвертора, чтобы получить правильное представление об устройстве инвертора
- Классификация вариантов использования инверторных устройств и цепей по напряжению и частоте
Начнем со схемы преобразователя и схемы инвертора, чтобы иметь правильное представление об устройстве инвертора
Мы начнем введение с подробного объяснения механизма инверторного устройства. Роль инверторного устройства заключается в управлении напряжением и частотой источника питания и плавном изменении скорости вращения двигателей, используемых в бытовой технике и промышленном оборудовании.
Первое, что нужно иметь в виду, когда дело доходит до понимания внутренней структуры инверторного устройства, это то, что схема преобразователя преобразует переменный ток (AC), поступающий от источника питания, в постоянный ток (DC), а инвертор схема преобразует преобразованный постоянный ток (DC) обратно в переменный ток (AC). Они работают в комплекте. На приведенной ниже диаграмме показана роль, которую они играют, и то, как они работают.
Во-первых, схема преобразователя, используемая в передней части, постоянно преобразует переменный ток в постоянный. Этот процесс называется ректификацией. Направление и величина волны периодически меняются с течением времени, поскольку переменный ток представляет собой синусоидальную волну. Поэтому диод, который является полупроводниковым устройством, используется для пропускания электричества в прямом направлении для преобразования его в постоянный ток, но не в обратном направлении.
Когда постоянный ток проходит через диод, электричество проходит только в прямом направлении, и появляется положительный пик. Однако другая половина цикла будет потрачена впустую, поскольку пик не проходит в отрицательном направлении. Причина, по которой структура диода имеет форму моста, заключается в том, что он может пропускать отрицательный пик в прямом направлении. Это называется двухполупериодным выпрямлением из-за того, что оно преобразует пики как прямой, так и отрицательной волны.
Однако двухполупериодное выпрямление само по себе не может обеспечить гладкую форму волны, поскольку останутся следы переменного тока и пульсации колебаний напряжения. Поэтому, чтобы очистить их, конденсатор многократно заряжается и разряжается, мягко сглаживая и изменяя форму волны, близкую к форме постоянного тока.
Затем схема инвертора выдает переменный ток с переменным напряжением и частотой. Механизм преобразования постоянного тока в переменный переключает силовые транзисторы, такие как «IGBT (биполярный транзистор с изолированным затвором)», и изменяет интервалы включения/выключения для создания импульсных волн различной ширины. Затем он объединяет их в псевдосинусоиду. Это называется широтно-импульсной модуляцией (ШИМ).
Компьютер автоматически регулирует ширину импульса. Некоторые специализированные однокристальные компьютеры, управляющие двигателем, включают продукт с предустановленной функцией ШИМ. Это позволяет создавать псевдосинусоиды различной частоты и управлять скоростью вращения двигателя, просто задавая нужные параметры.
Классификация вариантов использования инверторных устройств и цепей по напряжению и частоте
Инверторные схемы и устройства используются в различных электротехнических изделиях, таких как бытовые кондиционеры, холодильники, плиты IH (индукционного нагрева), люминесцентные лампы, компьютерные блоки питания (включая ИБП), промышленные вентиляторы, насосы, лифты и краны. Они широко используются и стали неотъемлемой частью нашей жизни.
Тип | Элементы для замены | Использование инвертора |
---|---|---|
VVVF | Напряжение/частота | Промышленные двигатели, насосы, кондиционеры, холодильники и т. д. |
CVVF | Только частота | Электромагнитная плита, рисоварка, люминесцентные лампы и т. д. |
CVCF | Постоянное напряжение и частота | Блок питания компьютера, ИБП (источник бесперебойного питания) и т. д. |
Как было сказано в начале, инверторные схемы и устройства используются в бытовых кондиционерах, холодильниках, промышленных насосах, лифтах и т.п. для регулировки скорости вращения двигателя. В этом случае инвертор используется для изменения как напряжения, так и частоты, это называется «VVVF (переменное напряжение, переменная частота)».
В плитах IH или люминесцентных лампах нет встроенных двигателей, но изменение частоты с помощью схемы инвертора позволяет точно регулировать нагрев и яркость. Например, плита IH использует высокую частоту в своей катушке, которая нагревает кастрюлю, используя схему инвертора. Люминесцентные лампы также используют переменный ток высокой частоты для увеличения скорости освещения, чтобы поддерживать яркость и подавлять мерцание при низком энергопотреблении. В это время схема инвертора изменяет только частоту, поэтому она называется «CVVF (переменная частота постоянного напряжения)».
И последнее, но не менее важное: схема инвертора работает и в компьютерных блоках питания. Это может показаться бессмысленным, потому что он используется для вывода постоянного напряжения или частоты переменного тока из постоянного напряжения или частоты переменного (или постоянного) тока. Тем не менее, его можно использовать в качестве стабильного источника питания, когда частота переменного тока коммерческого источника питания колеблется или происходит сбой питания. Поскольку он поддерживает постоянное напряжение и постоянную частоту, он называется «CVCF (постоянное напряжение, постоянная частота)».
Фейсбук
Твиттер
Сопутствующие товары
Связанный столбец
Схема подключения и подключения автоматического ИБП/инвертора
к дому
Содержание
Автоматическое подключение к ИБП/инвертору
В случае аварийной ситуации, когда электроэнергия недоступна из электростанции, мы можем использовать автоматический инвертор/ИБП и батареи для бесперебойного подключения питания.
Мы покажем два основных ИБП/инвертора с батареями для подключения к домашнему распределительному щиту.
- Автоматический ИБП/инвертор с двумя проводами
- Автоматическая проводка USP / инвертора с одним проводом под напряжением
Примечание. Для работы в безопасном режиме используйте кабель и провод сечением 6 AWG ( 7/064″ или 16 мм 2 ) для подключения ИБП к плате главной панели .
- Запись по теме: Как подключить портативный генератор к домашней электросети — 4 метода
Подключение автоматического ИБП/инвертора с двумя проводами.
Здесь нет ракетостроения. Просто подключите исходящие нейтральный и активный провода к ИБП. Теперь подключите два исходящих нейтрального и фазового провода от ИБП/инвертора (в качестве выхода) к приборам, как показано на рис. 1.
Проводка ИБП/инвертора с одним дополнительным проводом под напряжением каждая точка нагрузки должна быть подключена через действующий (фазовый) и нейтральный провод для нормальной работы. В приведенном ниже случае мы уже подключили фазу и нейтраль (от электростанции к столбу электросети и затем к распределительному щиту) к каждому электроприбору, т. е. к вентиляторам, точкам освещения и т. д. Это то, что мы делаем в нашем распределительном щите для домашней проводки.
- Связанное руководство по электромонтажу: схема подключения ИБП/инвертора с системой автоматического и ручного переключения.
Теперь, в соответствии с приведенной ниже схемой подключения ИБП, подключите дополнительный провод (фазу) к тем приборам, к которым мы уже подключили фазу и нейтраль от (электростанции и DB) (т. е. два провода в качестве фазы (фаза), как показано на рисунке ниже). И нет необходимости подключать дополнительный нейтральный провод от ИБП, так как он уже установлен и подключен ранее. Проще говоря, вам нужен только провод под напряжением для подключения к приборам, как показано на рис. 2. Теперь здесь возникает вопрос: «Почему дополнительный фазовый провод, а не нейтральный? … Да . . Прочтите следующую работу и работу схемы, чтобы получить представление.
Вы также можете прочитать:
- Установка однофазной электропроводки в доме – NEC и IEC
- Установка однофазной электропроводки в многоэтажном здании
Нажмите на изображение, чтобы увеличить
Схема подключения системы автоматического инвертора ИБП (один провод под напряжением)
Работа и эксплуатация подключения ИБП
(1) Когда питание от электросети недоступно
В этом случае, подача электроэнергии будет продолжаться через фазный провод (выход ИБП), который подключен к батареям и ИБП, а затем к электроприборам (обратите внимание, что нейтраль уже подключена). Таким образом, первый однофазный провод, который уже был подключен до установки ИБП (т. е. провод под напряжением от главной платы к ИБП), будет неактивным, поскольку электропитание недоступно из электростанции. В этом случае электроприборы, подключенные через провод под напряжением от ИБП/Инвертора, потребляют запасенную электрическую энергию в батареях без перерыва.
Связанные руководства:
- Установка трехфазной электропроводки в доме — NEC и IEC
- Установка трехфазной электропроводки в многоэтажном здании
(2) При восстановлении питания от электросети
Затем подача питания будет продолжаться через фазный провод (обратите внимание, что нейтраль уже подключена), который подключен к ИБП с главной платы (он будет заряжать аккумулятор как ну) и далее от ИБП к подключенным электроприборам. Таким образом, второй (фазный или действующий провод), подключенный после установки ИБП (т. е. один действующий провод от ИБП), будет неактивен, поскольку питание от ИБП и аккумуляторов недоступно (поскольку это автоматическая система ИБП).
- Как подключить однофазный счетчик электроэнергии?
- Как подключить трехфазный счетчик электроэнергии?
Как подключить ИБП/инвертор к распределительному щиту?
На приведенном ниже рис. 3 показано, как подключить ИБП/инвертор с батареями к главному распределительному устройству для продолжения подачи питания в случае сбоя в сети.
Дополнительное подключение электропроводки с подключенной нагрузкой и электроприборами для двух комнат в доме. Как подключить автоматический ИБП/инвертор к системе домашнего электроснабжения?
Нажмите на изображение, чтобы увеличить
Как подключить ИБП/инвертор к распределительному щиту?
- Связанный пост: Как соединить батареи последовательно, параллельно и последовательно-параллельно?
Цветовой код проводки:
Мы использовали красный для под напряжением или фаза , черный для нейтральный и зеленый провод для однофазного 90. Вы можете использовать специальные коды городов, например, IEC — Международная электротехническая комиссия 9.0092 (UK, EU etc) or NEC (National Electrical Code [US & Canada] where;
NEC:
Single Phase 120V AC:
Black = Phase or Line , White = Neutral and Green / Yellow = Earth Conductor
IEC:
Single Phase 230V AC:
Brown = Фаза или Линия , Синий = Нейтраль и Зеленый = Заземляющий проводник.
- Связанный пост: Как подключить солнечные панели и батареи в соответствии с вашими потребностями?
Общие меры предосторожности при игре с электричеством.
- Отключите источник питания перед обслуживанием, ремонтом или установкой электрооборудования.
- Используйте кабель соответствующего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для установки электропроводки)
- Никогда не пытайтесь работать с электричеством без надлежащего руководства и осторожности.
- Работать с электричеством только в присутствии лиц, имеющих хорошие знания и практический опыт работы, умеющих обращаться с электричеством.
- Прочтите все инструкции, руководства пользователя, предупреждения и строго следуйте им.
- Самостоятельное выполнение электромонтажных работ опасно, а в некоторых регионах является незаконным. Свяжитесь с лицензированным электриком или поставщиком электроэнергии, прежде чем выполнять какие-либо изменения в подключении электропроводки.