Теплопроводность медь: Свойства меди: плотность, теплоемкость, теплопроводность
Содержание
Теплопроводность меди и применение этого качества
28.07.2022
Медь считается одним из наиболее теплопроводных материалов, конкурировать с которым может только серебро. Но оно стоит гораздо дороже, поэтому в промышленности медь нашла широкое применение в тех областях, где требуется ускоренный отвод тепла или наоборот приток тепловой энергии.
Какая теплопроводность меди
Под теплопроводностью подразумевается перемещение тепловой энергии от нагретых частиц материала к более холодным. Это происходит за счет хаотического движения молекул. По мере нагрева они начинают перемещаться еще быстрее, сталкиваясь с более медленными холодными молекулами. Благодаря этому физическому явлению и происходит передача тепла.
Был выработан единый стандарт определения характеристики ― коэффициент теплопроводности. За основу берется образец изделия толщиной 1 м с площадью поверхности 1 м². Теплопроводность равна количеству тепла, проходящему через этот образец за фиксированную единицу времени при температуре 1 Кельвин.
Значение прописывается как Вт/(м·K).
Повышение температуры окружающей среды приводит к замедлению передачи тепла, поскольку вся поверхность нагревается, и наоборот. Добавление в металл примесей селена, фосфора, железа, сурьмы, кислорода снижает значение характеристики, что можно увидеть из сравнения:
- У меди теплопроводность составляет 401 Вт/(м·K).
- У серебра значение чуть выше ― 430 Вт/(м·K).
- У алюминия показатель меньше в 2 раза ― 202 Вт/(м·K).
- Железо передает тепло гораздо хуже ― 92 Вт/(м·K).
- Титан почти не нагревается ― 21,9 Вт/(м·K).
При добавлении в медь цинка получается латунный сплав. У него способность проводить тепло гораздо хуже ― 111 Вт/(м·K), но материал более устойчив к истиранию, поэтому нашел применение в сантехнике.
Сферы применения меди из-за ее высокой теплопроводности
Повышенная характеристика меди по теплопроводности позволяет применять ее в следующих устройствах:
- Автомобильные радиаторы.
Обдуваются ветром или вентилятором для ускоренного удаления тепла из антифриза. - Автомобильные печки. Быстро передают тепло от охлаждающей жидкости в салон машины.
- Радиаторы холодильников и кондиционеров. Обеспечивают правильную работу фреона, чтобы он переходил из жидкой в газообразную фазу и обратно при нужном давлении.
- Радиаторы микросхем и компьютерного оборудования. Забирают лишнее тепло от процессоров, видеокарт и других электронных устройств. Могут быть в виде пластин или игольчатого типа.
- Теплообменники. Встраиваются в котлы, газовые колонки для ускоренного нагрева теплоносителя. По такому же типу изготавливаются промышленные теплообменники для подогрева воды и других жидкостей.
Еще бывают медные радиаторы отопления, размещаемые в помещении. У них высокий процент отдачи тепла, только трубы к ним следует надежно изолировать (если они тоже выполнены из меди). За счет эластичности меди можно создавать очень тонкостенные теплообменники, что содействует более быстрой передаче тепловой энергии без потери герметичности.
← Назад к списку новостей
Оставить заявку
Наша продукция
Медный
прокат
Пруток
медный
Медный
круг
Медная
катанка
Наши сертификаты
Теплопроводность — медь — Большая Энциклопедия Нефти и Газа, статья, страница 2
Cтраница 2
На электропроводность и теплопроводность меди селен влияет незначительно, но снижает ее пластичность. Положительно влияет селен на обрабатываемость меди при резании.
[16]
Теплопроводность его вдвое меньше теплопроводности меди; электропроводность около 60 % электропроводности меди при одинаковых поперечных сечениях обоих металлов, но если сравнивать равные весовые количества, то алюминий проводит электричество в два раза лучше, чем медь.
Он применяется для отдельных частей автомобилей, кухонной посуды — и в качестве раскислителя е производстве стали, Один из наиболее важных сплавов его содерж ит 92 % алюминия и 8 %, меди. Дуралюшин содержит 94 % алюминия, 4.5 % меди, 0 75 % магния и 0 75 %; марганца.
[17]
Высокая электро — и теплопроводность меди — основные свойства, обусловливающие ее широкое применение в технике.
[18]
Ввиду высокой электро — и теплопроводности меди, при ее электродуговой сварке требуются сильные электрические токи. В противоположность этому, газовая сварка и пайка твердым припоем осуществляются сравнительно просто, вследствие чего на практике в основном применяются эти два метода. Для них раскисленная ( восстановленная) медь более пригодна, чем рафинированные сорта меди.
[19]
Теплопроводность вольфрама составляет менее половины теплопроводности меди, но она намного выше, чем у железа или никеля. Хотя электропроводность вольфрама примерно втрое меньше электропроводности отожженной меди, она все же выше, чем у железа, никеля, ртути, платины и фосфористой бронзы.
[20]
Во-вторых, сталь имеет теплопроводность ниже теплопроводности меди.
[21]
| Диаграмма состояния системы медь-сурьма.
[22] |
Сера незначительно влияет на электропроводность и теплопроводность меди, но заметно снижает пластичность при горячей и холодной обработке давлением. При наличии серы значительно улучшается обрабатываемость-меди резанием.
[23]
Мышьяк значительно снижает электро — и теплопроводность меди, но повышает коррозионные свойства и жаростойкость меди.
[24]
Фосфор сильно понижает электро — и теплопроводность меди, но положительно влияет на ее механические свойства и жии-котекучесть. Фосфор широко применяется в литейном деле в качестве раскислителя меди и оказывает положительное влияние при сварке меди.
[25]
Мышьяк значительно снижает электро — и теплопроводность меди, но повышает коррозионные свойства и жаростойкость меди.
[26]
Если теплопроводность различных веществ сравнить с теплопроводностью меди, то окажется, что у железа она примерно в 5 раз меньше, у воды — в 658 раз меньше, у пористого кирпича — в 840 раз меньше, у свежевыпавшего снега — почти в 4000 раз меньше, у ваты, древесных опилок и овечьей шерсти — почти в 10000 раз меньше, а у воздуха она примерно в 20000 раз меньше. Плохая теплопроводность шерсти, пуха и меха ( обусловленная наличием между их волокнами воздуха) позволяет телу животного сохранять вырабатываемую организмом энергию и тем самым защищаться от охлаждения. Защищает от холода и жировой слой, который имеется у водоплавающих птиц, китов, моржей, тюленей и некоторых других животных.
[27]
Теплопроводность различных видов углеродных материалов может достигать теплопроводности меди, а при определенных условиях обеспечивать теплоизоляцию на уровне кварцевого песка. Первое из этих качеств может быть использовано при изготовлении постоянных и полупостоянных форм.
[28]
При температуре жидкого азота теплопроводность а-корунда превышает даже теплопроводность меди.
[29]
Обращают на себя внимание высокие значения электрической проводимости и теплопроводности меди и ее аналогов. Серебро характеризуется максимальной для металлов электрической проводимостью. Медь по электрической проводимости уступает только серебру. В связи с этим около 40 % всей добываемой меди идет на изготовление электрических проводов и кабелей. Этой области применения металла способствуют исключительная пластичность и тягучесть меди.
[30]
Страницы:
1
2
3
4
Техническая сталь и материалы | Какие металлы проводят тепло лучше/быстрее всего
окт
27
2020
Image by Shutterbug75 from Pixabay
Теплопроводность является важнейшим качеством металлов, поскольку она
измеряет количество и скорость тепла
материал может сместиться.
Это качество особенно важно в
высокотемпературные среды.
Чрезвычайно высокие температуры могут изменить свойства любого металла, обычно снижая прочность. Таким образом, более быстрый отвод тепла может значительно снизить нагрузку на детали, повысив их полезность и долговечность.
Однако в некоторых сценариях использования хуже нагревается
проводимость действительно помогает. Например, металлы с более низкой термической
вытесняющие свойства являются лучшим выбором для высокотемпературных сред
где температура должна поддерживаться дольше, например, в двигателях самолетов или кухонной утвари.
С другой стороны, материалы с отличной проводимостью обычно используются для
теплообменники.
Существует значительное несоответствие теплопроводности различных элементов. Однако все они имеют одну общую черту – свойства теплопереноса остаются практически одинаковыми независимо от температуры.
С другой стороны, сплавы
имеют разные свойства теплопроводности при различных температурах.
По этой причине производители сплавов указывают значение при различных температурах, обычно при тех, при которых материал имеет наибольшую прочность. Вы можете найти эти значения на Tech Steel & Materials для различных сплавов в нашем онлайн-каталоге.
Имперское значение для измерения теплопроводности составляет [BTU/(ч·фут⋅°F)], а метрическое значение – [Вт/м-K].
Но какие металлы обладают наилучшей теплопроводностью? Давайте
более глубокий взгляд и узнать!
Серебро
Серебро
— драгоценный металл, очень пластичный и ковкий.
а также является выдающимся проводником электричества и тепла. Его термальный
проводимость 248 [BTU/(час·фут⋅°F)]
или 429 [Вт/м-К]. Несмотря на исключительное тепловыделение, серебро не находит
широко используется в промышленных приложениях, так как это дорого.
Медь
Чистая медь имеет наилучшую электропроводность среди всех других металлов.
По этой причине он широко используется для изготовления теплообменников,
кондиционеры и холодильники, а также баки для горячей воды.
Однако медь является
также дорого, что ограничивает его использование в коммерческих приложениях.
Медь имеет теплопроводность 232 [БТЕ/(час·фут⋅°F)] или 401 [Вт/м-К] при комнатной температуре.
Алюминий
Алюминий
является экономичным вариантом для применений, где
требуется быстрая теплопередача. В целом, алюминий не имеет почти такого же
теплопроводность как у меди, но благодаря более низкой цене она находит более
использование в коммерческих приложениях.
Алюминий
имеет теплопроводность 137 [БТЕ/(час·фут⋅°F)] или 237 [Вт/м-К] при комнатной температуре.
Латунь
Латунь – это сплав меди и цинка. В первую очередь известен
превосходная коррозионная стойкость, латунь также обладает хорошей термостойкостью.
проводимость. При комнатной температуре значения составляют 64 [БТЕ/(час·фут⋅°F)] или 111 [Вт/м-K].
Алюминий Бронза
Алюминиевая бронза представляет собой сплав, состоящий из меди,
алюминий, железо и никель. Этот материал известен своей высокой прочностью и
коррозионная стойкость, но и хорошая теплопроводность.
В комнате
температура, значения равны 44 [BTU/(ч·фут⋅°F)]
или 76 [Вт/м-К].
Железо
Железо — пластичный и ковкий металл с хорошими тепловыми
проводимость 42 [BTU/(час·фут⋅°F)]
или 73 [Вт/м-К]. Однако железо само по себе не используется в промышленных целях.
Вместо этого он смешивается с углеродом для создания стального сплава, который имеет гораздо более высокую
прочность. Однако сталь также имеет гораздо худшую теплопроводность 9,2 [БТЕ/(час·фут⋅°F)] или 16 [Вт/м-К] при комнатной температуре.
Что такое теплопроводность?
Медь известна многими свойствами: коррозионной стойкостью, электропроводностью, противомикробными свойствами, возможностью вторичной переработки и теплопроводностью. Но что такое теплопроводность и почему она так важна для определенных отраслей? Давайте посмотрим вместе.
Вы когда-нибудь внимательно рассматривали чайник и сомневались в его конструкции? Хотя большая часть этого предмета сделана из нержавеющей стали, ручка и крышка часто изготавливаются из пластика.
Почему это? Ну, причина кроется в разной теплопроводности двух материалов. Нержавеющая сталь, как и практически все металлы, хорошо проводит тепло. Это важно для чайника, так как его задача — нагревать воду. Тем не менее, вы не хотите обжечь руки при кипячении воды. Поэтому ручка сделана из пластика, так как этот материал очень плохо проводит тепло. Таким образом, чайник выполняет именно ту цель, которую он должен выполнять.
Старинный медный чайник с деревянной ручкой
Что такое теплопроводность металлов?
Теплопроводность определяется как способность передавать тепло от горячего объекта к холодному объекту. Каждый материал имеет разную теплопроводность. Это зависит от трех факторов: пористости, содержания воды и плотности. В неметаллических твердых телах теплопроводность в значительной степени основана на механическом соединении соседних атомов и связанной с этим передачей колебательной энергии.
С другой стороны, в металлах электроны проводимости в значительной степени ответственны за теплопроводность.
Те же самые электроны проводимости ответственны за электронную проводимость. Они гарантируют, что металлы имеют очень хорошую теплопроводность.
Свободные электроны сталкиваются с частицами решетки. Поскольку они вибрируют более сильно в точке нагрева, они передают часть своей избыточной энергии другим электронам при ударе. Они могут свободно перемещаться в решетке металла и, следовательно, передавать ранее поглощенную дополнительную энергию частицам решетки вне точки нагрева при их столкновении с ними. Твердые тела, которые не состоят из металла, не имеют свободных электронов — поэтому они не проводят электрический ток — и поэтому гораздо хуже проводят тепло.
Медь и ее теплопроводность
Медь очень хорошо проводит электричество и используется для изготовления электрических кабелей во многих областях. Гораздо менее известно, что медь также хорошо проводит тепло. И не случайно кастрюли и сковороды из меди пользуются популярностью для приготовления пищи.
Лишь немногие материалы лучше проводят тепло, чем медь. Одним из них, например, является алмаз. Ни один другой материал не обладает лучшей теплопроводностью, чем алмаз. Алмаз достигает своей непревзойденной теплопроводности благодаря своей уникальной кристаллической структуре – схеме расположения атомов. В отличие от металлов, в алмазах тепло переносится колебаниями решетки, а не электронами проводимости.
Из-за своей высокой теплопроводности медь является популярным материалом для труб отопления.
Серебро – единственный металл, имеющий более высокую теплопроводность, чем медь. Однако он лишь незначительно выше. А поскольку и алмаз, и серебро довольно дороги для покупки, медь является наиболее часто используемым металлом для изготовления проводящих устройств. Это связано с его превосходной теплопроводностью, а также с хорошей электропроводностью, высокой температурой плавления и умеренной скоростью коррозии.
Теплопроводность в обрабатывающей промышленности
Хорошая теплопроводность делает медь востребованным материалом в промышленности.
Обдуваются ветром или вентилятором для ускоренного удаления тепла из антифриза.