Теплопроводность меди и серебра: Теплопроводность меди – как влияет на свойства меди? + Видео

Содержание

Зачем серебрить провода? (часть 1) / Хабр

Написать эту статью меня побудил очередной опус на «Дзене» из серии «серебро и золото обладает несравненно более высокой проводимостью и точностью передачи сигнала по сравнению с медью». О том, какую роль выполняют покрытия из драгоценных металлов, многие имеют весьма смутные представления, и тем не менее, им их назначение кажется совершенно очевидным.

Здесь я опишу, зачем на самом деле покрывать проводники серебром и золотом. А в следующей публикации — технологию, как это сделать в домашних условиях.

О проводимости меди, серебра, золота и т.п.

Вопреки распространенному предрассудку аудиофилов, проводимость металлов вовсе не пропорциональна их цене на Лондонской бирже. Наинизшим среди всех металлов удельным сопротивлением обладает серебро, а на втором месте находится медь — ее проводимость всего на 6% хуже, чем у серебра. Золото же — на третьем месте и на 30% хуже меди. Я уж не говорю о платине, иридии, палладии и прочих не менее благородных металлах — по проводимости они больше похожи на железо или олово.

Итак, если мы сделаем проводники из серебра, мы получим на 6% лучшую проводимость при том же сечении. Разница эта столь ничтожна, что никакого смысла в замене меди серебром нет, учитывая почти стократную разницу в цене. Впрочем, из-за последней никто, кроме наиболее фанатичных аудиофилов, последовательно применяющих принцип «качество звучания пропорционально цене», провода целиком из серебра не делает (впрочем, в истории были разные случаи).

Явление вытеснения переменного тока из глубины проводника в его поверхностные слои — скин-эффект — позволяет на высоких частотах заменять хороший проводник его тонким слоем поверх проводника плохого, или вовсе не проводника. Толщина скин-слоя для немагнитных металлов обратно пропорциональна квадратному корню из частоты и удельного сопротивления, и для серебра составляет 65 мкм на частоте 1 МГц. К слову, толщина электролитического серебрения обычно не превышает 50 мкм, чего достаточно для ВЧ сигналов КВ диапазона и выше (с частотами выше 3 МГц). Тем не менее, выигрыш в проводимости окажется не выше упомянутых шести процентов, что легко компенсируется увеличением диаметра провода на те же 6%. Правда, при необходимости заменить медь латунью или бронзой, серебрение в плане снижения омических потерь имеет больше практического смысла, так как их проводимость на порядок хуже проводимости меди. Вместе с тем, зачастую покрытию серебром предпочитают золочение, о котором и вовсе нельзя сказать, что оно повышает проводимость. Во-первых, удельное сопротивление золота выше, чем у меди, во-вторых, толщина позолоты из-за дороговизны обычно не превышает нескольких микрон, что «вмещает» скин-слой лишь на частотах под гигагерц. Все это говорит о том, что истинная роль серебрения и золочения — не просто в повышении поверхностной проводимости.

Медь, серебро и золото на воздухе

Медь не относится к числу особенно активных металлов. Тем не менее, на воздухе она покрывается тонким слоем сложного состава и микроструктуры, сложенным из оксидов меди (в основном, ее закиси, Cu2O с небольшими примесями оксида двухвалентной меди CuO и малоизвестного полуторного оксида Cu2O3), основного карбоната меди, ее сульфида, а также самой меди, содержащей растворенный кислород. При комнатной температуре пленка быстро достигает толщины 1,5 нм и далее продолжает медленное утолщение, нарастая до нескольких сот нанометров за несколько лет, причем во влажном воздухе этот процесс идет значительно быстрее из-за того, что при этом увеличивается содержание в пленке основного карбоната меди, склонного к формированию рыхлого, не защищающего поверхность металла, осадка. В сырой обстановке этот процесс доходит до стадии, когда медь покрывается легко осыпающейся, пачкающей руки зеленью. При умеренной влажности поверхность меди по мере окисления постепенно темнеет и теряет блеск.

При окислении поверхности поликристаллической меди на протекание данных процессов существенно влияют границы кристаллических зерен. Оксидный слой глубоко «врастает» в металл по этим границам из-за высокой подвижности кислорода в дефектных областях кристаллической решетки металла в их окрестностях. Глубина проникновения окисления по границам зерен достигает нескольких микрометров и зависит от характера микроструктуры меди, что формирует на ее поверхности слой пониженной проводимости. Замечу, эта пониженная проводимость возникает не вследствие протекания тока через оксиды, которые почти не проводят ток. Их проводимость на несколько порядков ниже проводимости меди, вследствие чего через них протекает ничтожная часть общего тока. Снижение проводимости возникает из-за уменьшения эффективного сечения скин-слоя, в который вдаются непроводящие межкристаллитные слои, и увеличения пути тока вдоль извилистой, негладкой поверхности проводника. Влияние этого эффекта тем сильнее, чем выше частота, то есть тоньше скин-слой.

В отличие от меди, серебро и золото на воздухе не окисляются ни при каких температурах. Их оксиды существуют лишь при низких температурах (у серебра — ниже 280°С, у золота — ниже 160°С), разлагаясь на металл и кислород при нагревании, что делает практически невозможным их получение путем прямого окисления металла на воздухе или в кислороде. Золото и серебро с измеримой скоростью окисляются непосредственно только озоном. Таким образом их поверхности всегда чисты от оксида. Для серебра характерно образование черной пленки сульфида на воздухе, загрязненном сернистыми соединениями или в контакте с серосодержащими материалами (резина, белки). Однако, в отличие от проникающего вглубь меди оксида, сульфидная пленка на серебре имеет очень малую толщину и не проникает по границам зерен, так что меньше сказывается на поверхностной проводимости. Чтобы избежать ее появления, избегают соседства серебра с резиной и помещают внутрь корпусов оборудования (особенно закрытых более-менее плотно) газопоглотители.

Таким образом, покрытие меди серебром или золотом обеспечивает защиту проводника от поверхностного окисления, исключая постепенное ухудшение проводимости на радиочастотах. Кстати, из-за малой толщины золотых покрытий меньшая проводимость золота становится существенной только на очень высоких частотах, когда в слое золота помещается существенная часть скин-слоя. Здесь, однако, надо отметить: распространенная в производстве печатных плат технология «иммерсионного золочения» представляет собой фактически никелирование с осаждением поверх никеля тончайшего (всего 50 нм) слоя золота, единственной задачей которого является обеспечение паяемости. Такое покрытие отнюдь не улучшает, а лишь ухудшает проводимость на высоких частотах.

Паяемость и другие технологические моменты

Если вы были радиолюбителем еще в советские годы, вы, я думаю, помните — перед пайкой выводы деталей чаще всего нужно было зачистить и облудить, особенно если они были старыми, долго хранились и потому окислились. И среди всех этих деталей выделялись транзисторы и микросхемы «в золоте»: с ними этих упражнений со скальпелем не требовалось никогда. То же касалось и посеребренных выводов некоторых резисторов и конденсаторов, великолепно паявшихся, даже если они немного потемнели. В самом деле, зачем еще покрывать выводы резистора серебром? Снизить ВЧ-потери и повысить проводимость выводов? У резистора? Видимо, только ради паяемости, с которой без благородных металлов у советской радиопромышленности были вечные проблемы, ставшие особенно неприятными, когда стали внедрять автоматические производственные линии, в которые зачистка и облуживание выводов никак не вписывалось. Конечно, помимо паяемости, есть еще устойчивость к коррозии и ряду других, как говорят военные, спецфакторов. Ну и немаловажным фактором, видимо, является и внешняя привлекательность корпуса для всякого рода военпредов и прочей подобной публики. Чем-то иным сложно объяснить покрытие золотом всего корпуса некоторых транзисторов.

Баба Яга, золотая нога

Впрочем, золото применялось и по чисто технологическим соображениям. Кремний легко припаивается к золоту за счет образования эвтектического сплава золото-кремний. Из-за этого золото прочно обосновалось в металлических и керамических корпусах полупроводниковых приборов, как материал, которым покрывалась площадка для монтажа кристалла. При этом часто золота не жалели: вместо осаждения золотой пленки только на самой площадке размером, может быть, лишь немного больше него, золотом покрывали всю нижнюю часть корпуса транзистора, а одновременно с дном керамического корпуса золотом покрывали всю открытую разводку, выполненную на нем вжиганием молибдена. А заодно и припаянные к ней выводы. Были и технологические курьезы вроде диодов с одной золотой ногой — кристалл паяли к детали, сделанной с выводом одним целым, а гальванически осаждать золото только на часть научились не сразу. Потом монтажники были вынуждены тщательно собирать остатки всех этих золотых ног, обрезанные перед пайкой, и сдавать их куда следует.

А еще есть такая вещь, как термокомпрессионная сварка. Сейчас она реже используется для разварки соединений между контактными площадками кристалла и выводной рамкой корпуса, а раньше это был практически безальтернативный способ. Суть его состоит в том, что золото легко приваривается к золоту при небольшом нагреве (около 300 °С) и сильном сжатии. Связано это с отсутствием на золоте каких-либо поверхностных пленок, препятствующих непосредственному соприкосновению кристаллических решеток. Технологически способ очень прост: к контактной площадке кристалла или корпуса, покрытой предварительно золотом, сильно прижимают специальной иглой-капилляром, разогретой до нужной температуры, золотую проволочку толщиной 10-50 мкм. Золото с золотом тут же накрепко срастаются, образуя надежное соединение.

Здесь хорошо видно использование золота как подложки для пайки кристалла на эвтектику, для разварки выводов и для пайки крышки

Была и остается еще одна причина для широкого применения золота. Это пайка крышки, закрывающей кристалл. К керамике нельзя приварить крышку компрессионной сваркой, как к металлу. Поэтому ее припаивают. Покрытые золотом обрамление вокруг кристалла и поверхность крышки спаиваются друг с другом без применения каких-либо флюсов, тогда как при использовании других металлов флюс был бы необходим, и возник бы риск попадания его под крышку, где он и остался бы, став причиной выхода из строя кристалла.

Немного о других ролях драгметаллов в электронике

Помимо покрытий на проводниках, серебро и золото (а то и экзотику вроде палладия, рутения или платино-иридиевого сплава) мы часто встречаем на поверхностях контактов. В каких-нибудь сильноточных переключателях и реле можно встретить даже не тоненькую пленку металла, а вполне весомые напаянные или приклепанные к контакту пластинки драгоценного металла. В детстве у меня была пластинка весом в несколько грамм из сплава платины и иридия — контакт из какого-то сильноточного контактора. Это сокровище я в конце концов потерял при переездах.

Золото в контактах хорошо опять-таки гарантированным отсутствием каких-либо окислов на поверхности. И когда золото касается золота, контакт получается надежным, с очень малым переходным сопротивлением и совершенно линейным, тогда как контакт, образованный другими металлами, может представлять структуру металл-диэлектрик-металл или металл-полупроводник-металл, вольтамперная характеристика которой на масштабах долей милливольта может оказаться существенно нелинейной.

Однако чтобы использовать положительные свойства золота, оно должно быть чистым. А чистое золото — такой себе конструкционный материал. Оно мягкое, и контакт из него вряд ли выдержит много замыканий-размыканий. К тому же из-за отсутствия каких-либо разделительных слоев между соприкасающимися поверхностями такие контакты очень склонны к слипанию. Я выше писал про термокомпрессионную сварку. Аналогичный эффект наблюдается и с золотыми контактами, стоит им в замкнутом состоянии чуть подогреться протекающим током. Поэтому золотые контакты в реле применяют в основном для коммутации слабых сигналов, когда важно малое и стабильное сопротивление замкнутого контакта, отсутствие каких-либо нелинейных эффектов и искажений. В условиях вакуума или инертной атмосферы схожими свойствами, но без липкости, присущей золоту, обладают рутений и родий, которые к тому же являются довольно твердыми металлами. Их часто применяют на контактах слаботочных герконов в виде тонких пленок с подслоем из вольфрама. А на воздухе золото часто заменяют палладием. В свое время, когда палладий был сравнительно дешевым, его ставили в реле прямо в виде массивных контактных заклепочек, как серебро. Иридий же, являясь чрезвычайно твердым и тугоплавким металлом, сам по себе или в сплаве с платиной применяется для контактов, работающих как на воздухе, так и в вакууме, когда нужна высокая износостойкость, дугостойкость и надежность.

Платина — металл-эталон. Ее можно довести до очень высокой степени очистки, и тогда ее свойства становятся равны теоретически рассчитанным. Например, самые точные датчики температуры — это платиновые термометры сопротивления. В таком датчике применяется тончайшая проволока из платины в стеклянной изоляции, намотанная на крохотный каркас, или тонкая платиновая пленка, напыленная в виде змейки для увеличения длины на кварцевой или керамической подложке. В океанологических зондах такие термометры позволяют измерять температуру не только чрезвычайно точно — до тысячной градуса, но и очень быстро, за десятые и даже сотые доли секунды. Диапазон измерения платиновыми термометрами сопротивления — от гелиевых температур до 1000 и более °С. Стандартными и образцовыми являются и платиново-платинородиевые термопары, и платиновые электроды электрохимических ячеек, и платиновые, покрытые платиновой чернью, излучающие поверхности эталонных источников света.

Особая роль в электронике у палладия. Его тончайшая пленка, получаемая разложением палладиевой соли, служит проводящей «затравкой» для гальванического наращивания меди одновременно на обе стороны стеклотекстолита и внутрь переходных отверстий. Но палладий не только дорог, его соединения страшно вредны для здоровья, вызывая рак в самых микроскопических количествах. Поэтому от его использования в изготовлении печатных плат стараются уйти. А самое (печально) известное применение палладия — это переходный слой между серебром и сегнетоэлектрической керамикой в многослойных конденсаторах. Без него серебро диффундирует в керамику под действием поля, прорастая сквозь нее нитевидными кристаллами и вызывая со временем пробой конденсатора. Значительное содержание палладия в некоторых советских конденсаторах КМ-5 и КМ-6 привело к уничтожению множества аппаратуры, из которой эти конденсаторы (а заодно и все подряд, внешне на них похожие) варварски выкусывали для сдачи на металл.

И в конце — немного истории

Я писал выше, что случаи бывали в истории разные. И на одном таком случае я хочу остановиться. Все мы знаем, что во время войны американцы вовсю работали над своим атомным проектом. Одной из главных задач было получение больших количеств изотопно-чистого урана-235, и изобретатель циклотрона Эрнест Лоуренс предложил использовать принцип масс-спектрометра для разделения изотопов. Для этого нужны были крупные мощные электромагниты, а на них требовалось много меди. Ее на реализацию проекта требовалось более 10 тысяч тонн, что в условиях войны было просто немыслимо — меди отчаянно не хватало на военные нужды, ее запасы таяли, а поставки ее из Чили были прерваны. И полковник Маршалл, обратился… в американское Казначейство, так как было предложено заменить медь серебром. В Казначействе были крайне удивлены, когда узнали, что от них хотят получить не меньше 10000 тонн серебра: «Но полковник, в Казначействе мы не говорим о тоннах серебра, мы говорим о тройских унциях!» Тем не менее, 14 тысяч тонн серебра было выделено с условием полного возврата его в хранилища Казначейства по окончании войны.

Это было более 4 тысяч слитков серебра, каждый массой в 1000 тройских унций, которые в условиях строжайшей секретности, учета и тщательной охраны превращались в проволоку, ленту, шинопроводы и прочие электрические детали и материалы, которые затем перевозились на другие заводы, где создавались электромагниты — каждый из которых содержал 14 тонн серебра, их было немногим меньше тысячи. При этом вооруженные охранники стояли рядом с рабочими, которые сверлили, точили и резали детали из серебра, зорко следя за тем, чтобы каждая стружка была собрана и отправлена в переработку. Только сами электромагниты уже перевозили без охраны — ничего не выдавало, что под сварным стальным корпусом находятся даже не унции, а тонны драгоценного металла. В конце же, через пять лет, все серебро было извлечено, доведено до прежней чистоты, вновь отлито в слитки и… говорят, что его оказалось больше, чем было взято в хранилищах. Это было серебро, которое оставалось в плавильных печах с предыдущих плавок, откуда его никогда не извлекали раньше, но в этот раз из них был вынут и вычищен каждый грамм.

* * *

Поскольку диплом никто читать не будет, в качестве материала обмотки выбрано золото, а материала магнитопровода — дерево (из дипломного проекта).

Электроконтактные сплавы вольфрама и молибдена с медью и серебром » Все о металлургии

07.02.2017

В жидкой меди не растворяются ни вольфрам, ни молибден. Жидкое серебро растворяет при 1600° около 5% молибдена. Вольфрам совершенно не растворяется в жидком серебре, интерметаллических соединений также не образуется. Поэтому сплавы вольфрама и молибдена с медью и серебром нельзя получить сплавлением исходных металлов.
Однако в связи с тем, что вольфрам и молибден хорошо смачиваются расплавленными медью и серебром, можно получить металлокерамическим путем композиции сплавов, состоящие из равномерно распределенных частиц вольфрама и меди, вольфрама и серебра, молибдена и серебра и т. п. Прочность сцепления между частицами в этих композициях создается припаиванием соприкасающихся поверхностей.
Наиболее удобный метод изготовления подобного рода сплавов заключается в следующем. В качестве исходного материала применяют мелко зернистый порошок вольфрама или молибдена, получаемый путем восстановления окисла водородом. Этот порошок смешивают с небольшим количеством порошка меди или серебра, которые также могут быть получены либо восстановлением водородом из окислов, либо методом электролитического осаждения.
Количество медного или серебряного порошка в исходной смеси должно составлять небольшую часть (около 20—25%) от общего количества серебра или меди в конечном сплаве.
Исходную порошкообразную смесь прессуют в брикеты с заданной пористостью, которая определяет количество меди или серебра в. окончательном сплаве.
Спрессованные брикеты для их упрочнения перед окончательной термической обработкой спекают в атмосфере водорода.
Спеченные пористые брикеты вместе с дополнительным количеством меди или серебра в форме небольших кусочков, стружки, обрезков проволоки и т. п. загружают в графитовую лодочку или тигель и помещают в электрическую печь. Нагрев проводят в атмосфере водорода при температуре примерно на 50° выше температуры плавления меди или серебра.
При этом медь или серебро в расплавленном состоянии пропитывают все поры спрессованного брикета, в результате чего после остывания получается плотное беспористое тело с равномерным распределением частиц вольфрама или молибдена среди прослоек меди или серебра (рис. 142).

Подобного рода сплавы применяют в качестве материалов для изготовления контактов. например для агрегатов контактной (стыковой, точечной, шовной) электросварки, имеющей важное значение в точном машино- и приборостроении.
Сплавы вольфрама и молибдена с медью и серебром обладают ценным сочетанием свойств их компонентов Присутствие меди или серебра обеспечивает высокую электро- и теплопроводность сплава, а наличие жесткого скелета тугоплавких вольфрама или молибдена обеспечивает повышенную твердость и прочность, сохраняющиеся при высоких температурах.
Такое сочетание свойств очень важно в условиях работы электрических контактов, подвергающихся одновременному воздействию высоких температур и давления или износу при истирании.
Обычно в таких сплавах содержание меди или серебра колеблется от 5 до 30% в зависимости от необходимого сочетания свойств сплавов.
Эти сплавы удобны также и тем, что они легко обрабатываются резанием, а при достаточно большом содержании меди или серебра — также и давлением.
В отсутствии растворимости вольфрама или молибдена в расплавленных меди или серебре в процессе окончательной термической обработки почти не наблюдается укрупнение величины зерен вольфрама или молибдена.
Изменение свойств сплавов вольфрам-медь в зависимости от состава, показано на рис. 143.


  • Сплавы типа стеллитов
  • Сплавы вольфрама и молибдена с металлами железной группы
  • Сплавы вольфрама с молибденом
  • Сопротивление различных способов производства ковких титана и циркония
  • Плавка циркония в электродуговой печи
  • Плавка циркония в графитовом тигле
  • Металлокерамический метод получения ковкого циркония
  • Электродуговая плавка титана в охлаждаемом медном тигле
  • Плавка титана в графитовом тигле
  • Производство ковкого титана методом плавки

Теплопроводность серебра и меди высока, потому что они имеют следующую привязку: A.

MetallicB.IonicC.CovalentD.Vander waal

Ответ

Verified

236.7k+ views

Подсказка: Теплопроводность в основном обусловлена ​​миграцией свободных электронов при повышении температуры. Поскольку медь и серебро являются переходными металлами; а металлы имеют большое количество свободных электронов, они являются хорошими проводниками тепла и электричества.

Полный пошаговый ответ:
— Металлы являются хорошими проводниками тепла и электричества. Они обладают высокой электропроводностью, высокой теплопроводностью и высокой плотностью. Они обладают некоторыми характерными свойствами, такими как ковкость и пластичность, склонность к деформации под нагрузкой без раскалывания на листы и проволоки. Они блестящие и блестящие с точки зрения оптических свойств. Металлические листы имеют толщину несколько микрометров и кажутся непрозрачными.
— Металлы имеют более высокую плотность, чем большинство неметаллов, но тем не менее мы замечаем большие различия в их плотности. Например, литий является наименее плотным твердым элементом, а осмий — самым плотным. Мы также знаем, что щелочные и щелочноземельные металлы являются легкими металлами из-за их низкой плотности, твердости и температуры плавления.
— В металлах есть металлическая связь. Так, прочность металлических связей для различных металлов достигает максимума вокруг центра ряда переходных металлов, поскольку они имеют большое количество делокализованных электронов в металлических связях сильного типа связи. Следовательно, серебро и медь обладают высокой теплопроводностью, так как относятся к ряду переходных металлов и проявляют металлические свойства.
— Теплопроводность — это способность материала переносить тепло из одной точки в другую без движения всего материала. Металлы имеют большое количество свободных электронов, и благодаря их электронной проводимости также может проводиться тепло. Свободные электроны свободно перемещаются по твердому телу и передают тепловую энергию, поскольку они обладают металлической связью.
-Особенно для переходных металлов, они могут вовлекать в делокализацию 3d-, а также 4s-электроны. Чем больше электронов вы задействуете, тем сильнее будет притяжение, а значит, и металлическая связь. Это приводит к увеличению эффективного ядерного заряда катиона и, таким образом, к уменьшению размера катиона. Вот почему мы говорим, что теплопроводность серебра и меди высока, потому что они имеют металлическую связь.

Следовательно, правильный вариант (А).

Примечание:
Прочность металлических связей зависит от количества делокализованных электронов, заряда катиона металла и размера катиона. Металлические связи прочны, и для их разрыва требуется большое количество энергии. Эта причина остается неизменной для того факта, что металлы имеют высокие температуры плавления и кипения.

Недавно обновленные страницы

Рассчитайте изменение энтропии, связанное с конверсией химии класса 11 JEE_Main

Закон, сформулированный доктором Нернстом, является первым законом термодинамики 11 класса химии JEE_Main

Для реакции при rm0rm0rmC и нормальном давлении А класс 11 химии JEE_Main

Двигатель, работающий между rm15rm0rm0rmC и rm2rm5rm0rmC класс 11 химии JEE_Main

Для реакции rm2Clg в rmCrmlrm2rmg знаки перехода 11 класса 9 JEE_Main жидкой воды 11 класс химии JEE_Main

Рассчитать изменение энтропии при преобразовании 11 класса химии JEE_Main

Закон, сформулированный доктором Нернстом, есть Первый закон термодинамики 11 класс химии JEE_Main

Для реакции при rm0rm0rmC и нормальном давлении А класс 11 химии JEE_Main

Двигатель, работающий между rm15rm0rm0rmC и rm2rm5rm0rmC класс 11 химии JEE_Main

Для реакции rm2Clg в rmCrmlrm2rmg знаки перехода 11 класса 9 JEE_Main жидкой воды класса 11 химии JEE_Main

Актуальные сомнения

Медь Серебряный сплав | АМЕРИКАНСКИЕ ЭЛЕМЕНТЫ®


РАЗДЕЛ 1.

ИДЕНТИФИКАЦИЯ. КУ-АГ-01-П.30АГ
, CU-AG-01-P.02AG

Номер CAS: 12249-45-5

Соответствующие установленные области применения вещества: Научные исследования и разработки

Информация о поставщике:
5 American Elements Авеню
Лос-Анджелес, Калифорния

Тел.: +1 310-208-0551
Факс: +1 310-208-0351

Телефон службы экстренной помощи:
Внутренний, Северная Америка: +1 800-424-9300
Международный: +1 703-527- 3887


РАЗДЕЛ 2. ИДЕНТИФИКАЦИЯ ОПАСНОСТИ

Классификация вещества или смеси
Классификация в соответствии с Регламентом (ЕС) № 1272/2008
Вещество не классифицируется как опасное для здоровья или окружающей среды в соответствии с регламентом CLP.
Классификация согласно Директиве 67/548/ЕЭС или Директиве 1999/45/EC
Неприменимо
Информация об особых опасностях для человека и окружающей среды:
Информация отсутствует.
Опасности, не классифицированные иначе
Информация отсутствует.
Элементы маркировки
Маркировка в соответствии с Регламентом (ЕС) № 1272/2008
Неприменимо
Пиктограммы опасности
Неприменимо
Сигнальное слово
Неприменимо
Краткая характеристика опасности
Неприменимо
Классификация WHMIS
Не контролируется
5 Система классификации0015 Рейтинги HMIS (шкала 0–4)
(Система идентификации опасных материалов)
Здоровье (острые воздействия) = 0
Воспламеняемость = 0
Физическая опасность = 0
Другие опасности
Результаты оценки PBT и vPvB
PBT: Неприменимо.
vPvB: Не применимо.


РАЗДЕЛ 3. СОСТАВ/ИНФОРМАЦИЯ О КОМПОНЕНТАХ

Химическая характеристика: Вещества
CAS# Описание:
7440-50-8 Медь
7440-22-4 Серебро


MSUIREST A SECTION

Описание мер первой помощи
Общая информация
Никаких специальных мер не требуется.
При вдыхании
В случае жалоб обратиться за медицинской помощью.
После контакта с кожей
Обычно продукт не раздражает кожу.
При попадании в глаза
Промыть открытые глаза в течение нескольких минут под проточной водой. Если симптомы сохраняются, обратитесь к врачу.
После проглатывания
Если симптомы сохраняются, обратитесь к врачу.
Информация для врача
Наиболее важные симптомы и эффекты, как немедленные, так и замедленные
Отсутствует дополнительная соответствующая информация.
Указание на необходимость немедленной медицинской помощи и специального лечения
Отсутствует дополнительная соответствующая информация.


РАЗДЕЛ 5. ПРОТИВОПОЖАРНЫЕ МЕРЫ

Средства пожаротушения
Подходящие средства пожаротушения
Специальный порошок для пожаротушения металлов. Не используйте воду.
Неподходящие средства пожаротушения по соображениям безопасности
Вода
Особые опасности, исходящие от вещества или смеси
Если этот продукт вовлечен в пожар, могут быть высвобождены следующие вещества:
Оксиды меди
Рекомендации для пожарных
Защитное снаряжение:
Никаких специальных мер не требуется.


РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ

Меры личной безопасности, защитное снаряжение и аварийные процедуры
Не требуется.
Меры предосторожности для окружающей среды:
Не допускайте попадания материала в окружающую среду без надлежащего разрешения правительства.
Не допускать попадания продукта в канализацию или водоемы.
Не допускать проникновения в землю/почву.
Методы и материалы для локализации и очистки:
Собрать механически.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы
См. Раздел 7 для информации о безопасном обращении
См. Раздел 8 для информации о средствах индивидуальной защиты.
Информацию об утилизации см. в Разделе 13.


РАЗДЕЛ 7. ОБРАЩЕНИЕ И ХРАНЕНИЕ

Обращение
Меры предосторожности для безопасного обращения
Держите контейнер плотно закрытым.
Хранить в прохладном, сухом месте в плотно закрытой таре.
Информация о защите от взрывов и пожаров:
Никаких специальных мер не требуется.
Условия безопасного хранения, включая любые несовместимости
Хранение
Требования, которым должны соответствовать складские помещения и емкости:
Особых требований нет.
Информация о хранении в одном общем хранилище:
Информация отсутствует.
Дополнительная информация об условиях хранения:
Хранить контейнер плотно закрытым.
Хранить в прохладном, сухом месте в хорошо закрытых контейнерах.
Особое конечное использование(я)
Отсутствует какая-либо соответствующая информация.


РАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ ВОЗДЕЙСТВИЯ/СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ

Дополнительная информация о конструкции технических систем:
Нет дополнительных данных; см. раздел 7.
Контрольные параметры
Компоненты с предельными значениями, требующими контроля на рабочем месте: 7440-50-8 Медь (100,0%)
PEL (США) Длительное значение: 1* 0,1** мг/м³ в пересчете на медь * пыль и туман **дым
REL (США) Долгосрочное значение: 1* 0,1** мг/м³ в виде Cu *пыль и туман **дым
TLV (США) Долговременное значение: 1* 0,2** мг/м³ *пыль и туман; **дым; как Cu
EL (Канада) Длительное значение: 1* 0,2** мг/м³ *пыль и туман; **дым
EV (Канада) Длительное значение: 0,2* 1** мг/м³ в виде меди, *дым;**пыль и туманы
Дополнительная информация: Нет данных
Средства контроля воздействия
Средства индивидуальной защиты
Общие защитные и гигиенические средства меры
Следует соблюдать обычные меры предосторожности при обращении с химическими веществами.
Поддерживать эргономически подходящую рабочую среду.
Дыхательное оборудование: Не требуется.
Защита рук: Не требуется.
Время проникновения материала перчаток (в минутах)
Не определено
Защита глаз: Защитные очки
Защита тела: Защитная рабочая одежда.


РАЗДЕЛ 9. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Информация об основных физико-химических свойствах
Общая информация
Внешний вид:
Форма: Твердое в различных формах
Цвет: не определено
Запах: не определено
Порог запаха: не определено.
Значение pH: Неприменимо.
Изменение состояния
Точка плавления/диапазон плавления: Не определено
Точка/диапазон кипения: Не определено
Температура сублимации/начало: Не определено
Воспламеняемость (твердое, газообразное): Не определено.
Температура воспламенения: не определено
Температура разложения: не определено
Самовоспламенение: не определено.
Опасность взрыва: не определено.
Пределы взрываемости:
Нижний: Не определено
Верхний: Не определено
Давление пара при 20 °C (68 °F): Не определено
Плотность при 20 °C (68 °F): Не определено
Относительная плотность: Не определено.
Плотность паров: Неприменимо.
Скорость испарения: Неприменимо.
Растворимость в/Смешиваемость с водой: Нерастворим
Коэффициент распределения (н-октанол/вода): Не определено.
Вязкость:
динамическая: Неприменимо.
Кинематика: Не применимо.
Другая информация
Отсутствует дополнительная соответствующая информация.


РАЗДЕЛ 10. СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ

Реакционная способность
Информация отсутствует.
Химическая стабильность
Стабилен при соблюдении рекомендуемых условий хранения
Термическое разложение / условия, которых следует избегать:
Разложение не происходит, если используется и хранится в соответствии со спецификациями.
Возможность опасных реакций
Опасные реакции неизвестны
Условия, которых следует избегать
Отсутствует какая-либо соответствующая информация.
Несовместимые материалы:
Информация отсутствует.
Опасные продукты разложения:
Оксиды меди


РАЗДЕЛ 11. ТОКСИКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

Информация о токсикологическом воздействии
Острая токсичность:
Реестр токсического воздействия химических веществ (RTECS) содержит данные об острой токсичности для этого вещества.
Значения LD/LC50, важные для классификации:
Пероральная LD50 >5000 мг/кг (мышь)
Раздражение или коррозия кожи: Нет раздражающего действия.
Раздражение или коррозия глаз: Нет раздражающего действия.
Сенсибилизация: Сенсибилизирующие эффекты неизвестны.
Мутагенность зародышевых клеток: Эффекты неизвестны.
Канцерогенность:
EPA-D: Не классифицируется в отношении канцерогенности для человека: недостаточные доказательства канцерогенности для людей и животных или данные отсутствуют.
Реестр токсических эффектов химических веществ (RTECS) содержит данные об онкогенности, и/или канцерогенности, и/или новообразованиях для этого вещества.
Репродуктивная токсичность:
Реестр токсического воздействия химических веществ (RTECS) содержит репродуктивные данные для этого вещества.
Специфическая системная токсичность для органов-мишеней — повторное воздействие: Эффекты неизвестны.
Специфическая токсичность для системы органов-мишеней — однократное воздействие: Эффекты неизвестны.
Опасность при вдыхании: Эффекты неизвестны.
От подострой до хронической токсичности: Эффекты неизвестны.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не известна.
Канцерогенные категории
OSHA-Ca (Управление по безопасности и гигиене труда)
Вещество не указано.


РАЗДЕЛ 12. ЭКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

Токсичность
Водная токсичность:
Отсутствует какая-либо соответствующая информация.
Стойкость и способность к разложению
Отсутствует какая-либо соответствующая информация.
Потенциал биоаккумуляции
Отсутствует какая-либо соответствующая информация.
Подвижность в почве
Отсутствует какая-либо соответствующая информация.
Дополнительная экологическая информация:
Общие примечания:
Не допускать попадания материала в окружающую среду без надлежащего государственного разрешения.
Не допускать попадания продукта в грунтовые воды, водоемы или канализацию в неразбавленном виде или в больших количествах.
Избегайте попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT: Неприменимо.
vPvB: Не применимо.
Другие неблагоприятные воздействия
Отсутствует какая-либо соответствующая информация.


РАЗДЕЛ 13. СООБРАЖЕНИЯ ПО УТИЛИЗАЦИИ

Методы обработки отходов
Рекомендация
Ознакомьтесь с государственными, местными или национальными нормами для обеспечения надлежащей утилизации.
Неочищенная упаковка:
Рекомендация:
Утилизация должна производиться в соответствии с официальными правилами.


РАЗДЕЛ 14. ИНФОРМАЦИЯ О ТРАНСПОРТИРОВКЕ

Номер ООН
DOT, ADN, IMDG, IATA
Не применимо
Собственное отгрузочное наименование ООН
DOT, ADN, IMDG, IATA
Не применимо
Класс(ы) опасности при транспортировке 15 DOT, 90, ADR, ADN, IMDG, IATA
Класс
Неприменимо
Группа упаковки
DOT, IMDG, IATA
Неприменимо
Опасности для окружающей среды:
Загрязнитель морской среды (IMDG):
Да (PP)
Да (P)
Особые меры предосторожности для пользователя
Неприменимо.
Транспортировка навалом в соответствии с Приложением II к MARPOL73/78 и Кодексом IBC
Не применимо.
Транспорт/Дополнительная информация:
DOT
Загрязнитель морской среды (DOT):

ООН «Типовой регламент»:


РАЗДЕЛ 15. НОРМАТИВНАЯ ИНФОРМАЦИЯ

Правила/законодательные акты по безопасности, охране здоровья и окружающей среды, относящиеся к данному веществу или смеси
Национальные правила
Все компоненты этого продукта перечислены в Реестре химических веществ Агентства по охране окружающей среды США.
Все компоненты этого продукта перечислены в Канадском перечне веществ для внутреннего потребления (DSL).
Раздел 313 SARA (списки конкретных токсичных химических веществ)
7440-50-8 Медь
Предложение 65 штата Калифорния
Предложение 65 — Химические вещества, вызывающие рак
Вещество не указано в списке.
Prop 65 — Токсичность развития
Вещество не указано.
Prop 65 — Токсичность для развития, женщины
Вещество не указано.
Prop 65 — Токсичность для развития, мужчины
Вещество не указано.
Информация об ограничении использования:
Только для использования технически квалифицированными лицами.
Другие правила, ограничения и запретительные положения
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (ЕС) № 1907/2006.
Вещество не указано.
Условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) в отношении производства, размещения на рынке и использования.