Химическое пассивирование и его предназначение. Химическое пассивирование нержавеющих сталей


    Сталь химическое пассивирование - Справочник химика 21

        Основной объем производства труб приходится на горячекатаные трубы и сварные. Химическая обработка горячекатаных труб из нержавеющих сталей включает травление с целью удаления окалины, травление для выявления дефектов, пассивирование труб, обезжиривание. [c.75]

        ХИМИЧЕСКОЕ ПАССИВИРОВАНИЕ СТАЛИ 8 ВОДЕ ВЫСОКОЙ ЧИСТОТЫ [c.122]

        Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

        Однако нередко наблюдаются случаи, когда вновь образовавшееся химическое соединение образует на твердой поверхности сорбента столь прочную пленку, что через нее дальнейший доступ молекул газа вглубь сорбента совершенно прекращается, и таким образом хемосорбция приобретает кажущийся адсорбционный характер. В качестве примера можно привести процесс пассивирования стали путем азотирования ее поверхности, сопровождающегося образованием на этой поверхности тонкой и прочной пленки из нитрида железа. [c.74]

        Дальнейшее повышение химической стойкости хромоникелевых сталей в ряде агрессивных сред достигается введением молибдена. Характерной особенностью молибдена является его способность к пассивированию как в окислительных, так и в [c.119]

        Для химического пассивирования малоуглеродистой стали рекомендуется 9—10-процентный раствор бихромата калия. При комнатной температуре обработку ведут в течение 1 ч, а при 60° С — в течение 20 мин. Лучшие результаты дает последовательная обработка изделий сначала в течение 10 мин в 20-процентном растворе хромового ангидрида при комнатной температуре и затем после промывки в 10-процентном растворе бихромата калия при 60° С. [c.15]

        Пассивирование поверхности стальных изделий с целью кратковременной защиты их от воздействия окружающей среды проводят химической или электрохимической обработкой в кислых или щелочных растворах. Эффективность такого метода защиты от коррозии определяется условиями пассивирования, составом металла, а также состоянием его поверхности. Наибольшее повышение стойкости против коррозии достигается при пассивировании легированных сталей, причем длительность защитного действия пассивных пленок значительно больше, чем при обработке углеродистых сталей. [c.14]

        Кислород в качестве агента для химического пассивирования стали имеет ряд преимуществ перед пероксидом водорода а именно эффективность действия пероксида водорода значительно ниже из-за быстрого термического разложения его при температуре 100—120 °С, в присутствии пероксида водорода значительно интенсивнее корродируют стеллитовые облицовки внутренних поверхностей промышленного оборудования, применение кислорода более экономично. [c.125]

        При подготовке металла к окраске могут применяться многие способы очистки механический, химический, электрохимический, с применением ультразвука и др. Наряду с этим хорошей подготовкой под окраску стали является фосфатирование, для алюминия — оксидирование, для медных и покрытых медью изделий — пассивирование в растворах — пассиваторах. [c.264]

        Основные виды хромовых покрытий молочное, блестящее, матовое и черное. Покрытия характеризуются высокой химической стойкостью, термостойкостью, склонностью к пассивированию на воздухе, устойчивостью в условиях тропического климата, способностью к растрескиванию в виде сетки и неравномерностью распределения по поверхности. Они неустойчивы к воздействию атмосферы, загрязнений галоидоводородными соединениями. Хромовые покрытия рекомендуется применять для защиты от коррозии деталей из стали, меди и ее сплавов, для повышения поверхностной твердости и износоустойчивости деталей, а также в декоративных целях. [c.91]

        Кривая / соответствует режиму растворения железо (II) — активное . Процесс начинается при потенциале около —350 мВ, по достижении этого потенциала кривая резко поднимается вверх. Железо переходит в раствор в виде Ре , Кривая 3 характеризует режим растворения железо (И) — частично пассивированное , Поскольку проба пассивирована, то для ее растворения требуется значительно больший потенциал, а именно 500 мВ, Железо и в этом случае переходит в раствор в виде Ре , Некоторые химически стойкие сорта стали пассивируются в такой сильной степени, что для их растворения требуются очень высокие потенциалы (кривая 5). Железо по мере его растворения окисляется до железа (П1)—так называемый процесс железо (П1) — активное растворение . Более сложный процесс растворения описывает кривая 2. При низких значениях потенциала железо переходит в раствор в виде железа (П). При увеличении потенциала происходит пассивация поверхности пробы, плотность тока уменьшается и только увеличение потенциала обеспечивает режи.м растворения железо (П) — частично пассивированное . [c.270]

        Никелевые покрытия. Химическая устойчивость никеля в различных средах обусловлена сильно выраженной способностью его к пассивированию. Никелевые покрытия защищают стальные изделия от коррозии только механически при отсутствии в них пор. Эти покрытия используют для защиты от коррозии деталей из стали и цветных металлов (медь и ее сплавы), декоративной отделки поверхности, а также для повышения износостойкости трущихся поверхностей. Никелевые покрытия нашли широкое применение в машиностроении, приборостроении, радиотехнической и автомобильной промышленности. [c.88]

        Скорость растворения сплавов зависит главным образом от их состава, электрохимической активности и электрохимических эквивалентов компонентов, составляющих сплав, а также от физико-химических параметров электролита. При увеличении содержания в сплаве хрома затрудняется нарущение его пассивного состояния при воздействии галоидных анионов [193]. Вследствие различия электрохимических эквивалентов компонентов сплава, их потенциалов растворения и способности к пассивированию во многих случаях при ЭХО происходит увеличение в поверхностном слое содержания более электроположительных составляющих (например, никеля, меди, молибдена). При этом в анодной поляризационной характеристике сплава может наблюдаться несколько участков, соответствующих пассивации его различных компонентов [178]. Это обусловливает необходимость обеспечения приблизительно одинаковой скорости растворения всех основных компонентов сплава при подборе электролита. Определенное влияние на процесс анодного растворения кроме химического состава сплава оказывает и его структура. Связь производительности электрохимической обработки сталей с их микроструктурой показана в работе [127]. При анодном растворении жаропрочных сплавов на никелевой основе отмечалось преимущественное растворение (растравливание) границ зерен вследствие их относительно более высокой активности. В зависимости от природы фаз, составляющих данный сплав, существенно различаются параметры возникающих на них пленок [117]. [c.34]

        Химическое пассивирование металлов как метод предупреждения кислородной коррозии в воде высокой чистоты, теоретически обоснованный и разработанный Я. М. Колотыркиным, Т. X. Маргуловой, Г. М. Флорианович и О. И. Мартыновой [32, 47, 66], представляет практический интерес для защиты оборудования из стали и алюминия на химических производствах. Этот метод борьбы с коррозией применяется на многих объектах промышленности, использующих в качестве рабочей среды воду высокой чистоты [67]. Метод позволяет снижать концентрацию гидроксидов железа в теплоносителе с 20 до 4— 7 М кг/кг и ликвидировать коррозию как при низких, так и при высоких температурах. [c.122]

        Наконец, в процессах хемосорбции возможны, как это установил Н. А. Шилов, случаи образования так называемых поверхностных соединений, когда между поверхностными атомами адсорбента и атомами адсорбтива устанавливается химическая связь однако в результате ее не образуется новой фазы и нового химического соединения, которое можно было бы выделить особо, так как поверхностные атомы адсорбента продолжают сохранять связь и с остальными глубже лежащими его атомами. Такие поверхностные соединения в виде своеобразных окислов, по-видимому, образуются на границе соприкосновения угля и стали с кислородом воздуха, обусловливая в последнем случае пассивирование металла. Вопрос этот, еще мало разработанный, имеет большое будущее как в теоретическом, так и особенно в практическом отношении. [c.74]

        Стали типа 18-8 устойчивы в азотной кислоте до 60%-ной концентрации при температурах кипения. Кроме растворов азотной кислоты, эти стали устойчивы в химически чистой фосфорной кислоте до 15%-ной концентрации, 1в большинстве органических соединений, не содержащих ионов хлора в сернокислых и других солях. Коррозионная стойкость хромо никелевых сталей может быть повышена путем легирования их молибденом, медью, кремнием и другими элементами. При легировании молибденом склонность сталей к пассивированию увеличивается (снижается ток пассивации и ток в пассивном состоянии), повышается устойчивость пассивного состояния. Стали типа 18-12, легированные молибденом, устойчивы в средах, содержащих хлор-ионы (при невысоких температурах), в органических кислотах (уксусной, муравьиной), в средах целлюлозно-будмажной промышленности и др. Л. И. Посысаевой, А. А. Бабаковым и В. А. Петровской [86, с.623] было показано, что введение 2,7% Мо в стали, содержащие 20, 24, 28% N1 и 18, 21 и 24% Сг повышает их стойкость в растворах фосфорной кислоты и в экстракционной фосфорной кислоте (Р2О5—32%, Р-—2%, 50Г—1,6%) при 68—70°С. [c.207]

        Защита от коррозии имеет исключительно важное значение для черных металлов—железа, чугуна и стали, так как эти металлы имеют наибольшее распространение в технике и быту, но в силу своих физико-химических свойств наиболее подвержены действию коррозии. Ряд цветных металлов и сплавов — алюминий, магний, медь, бронза, латунь и другие также подвергаются коррозии, но в значительно меньшей мере, чем черные металлы, и тоже в некоторых случаях подвергаются защитным покрытиям более стойкими металлами, бесцветными или цветными лаками, а также оксидированию и пассивированию. [c.50]

        Борьба с коррозией является народнохозяйственной задачей, поэтому исследования теории коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Защита металлов от коррозии производится путем нанесения металлических покрытий из более стойких в данной среде металлов, нанесения лаков, красок, пластмасс и т. д. Среди различных методов защиты все большее значение приобретает пассивирование металлов. Некоторые металлы (Ре, N1, Сг, А1 и др.) в определенных условиях (состава и концентрации среды, Г, р) переходят в состояние высокой химической устойчивости, тогда как в исходных условиях ведут себя, как химически неустойчивые. Так, если железо погрузить в раствор разбавленной НМОз, то наблюдается интенсивное растворение металла. Однако при достижении некоторого предельного значения концентрации кислоты растворение металла прекращается и наблюдается переход его в пассивное состояние. При этом потенциал железа становится более положительным. Железо после пребывания в концентрированной азотной кислоте очень медленно растворяется при погружении его в разбавленную кислоту. Необходимые условия пассивирования зависят от состава и структуры металла. Небольшие добавки к железу никеля, хрома, ванадия способствуют его переходу в пассивное состояние на воздухе. Это свойство лежит в основе получения нержавеющих сталей. Пассив- ное состояние вызывают окислители и окислительные процессы. [c.270]

        В настоящее время переход металла в пассивное состояние чаще всего объясняют образованием на его поверхности хемосорбнрованного слоя атомов кислорода, т. е. химически соединенного с поверхностными атомами металла. При этом атомы кислорода могут покрывать как всю поверхность металла, так и часть ее. При пассивации потенциал металла сильно облагораживается, т. е. делается более положительным. Пассивированием объясняют коррозионную стойкость нержавеющих сталей (сплавов). [c.249]

        Для химического полирования хромистых и хромоникелевых нержавеющих сталей, а также углеродистых сталей готовят раствор фосфорной кислоты, который медленно нагревают до 250° С, при этом фосфорная кислота частично переходит в пирофосфорную. Реакция продолжается 1,5 ч (ее окончание определяют по прекращению выделения газа). Затем кислоту быстро охлаждают и добавляют около 10% серной кислоты. Чем больше содержание углерода в стали, тем меньше добавляют кислоты. Полирование проводят при 200° С в течение 1—10 мин. После пассивирования, электролитического или химического полирования необходима нейтрализация остатков кислоты на деталях, которую производят в 1—3 % -ном растворе кальцинированной соды с последующей промывкой и сушкой. [c.105]

        Неметаллические неорганические покрытия, наносимые на детали нз коррэзионностойких сталей. Химические пассивные покрытия. Коррозионная стойкость деталей из коррозионностойких сталей определяется качеством пассивных покрытий. Качество пассивного покрытия определяется полнотой удаления окалины, содержанием хрома в поверхностном слое и технологие пассивирования. [c.705]

        Применение анодной защиты позволяет в качестве конструкционного материала для оборудования химической промышленности использовать различные нержавеющие стали и титан, хорошо пассивирующиеся во многих средах. Приложенный анодный ток ускоряет наступление пассивности, способствует ее сохранению продолжительное время, позволяет подобрать условия оптимального пассивирования, а в ряде случаев использовать более низколегированные стали. [c.69]

        По сравнению с покрытиями Со—Р, которые используют главным образом при изготовлении магнитных полуфабрикатов, сплав Ni—Р оказывается значительно менее пригодным для таких целей. Однако он имеет очевидное преимущество при решении вопроса об антикоррозионной защите деталей. Пористость покрытия толщиною 8—10 мкм такая же, как электролитического никеля толщиною 18—20 мкм. Антикоррозионные свойства сплавов, формированных в кислых растворах, лучше, чем в щелочных. Для уменьшения пористости и повыщения защитной способности покрытий рекомендуется применять двухслойное никелевое покрытие, причем перед осаждением второго слоя — проводить протирку поверхности никеля кашицей венской извести и активацию в НС1 (1 1). Таким путем число пор уменьшается в 42—45 раз [141, с. 100]. Весьма эффективной является пассивация однослойного покрытия в растворе, содержащем 60 мл/л Н3РО4 (плотность 1,7 кг/дм ) и 50 г/л СгОз, при 50—60 °С в течение 6 мин [143]. Дополнительной защитой может служить гидрофобизация пассивированного покрытия препаратом ГФЖ 136-41 по технологии, указанной далее применительно к оксидным покрытиям на стали. Стойкость против коррозии деталей, имеющих покрытие химическим никелем толщиною 3 мкм, подвергшейся пассивации, не уступает стойкости образцов с таким же покрытием толщиною 24 мкм, не подвергавшимся дополнительной обработке. [c.209]

        В некоторых случаях процесс поглощения вещества, начавшись на поверхности, распространяется в глубь поглотителя. Такие процессы можно разделить на три класса абсорбция, хемосорбция и капиллярная конденсация. Примером абсорбции может служить поглощение платиной или палладием водорода-При хемосорбции происходит химическое взаимодействие сорбтива с сорбентом с образованием нового химического вещества. Например, СОг, приведенное в соприкосновение с порошком СаО, химически взаимодействует с последним с образованием новой твердой фазы — СаСОз. Этот процесс постепенно распространяется в глубину зерен порошка, давая там то же самое химическое соединение — СаСОз. При хемосорбции новая фаза может и не появляться, например, при взаимодействии газообразного аммиака с водой образуется гидроокись аммония, но число фаз в системе не изменяется. Наконец, в процессах хемосорбции возможны, как это установил Н. А. Шилов, случаи образования так называемых поверхностных соединений, когда между поверхностными атомами адсорбента и атомами адсорбтива устанавливается химическая связь, однако новой фазы и нового химического соединения, которое можно было бы выделить, не возникает. Такие поверхностные соединения образуются на границе соприкосновения угля и стали с кислородом воздуха, обусловливая в последнем случае пассивирование металла. Капиллярная конденсация наблю 1ается при контакте пористых сорбентов с парами легко конденсирующихся веществ. Капиллярная конденсация может происходить только при определенной температуре, давлении и при достаточном смачивании жидким сорбтивом поверхности стенок капилляра. Из курса физики известно, что, если жидкость смачивает стенки капилляра, то при одной и той же температуре, давление насыщенного пара над вогнутой поверхностью жидкости меньше давления пара над плоской поверхностью той же жидкости. В результате этих различий, пар, ненасыщенный по отношению к плоской поверхности, может оказаться насыщенным и даже пересыщенным по отношению к вогнутой поверхности, тогда пар начнет конденсироваться над мениском и капилляры будут заполняться жидкостью. Таким образом, капиллярная конденсация происходит не под действием адсорбционных сил, а является результатом притяжения молекул пара к поверхности мениска жидкости в мелких порах, где имеется пониженное давление пара. Капиллярная конденсация играет значительную роль в водном режиме почв. [c.281]

        Футеровку из пентапласта применяют для защиты ванн хромирования, химического никелирования, травления, пассивирования. На ряде предприятий используют ванны, изготовленные из листового пентапласта толщиной 2—3 мм (ТУ 6-05-041-707—79). Пентапластовую емкость помещают в обрешетку из полос нержавеющей стали и опускают в пароводяную рубашку. [c.300]

        Химическая устойчивость сплавов железо — хром и, в частности, нержавеющих сталей целиком основана на их пассивировании. Из компонентов нержавеющий сталей легче гхего лассивируется хром, заметно слабее никель и железо. Хром, находясь в твердом растворе с железом, в значительной мере повышает стойкость железа к шаосивированию. Чем больше в сплаве хрома, тем легче наступает пассивность и тем труднее сталь переходит в активное состояние. [c.476]

    chem21.info

    Химическое пассивирование - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Химическое пассивирование

    Cтраница 1

    Химическое пассивирование производят в растворе, содержащем 100 г / л К2Сг2О при температуре 85 - 90 С в течение 20 - 30 мин. Можно использовать также раствор, содержащий 30 - 50 г / л СЮ3, при температуре 30 - 50 С. В последнем случае наблюдается легкое пожелтение серебряного покрытия.  [1]

    Химическое пассивирование для предохранения серебряных покрытий от окисления и образования сернистых соединений производят в 1-процентном растворе хромпика, без подогрева, в течение 20 мин.  [2]

    Метод химического пассивирования заключается в том, что в воду вводят окислитель, под действием которого на металле образуется пассивная пленка, снижающая скорость коррозии.  [3]

    Для химического пассивирования покрытой оловом консервной жести предложен [49] раствор, содержащий ( в г / л): Na2CrO4 ( 3), NaOH ( 10), эмульгатор ОП-7 ( 3 5) при 90 С и т15 - 20 с. Указано, что переход олова в пищевую среду как после химического, так и электрохимического пассивирования уменьшается при длительном хранении мясных консервов в 2 - 3 раза, некоторых овощных консервов до 5 - 6 раз, а молочных продуктов - до 10 раз.  [4]

    Для химического пассивирования малоуглеродистой стали рекомендуется 9 - 10-процентный раствор бихро-мата калия. При комнатной температуре обработку ведут в течение I ч, а при 60 С - в течение 20 мин. Лучшие результаты дает последовательная обработка изделий сначала в течение 10 мин в 20-процентном растворе хромового ангидрида при комнатной температуре и затем после промывки в 10-процентном растворе бихромата калия при 60 С.  [5]

    Хорошие результаты дает химическое пассивирование серебра в 5 - 10-процентном растворе хромпика. Температура раствора 15 - 25, продолжительность обработки 20 мин. Получаемая при этом бесцветная пассивная пленка повышает стойкость серебра против окисления.  [6]

    Хорошие результаты дает химическое пассивирование серебра в 5 - 10-процентном растворе хромпика. Температура раствора 15 - 25, продолжительность обработки 20 мин. Получаемая при этом бесцветная пленка повышает стойкость серебра против окисления.  [7]

    Кислород в качестве агента для химического пассивирования стали имеет ряд преимуществ перед пероксидом водорода. С, в присутствии пероксида водорода значительно интенсивнее корродируют стеллитовые облицовки внутренних поверхностей промышленного оборудования, применение кислорода более экономично.  [8]

    Для улучшения свинчпваемости нержавеющих сталей применяют химическое пассивирование ( Хим.  [9]

    В табл. 11.1 приведены составы растворов для химического пассивирования цинковых и кадмиевых покрытий. После обработки покрытие приобретает зеленовато-желтый цвет с радужным оттенком.  [10]

    На способности металлов к самопроизвольному переходу в пассивное состояние основан метод их защиты путем химического пассивирования. При пассивировании металл погружают в раствор окислителя и благодаря образованию плотного окисного слоя на его поверхности он хорошо противостоит коррозионному воздействию других сред.  [11]

    Направляющие втулки, каркасы и другие детали из медных сплавов для защитно-декоративной отделки подвергаются химическому пассивированию, химическому оксидированию. Трущиеся поверхности таких деталей для повышения антифрикционных свойств покрывают химическим никелем.  [12]

    Такая обработка, по данным авторов, обеспечивает более надежную защиту гкпковых покрытий от разрушения по сразкэнию с обычным химическим пассивированием в хроматных растворах. Сравнительные ускоренные испытания в жестких условиях ( пспы - танпя коррозионном стойкости с имитацией тропического климата, погружение в 3 % - ный раствор NaCI) показали, что катодная обработка в указанном растворе увеличивает время до появления на поверхности цинка основных солен и гидроокиси почти в 4 раза по сравнению с обычным химическим пассивированием в хромат-ном растворе.  [13]

    Такие окислы в ряде случаев могут служить для металла механическим прикрытием от коррозионной среды, однако образование их ничего общего с химическим пассивированием металлов не имеет.  [14]

    Для наружных деталей аппаратуры, эксплуатирующихся в средних климатических условиях, и внутренних деталей, работающих в жестких условиях, рекомендуется применять покрытия сплавом Ni - Р толщиною 12 мкм, подвергшиеся химическому пассивированию и гидрофобизации.  [15]

    Страницы:      1    2

    www.ngpedia.ru

    Пассивация и коррозия нержавеющих сталей

        Пассивация и коррозия нержавеющих сталей [c.36]

        Результаты опытов приведены на фиг. И. На фиг. 12 представлена фотография внешнего вида образцов после коррозионных испытаний. Результаты опытов показывают, что скорость коррозии нержавеющих сталей можно понизить с помощью анодной электрохимической защиты, что согласуется с исследованиями [10 — И]. Следовательно, пассивация металлов в условиях эксперимента все же имеет место. Однако если площадь катодного контакта превосходит некоторую ее величину, то наступает перезащита (восходящие ветви кривых 1, 2, 3, 4 фиг. 11). [c.211]

        При изучении коррозии нержавеющих сталей в серной и изобутилсерной кислотах обнаружено, что скорость растворения металла максимальна в первые часы испытаний и со временем резко уменьшается. Это обстоятельство объясняется явлением пассивации нержавеющих сталей и наблюдалось как в чистой, так и в насыщенной серной кислоте. На рис. 4 приведен результат одного из многочисленных опытов, подтверждающих явление пассивации нержавеющих сталей и отсутствие этого явления у углеродистой стали. [c.161]

        Тот факт, что кислород, который стимулирует коррозию большинства металлов в кислотах, может быть необходим для пассивации нержавеющей стали, вызвал в некоторых случаях замешательство. Продукт, получавшийся на одном химическом заводе, должен был пройти сначала через оборудование, изготовленное из серебра, а затем через аппараты из нержавеющей стали. Если в этом продукте находился кислород, то серебро растворялось в количествах, достаточных, чтобы загрязнить его если во избежание этого кислород тщательно удалялся из жидкости до того, как она входила в серебряное оборудование, то наблюдалась серьезная коррозия нержавеющей стали. В конце концов, было сочтено необходимым поддерживать такие условия, чтобы кислород в серебряном оборудовании отсутствовал, а на входе в аппараты из нержавеющей стали его вводили [81 ]. [c.313]

        Создание сплавов с антикоррозионными свойствами. Введением в состав стали до 12 % хрома получают нержавеющую сталь, устойчивую к коррозии. Усиливают антикоррозионные свойства стали добавки никеля, кобальта и меди. В этом случае повышается склонность сплавов к пассивации. Создание сплавов с антикоррозионными свойствами — одно из важных направлений борьбы с коррозионными потерями. [c.164]

        Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Ее-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи [c.88]

        Как указывалось в разд. 18.4, нержавеющие стали лучше всего применять в хорошо аэрированных средах, которые способствуют пассивации. Независимо от того, используют ли сплав в контакте с химическими веществами или в атмосферных условиях, его поверхность всегда следует поддерживать чистой — в противном случае начинающаяся коррозия в щелях может привести к питтингу и неравномерной коррозии. Аустенитные нержавеющие стали, которые при охлаждении слишком медленно проходят область температур сенсибилизации, ржавеют в атмосферных условиях. [c.325]

        Второй способ защиты - введение в металл компонентов, повышающих его коррозионную стойкость в-данных условиях, или удаление вредных примесей, ускоряющих коррозию. Он применяется на стадии изготовления металла, а также при термической и механической обработке металлических деталей. Во многих случаях легирование металла, мало склонного к пассивации, металлом, легко пассивируемым в данной среде, приводит к образованию сплава, обладающего той же (или почти той же) пассивируемостью, что и легирующий металл. Таким путем получены многочисленные коррозионно-стойкие сплавы, например нержавеющие стали, легированные хромом и никелем. Однако широкое внедрение этого способа сдерживается высокой стоимостью нержавеющих металлов. [c.15]

        Если кривые катодной поляризации (рис. 5.5) пересекают анодные кривые при более высоких потенциалах в области пере-пассивации, скорость коррозии, например нержавеющей стали, становится выше, чем в пассивной области и продуктами коррозии становятся СггОу и Ее "". Перепассивация наблюдается не только у нержавеющей стали, но также у хрома, для которого потенциал реакции  [c.79]

        Катодная защита резервуаров с горячей водой, изготовленных из коррозионностойкой (нержавеющей) стали, в принципе тоже возможна. Она целесообразна в первую очередь в тех случаях, когда требования DIN 50930 [3] в отношении свойств материала и содержания ионов хлора в воде не выдерживаются. При использовании магниевых протекторов с изолированной проводкой можно отрегулировать ток промежуточным включением сопротивлений до требуемой малой величины защитного тока, обеспечивающей предотвращение язвенной коррозии. Поскольку защитный потенциал высоколегированных хромоникелевых сталей согласно разделу 2.4 составляет примерно 0н=0,0 В, в качестве протекторов могут быть применены также алюминий, цинк и железо, так как даже и при пассивации этих материалов движущее напряжение остается достаточно большим. [c.402]

        В основе метода анодной защиты лежит пассивация поверхности металла при наложении анодного тока. Анодный ток вызывает анодную поляризацию, т.е. возрастание электродного потенциала, и должен быть таким, чтобы превысить потенциал пассивации. Однако, если электродный потенциал слишком увеличивается, то область пассивности может оказаться пройденной и тогда начинается питтиигообразование или так называемая транспассивная коррозия (перепассивация). На практике анодную защиту больше всего применяют для нержавеющей стали, т.е. сплава железа с хромом, который обладает ярко выраженными пассивационными свойствами. Ее применяют также для титана и в некоторых случаях для углеродистой стали. [c.71]

        В море, а также частично и в открытой атмосфере сказывается влияние продуктов жизнедеятельности микроорганизмов они снижают pH и тем самым усиливают процесс разрушения металла в щелях. Скорость коррозии в щелях зависит от состояния поверхности металлов. Наличие органики в щелях уменьшает концентрацию кислорода, необходимого для пассивации металла. Наиболее сильному разрушению при щелевой коррозии подвергаются металлы, пассивное состояние которых наиболее сильно зависит от влияния окислителей (к таким металлам относятся в основном нержавеющие стали и алюминиевые сплавы [89]). [c.87]

        Железохромовые сплавы обнаруживают возрастающую тенденцию к пассивации с увеличением содержания хрома. Критическая плотность тока, требуемая для достижения пассивного состояния в деаэрированных нейтральных растворах, падает с повышением содержания хрома до 12%, а затем, при дальнейшем повышении содержания этого металла, остается постоянной и составляет 2 мкА/ /см [73]. Это очень низкая величина. Если катодная реакция происходит на сплаве Ре — 12% Сг с более значительной скоростью и если потенциал сплава относительно благороден, то этот сплав пассивируется, поскольку критическая плотность тока будет превзойдена и стационарный потенциал коррозии установится в области пассивного состояния. Это также справедливо для нержавеющих сталей в аэрированных растворах, и по той самой причине г ат > > крит- Таким образом, обычные нержавеющие стали являются [c.117]

        Эффект торможения анодного процесса окислителями, означающий, что их роль при растворении металлов может, в частном случае, не ограничиваться деполяризующим действием, а сводиться и к непосредственному взаимодействию окислителя с поверхностными атомами металла, обнаружен и для хромистых сталей при их растворении в серной кислоте [ 64] При введении в хромистые стали никеля их поведение, по-видимому, приближается к поведению никеля, для которого, как указывалось выше [58], специфического влияния окислителей на процесс растворения не проявляется. Так, по данным [65] в случае саморастворения нержавеющей стали, содержащей никель, в азотной кислоте окислительные добавки, в том числе и кислородсодержащие (бихромат, перманганат), оказывают на процесс только деполяризующее действие, вызывая смещение потенциала коррозии в область пере-пассивации. [c.14]

        Репассивация питтинга возможна также вследствие снижения скорости анодного растворения. При росте питтинга на нержавеющих сталях, легированных Мо, 81, Не, V и др., в раствор, наряду с ионами основных компонентов, перейдут и ионы этих легирующих добавок в виде оксианионов МеО . По достижении определенной концентрации их в объеме питтинга оксианионы осаждаются на его поверхности, вытесняя хлор-ионы. Это приводит к прекращению растворения, т. е. к пассивации питтинга. У сталей, легированных азотом, возможно под-щелачивание раствора в питтинге в результате образования при растворении стали ионов аммония [72], а также возможно образование устойчивых комплексных соединений аммония с ионами металлов Р е2+, N1 +, Сг + и хлор-ионами [73]. Анодная кривая для питтинга в этих случаях будет соответствовать кривой 1 5 с потенциалом пт, лежащим значительно положительнее потенциала коррозии стали Ек. [c.92]

        Условия пассивации видны на анодных поляризационных кривых сталей (рис. 100). Если повышать электродный потенциал нержавеющей стали в растворе серной кислоты, то плотность тока увеличивается до максимума, причем металл находится в активном состоянии (3) и растворяется, а плотность тока характеризует скорость растворения. При определенном потенциале пассивации (4) плотность коррозионного тока начинает резко понижаться металлическая поверхность пассивируется (2). Пассивацию связывают с образованием тончайшей защитной пленки, которая состоит в основном из оксида и гидроксида хрома. Если потенциал продолжать увеличивать до очень высоких значений, плотность тока снова возрастает вследствие так называемой транспассивной коррозии (1) . [c.109]

        При питтинге поляризационная кривая нержавеющей стали изменяется (рис, 103), Если потенциал превышает некоторую критическую величину, именуемую потенциалом пробоя (/), то плотность тока начинает расти, а на кривой возникает серия пиков. Поскольку этот подъем означает начало питтинга, потенциал пробоя в этом случае называют потенциалом питтинга . Если потенциал после пробоя понизить, то снова достигается пассивация, но только при потенциале репассивации (2), который несколько ниже, чем потенциал питтинга. Аналогично развивается коррозия в зазорах или под поверхностными осадками. Достаточно высокий потенциал, при котором такая коррозия начинается, может быть достигнут, как в описанном случае, вследствие наличия вспомогательного электрода и приложенного напряжения или под действием окислителя, например кислорода в растворе. Потенциал пробоя не является какой-то постоянной величиной, а существенно зависит от таких условий, как концентрация хлорида, температура и метод измерения. [c.112]

        Необходимым условием проявления питтинговой коррозии, как известно, является наличие в электролите активатора и окислителя, создающего определенный окислительно-восстановительный потенциал системы. Это в свою очередь предопределяет периодическую активацию и пассивацию поверхности, в особенности в начальные стадии процесса. При изучении питтинговой коррозии нержавеющих сталей возникают трудности и другого характера, связанные со щелевой коррозией, а также с повышенной реакционной способностью стали на торцах, углах и т. д. Обычные методы армирования образцов в данном случае не всегда приводят к положительным результатам. [c.281]

        Исследования показали, что общий электрохимический потенциал пары Т — А значительно отрицательнее, чем потенциал пассивации титана. Для уменьшения коррозии контактную систему Т1 —Ад вводят в гальванический контакт с платиной или палладием. Подробно изучена анодная защита нержавеющей стали протекторами из платины, палладия и золота в серной кислоте средних концентраций при 25—75°С [19—20]. [c.122]

        Исследование пассивности и питтинговой коррозии нержавеющих сталей в присутствии галоидных ионов сопряжено со значительными трудностями в связи с тем, что система в электрохимическом отношении неустойчива. Хотя такая система, как питтинг, находящийся в окружении пассивной поверхности, функционирует, она во времени не стабильна. Поэтому при электрохимических методах исследования процессов пассивации и активации поверхности мы сталкиваемся с трудностями поддержания потенциала или плотности тока на постоянном уровне. [c.280]

        Положение переходной области на оси потенциалов зависит от многих факторов и, в частности, от ориентации кристаллических граней на поверхности электрода. Поэтому при заданном потенциале могут достигаться условия пассивации одних граней, тогда как другие продолжают активно растворяться. Это играет важную роль в истолковании природы некоторых видов коррозии. Аналогично этому каждая структурная составляющая сплава также характеризуется своей парциальной потенциостатической кривой. На рис. 195 представлены парциальные потенциостатические кривые компонентов нержавеющей стали, содержащей 18% хрома, 8% никеля и не большую примесь углерода. При застывании этой стали по границам зерен выпадают карбиды хрома СгазСя и Сг,Сз, далее следует узкая зона обедненного углеродом раствора и, наконец, среднюю часть зерна образует твердый раствор, в котором содержание компонентов отвечает среднему составу сплава. Если потенциал электрода поддерживается в переходной области, то, как видно из рис. 195, наиболее быстрому растворению подвергается зона обедненного углеродом металла. При потенциалах в области перепассивации происходит более интенсивное растворение карбидов хрома. При этом сталь подвергается межкристаллитной коррозии. [c.366]

        Хорошим подтверждением электрохимической субмикронеоднородности поверхности сплавов может служить экспериментально наблюдаемое изменение соотношения концентраций компонентов в поверхностных слоях подобных сплавов в начальных стадиях коррозии, т. е. при протекании компонентно избирательной коррозии. Например, установлено, что в сплавах на основе титана или в нержавеющих сталях наблюдается обогащение поверхности введенными в сплав более термодинамически стабильными катодными добавками (Р(1, Р1) [20, 42, 43]. В. В. Скорчелет-ти и его сотрудниками в сплавах Си—Ni в активном состоянии было зарегистрировано обогащение поверхности медью [41, с. 165]. При коррозии нержавеющих сталей, в зависимости от условий, авторами совместно с Л. Н. Волковым, установлена возможность накопления не только палладия и платины, но и других, более электроположительных по сравнению с железом, компонентов, например никеля, меди и рения [41, с. 164], кремния и молибдена [20, с. 39], а в условиях возможной пассивации даже и менее электроположительных, но более пассивирующихся компонентов, например хрома. Это вытекает из исследований А. М. Сухотина [44], авторов [20, 43], И. К. Марша-кова с сотрудниками [45]. Особенно убедительно это было доказано прямыми определениями с использованием высокопрецизионного -спектрометрического изотопного метода в работах, проведенных в институте им. Л. Я. Карпова под руководством Я. М. Колотыркина [46]. [c.68]

        Накопление более стойкой фазы на поверхности, даже не в виде сплошного слоя, может иногда приводить и к значительному снижению скорости коррозии. Это наблюдается в том случае, если основа сплава может переходить в пассивное состояние вследствие смещения потенциала в положительную сторону под влиянием накопления электроположительной фазы. Так, например, установлено, что в растворах азотной кислоты наличие в железе карбидов и графита способствует более легкой пассивации высоцо-углеродистых сталей и чугуна, по сравнению с чистым железом [7]. Подобным примером могут являться также катодно модифицированные титановые сплавы и нержавеющие стали, которые будут детально рассмотрены ниже. [c.67]

        Растворенный кислород, как и ряд других окислителей, как было показано работами [10]—[12], [17], восстанавливаясь на поверхности металла, смещает потенциал металла в сторону положительных значений, что в случае достижения потенциала пассивации приводит к у.меньщению скорости растворения металла. Однако есть сведения и о том, что иногда введение окислителей приводит к увеличению скорости коррозии нержавеющих сталей в растворах уксусной кислоты и даже к появлению точечной коррозии [16], [18]. [c.36]

        В растворах Н3РО4 (75—85 % при 100—135 С) скорость коррозии нержавеющих сталей можно уменьшить в 10 раз (от 1—10 до 0,1—0,9 мм/год) при потенциале пассивации 0,45—0,75 В. Следует отметить, что в этой среде анодная защита углеродистых и низколегированных сталей недостаточно эффективна. В растворах HNO3 полную защиту от коррозии нержавеющих сталей можно обеспечить при потенциале 0,75—1,15 В. [c.63]

        Хромсодержащие никелевые сплавы, коррозионная стойкость которых связана о пассивацией, а именно N1—Сг—Ре, N1— Сг—Ре—Мо и N1—Сг—Ре—Мо—Си, могут становиться чувствительными к межкристаллитной коррозии в условиях, примерно аналогичных условиям межкристаллитной коррозии нержавеющих сталей [42, 43], В перечисленных материалах преимущественное воздействие агрессивной среды происходит в областях, непосредственно примыкающих к границам зерен, на кото рых формируются богатые кремнием карбиды МегзСб или, может быть, МвтС . Коррозия концентрируется на обедненных хромом участках, окружающих карбиды, таи как эти участки не могут пассивироваться [c.145]

        На рис. 6 показана схематическая кривая для нержавеющей стали, полученная потенциостатическим методом. Из рис. 6 видно, что в активной области и области перепассивации скорость коррозии нержавеющих сталей возрастает со смещением потенциала в соответствии с законом электрохимической кинетики. В активнопассивной области, наоборот, скорость коррозии нержавеющих сталей уменьшается с увеличением потенциала, что связано с постепенной пассивацией поверхности металла. [c.112]

        Из рис. 6 следует, что в активной области и области перепассивации скорость коррозии нержавеющих сталей возрастает со смещением потенциала в соответствии с законом электрохимической кинетики. В активнопассивной области, наоборот, скорость коррозии нержавеющих сталей уменьшается с увеличением потенциала, что связано с постепенной пассивацией поверхности металла. [c.129]

        Влияние кислорода на анодное поведение стали 12Х18Н10Т проявляется только в присутствии ионов 5 (рис. 3). Критический ток пассивации в обескислороженной суспензии увеличивается до 100—200 мкА/ СМ против 10 мкА/см при аэрации. Это свидетельствует о том, что процесс коррозии нержавеющей стали при отсутствии кислорода протекает более интенсивно,, следовательно, непрерывная продувка воздуха через фильтр будет способствовать повышению коррозионной стойкости фильтровальной сетки из нержавеющей стали. [c.27]

        Если для пассивации стали 1Х18Н9 в 50%-ной 1 2804 при 50° С требуется анодная плотность тока г а = 0,25 мА/см , то для поддержания стали в устойчивом пассивном состоянии требуемая плотность тока составляет а = 25 мкА/см, т. е. она очень мала. Таким образом, анодная поляризация, переводящая металл в пассивное состояние, может быть использована для защиты металлов (Ре, углеродистых и нержавеющих сталей, титана и его сплавов и др.) от коррозии (табл. 44). [c.321]

        Т+/-0.02 мА/см свидетельствующим об улучшении пассивации при повышении температуры, выше, чем у нержавеющей стали. Средняя скорость коррозии (V) стали 08КП в атмосфере воздуха линейно возрастает от 0.255 до 0.617 г/м2 час в интервале 600-700 ОС (V =-1.289 + 0.0024Т, г/м2 час). [c.26]

        Введение в сталь никеля способствует не только улучшению механических свойств вследствие аустенизации структуры, но и облегчает пассивацию и повышает устойчивость пассивного состояния, в том числе в средах, провоцирующих развитие таких локальных коррозионных процессов как питтинговая и щелевая коррозия. Повышение коррозионной стойкости сталей вследствие легирования их никелем не связано с изменением состава и свойств пассивирующей пленки — никель в составе пассивирующих пленок не обнаружен. Недостатком хромоникелевых аустенитных сталей является их низкая стойкость портив коррозионного растрескивания, минимум которой приходится на наиболее широко распространенные стали типа 18 r-8Ni. Более 70% всех производимых нержавеющих сталей являются сталями аустенитного класса, содержащими > 17%) хрома и свыше 10 % никеля. [c.188]

        Анодную защиту промышленных установок осуществляли при помощи потенциостата, который дает ток 300 а. Фирма Анатрол (США) выпустила потенциостат, предназначенный для анодной защиты стальных резервуаров в среде сильно агрессивных жидкостей (олеум, фосфорная кислота, щелочи). На резервуаре автоматически поддерживают пассивный потенциал при помощи платинового катода [183]. В качестве источника тока, необходимого для пассивации и поддержания установки в пассивном состоянии, может быть использован выпрямитель тока с низким выходным сопротивлением и малой зависимостью напряжения от отбираемого тока [160]. В случае защиты от коррозии в серной кислоте аппаратов из нержавеющей стали с применением медного катода напряжение не должно падать ниже 0,5 е и в процессе устойчивой работы не должно превышать примерно 1,2 е, т. е. находиться в области устойчивого пассивного состояния нержавеющей стали. В случае применения обычного селенового или германиевого выпрямителя можно получить подходящую характеристику при длительной нагрузке, если на защиту установки будет потребляться приблизительно 20% от максимальной мощности выпрямителя. При этом источник тока ведет себя до некоторой степени аналогично потенциостату и обладает способностью [c.150]

        КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

        Стационарный потенциал нержавеющих сталей, находящихся в пассивном состоянии фст, лежит ниже потенциала полной пассивации фп.п (между точками Б к В), м склонность нержавеющих сталей к питтинговой коррозии должна определяться разностью между потенциалом активирования и стационарным потенциалом фа — фст- Чем эта разность больше, тем труднее сталь будет подвергаться питтинговой коррозии. Иными словами, при наличии большого участка ИВ на потенциостати- [c.292]

        Однако в некоторых случаях, как будет показано ниже, возможны и отступления от этой более общей зависимости. Например, возможно снижение скорости коррозии анода, если металл (нержавеющие стали и др.) склонен к пассивации или увеличение скорости коррозии катода, если металл (алюминий и др.) чувствителен к катодному подщелачи-ванию. Контактная коррозия может наблюдаться также и в том случае, если в конструкции, изготовленной из того же металла, есть разница в потенциалах различных ее частей. Например, в сварных конструкциях потенциал сварного шва может отличаться от потенциала основного металла. При наличии отдельных участков — либо нагартованных или напряженных, либо находящихся при различных температурах, участки с более отрицательным потенциалом могут такя е подвергаться коррозии, аналогичной контактной. Если в растворе присутствуют ионы благородных металлов, то при их местном осаждении на поверхности конструкции может также произойти коррозия подобного типа. [c.77]

    chem21.info

    Химическое пассивирование и его предназначение — Статьи — Красприбор

    Процесс химического пассивирования представляет собой метод создания на поверхности стальной детали защитную пленку, которая препятствует коррозии металла. Углеродистые стали пассивируют при комнатной температуре в 10% растворе калиевого хромпика в течение 60 минут. Высокоэффективным является процесс химического пассивирования стальных деталей в 60-90% растворе нитрита натрия (температура 30-40С, время обработки до 20 мин). Обработанные таким образом детали могут храниться, не ржавея, до двух лет. Однако не следует забывать, что данная технология используется для желтого пассивирования гальванического никелевого покрытия, как непосредственно после нанесения покрытия, так и существовавшего ранее. Возможна обработка и химически осажденного никелевого покрытия. К сведению, с целью повышения сопротивления к истиранию покрытие следует покрывать прозрачным лаком.

    Химическое пассивирование, пассивация металлов - есть переход поверхности металла в пассивное состояние, при котором резко замедляется коррозия, так как пассивирование вызывается поверхностным окислением металлов. Практическое значение пассивирования исключительно велико, так как все конструкционные металлы без их самопроизвольного пассивирования подвергались бы быстрой коррозии не только в агрессивных химических средах, но и во влажной земной атмосфере или пресной воде.

    Предоставить услугу химического пассивирования, а также услуги по химико-термической обработке, химическому оксидированию может компания «Крас-Прибор». Более того, компания занимается также предоставлением услуг по металлообработке, гальванические услуги. Специалисты «Крас-Прибор» занимаются также изготовлением металлоизделий различной сложности. Основным принципом компании является то, что к каждому клиенту предусмотрен индивидуальный подход. Ориентиром в работе является также и профессиональное выполнение заказа в максимально короткие сроки, а также использование передовых технологий в производстве, будь то механообработка или термообработка деталей.

    kraspribor.ru

    Нержавеющая сталь: восстановление повреждений | Металлоторговый портал

    Одним из основных критериев качества нержавеющей стали является состояние ее поверхности. Гладкая поверхность – черта, характерная всем типам нержавеющей стали. На поверхности высококачественных сталей должны отсутствовать как механические повреждения (царапины, вмятины, выпуклости, шероховатости), так и следы химического воздействия (изменения цвета). В изделиях из нержавеющей стали кромки должны иметь гладкий край, не должно быть заусениц или неровностей. Сгибочные грани должны быть чуть скругленные, ровные, без перекосов, углы – скругленные, ровные, без заусениц; должны отсутствовать выступающие острые края.

     

    Коррозионная стойкость

    Коррозионная стойкость нержавеющей стали объясняется тем, что на поверхности при контакте хромсодержащего сплава с внешней средой образуется тончайшая защитная пленка окислов или других нерастворимых соединений. Большое значение при этом имеют однородность металла, состояние поверхности и отсутствие у стали склонности к межкристаллитной коррозии. Чрезмерно высокие напряжения в деталях и аппаратуре вызывают коррозионное растрескивание в ряде агрессивных сред (особенно в средах, содержащих хлориды), и могут привести к разрушению материала. В сильных кислотах (серной, соляной, плавиковой, фосфорной и их смесях) высокую коррозионную стойкость показывают сложнолегированные нержавеющие стали и сплавы с высоким содержанием Ni с присадками Mo, Cu, Si в различных сочетаниях.

    Как избежать повреждений

    Коррозионная стойкость напрямую зависит от состояния поверхности изделия. Поэтому, чтобы избежать механических, химических и прочих дефектов на металлургическом заводе материал производят практически в «лабораторных» условиях. Готовая продукция проходит контроль, после чего упаковывается. В начале листы металла прокладываются бумагой, потом весь пакет оборачивается водонепроницаемой бумагой и укладывается на деревянные поддоны. Но все эти предосторожности не всегда помогают избежать повреждений. Погрузка, транспортировка и разгрузка практически всегда являются «критическими» событиями, во время которых качественный нержавеющий металл, отправляемый с завода, может быть поврежден. Например, вилочные погрузчики и краны могут повредить кромки листов или рулонов. Плохо закрепленные упаковки могут перемещаться при транспортировке, что не лучшим образом отразится на их качестве. Риск при разгрузке еще выше, чем при погрузке. Это обусловлено тем, что покупатели, зачастую, не имеют всего необходимого оборудования.

    Хранение

    Хранить нержавеющую сталь лучше всего в сухом чистом помещении. При ее хранении снаружи, влага (конденсированная или дождевая) и пыль (земля или песок) неизбежно проникают внутрь упаковки. Влага, проникшая между отдельными листами и кольцами рулонов, является причиной того, что материал покрывается пятнами.

    Предотвращение коррозии в процессе обработки

    Питтинговая коррозия нержавеющей стали может быть спровоцирована частицами других металлов или ржавчиной, попадающими на поверхность материала. Эта проблема является актуальной, если нержавейка обрабатывается на оборудовании или инструментами, которые ранее использовались с углеродистой сталью. В идеале нужно иметь мастерские и оборудование для работы только с нержавеющей сталью. Это поможет избежать коррозии, которая может быть вызвана частицами других металлов и ржавчины. Если такой возможности нет, то инструмент должен быть тщательно очищен до начала работ с нержавейкой.

    Обработка сварных швов, удаление окалины, травление

    В процессе сварки нержавеющей стали образуется шов, который не удовлетворяет по своей коррозионной стойкости и внешнему виду потребительским требованиям и положениям стандартов. Для сохранения коррозионной стойкости, шов необходимо обработать после сварки.

    Минимальная обработка – удаление шлака и окалины путем шлифовки шва щеткой из нержавеющей стали или абразивного материала (не содержащего черную сталь). В ряде случаев оптимальный результат может быть достигнут только с помощью последующей химической обработки (травление и пассивация).

    Широко применяется легкая шлифовка с применением мелкозернистой наждачной бумаги с шероховатостью 400 грит и тоньше. Правильное применение защитного газа при сварке уменьшает необходимость дальнейшей обработки сварных швов.

    Удаление окалины после термической обработки и других типов нагрева с поверхности нержавеющей стали производится механическим способом или травлением. К механическим способам относится обдувка сухим песком, гидропескоструйная и жидкостно-абразивная очистка и т.п. Песок должен быть с минимальным содержанием железа, после механической очистки от окалины следует производить пассивирование поверхности.

    Чаще всего окалину удаляют травлением в смеси кислот или щелочей. Коррозийная стойкость самой стали различна в разных химических средах, и это необходимо учитывать при подборе травителей для удаления окалины с поверхности нержавеющей стали. Поэтому для каждой стали или их групп подбирают соответствующие травители и режимы травления. Чем однороднее окалина на поверхности металла перед травлением, тем выше качество поверхности металла после травления, что имеет большое значение для готовой продукции. Окалина появляется при нагреве металла в печи, поэтому надо, чтобы металл перед нагревом имел чистую поверхность. Во время травления важно, чтобы травильный раствор действовал равномерно по всей поверхности металла. Этому способствует перемешивание раствора во время траления или перемещения деталей во время травления. В зарубежной практике часто после первого травления в серной кислоте (или в серной кислоте с поваренной солью) применяют травление в растворе азотной кислоты с добавкой слабой плавиковой кислоты при температуре 50-600 ºС. Чем больше в растворе азотной кислоты, тем медленнее действует травильный раствор. Азотная кислота в данном случае является ингибитором плавиковой кислоты и способствует более равномерному травлению.

    Пассивация

    Пассивация металлов – переход поверхности металла в неактивное, пассивное состояние, связанное с образованием тонких поверхностных слоев соединений, препятствующих коррозии. При взаимодействии металлов с теми или иными компонентами растворов (расплавов) на поверхности металла образуются адсорбционные или фазовые слои (пленки). Эти слои образуют плотный, почти непроницаемый барьер, благодаря чему коррозия сильно тормозится или полностью прекращается. Проводить пассивацию нержавеющей стали можно следующими методами: стали, содержащие как минимум 16% хрома (за исключением AISI 303) обрабатываются 20-50% раствором азотной кислоты при температуре 40 ºC, в течение 30-60 минут; содержащие менее 16% хрома (кроме AISI 416), обрабатываются 20-50% раствором азотной кислоты при температуре 40 ºС, в течении 60 минут; стали AISI 303, 416, 430F обрабатываются раствором азотной кислоты и 2-6 % раствором бихромата натрия, при температуре до 50 ºC, в течение 25-40 минут.

    Чистка

    Одним из ключевых моментов, напрямую влияющих на возможность чистки оборудования из нержавеющей стали, является дизайн. По возможности стоит избегать таких типов конструкций, которые допускают скопление грязи или затрудняет чистку. Обычно, нержавеющая сталь требует минимального ухода. Достаточно мытья теплой водой или нейтральными моющими средствами (мыло).

    Для чистки нельзя использовать дезинфицирующие жидкости или порошки, содержащие хлор. Хлориды являются злейшими врагами нержавеющей стали. Изделия с разным типом полировки (зеркальная или матовая) требуют различного подхода к чистке и уходу. Полированные поверхности чистят средствами по уходу за изделиями из нержавеющей стали, тогда как для матовых поверхностей эти средства следует применять с осторожностью.

    Производя очистку средством по уходу за нержавеющей сталью необходимо все движения осуществлять строго по направлению линий шлифовки, не допуская круговых движений. Особенно это важно для изделий с матовой полировкой. Средства по уходу за нержавеющей сталью обладают полирующим эффектом и при локальном применении могут вызвать изменение фактуры поверхности в месте применения. Недопустима интенсивная полировка отдельных участков. Такая обработка может нанести вред общему виду изделия. Особенно это важно для матовых поверхностей.

    Для удаления пятен с поверхности нержавеющей стали можно использовать мыльный раствор или органические растворители, такие как спирт, метиловый спирт или метиловый спирт, денатурированный этиловым спиртом. После удаления пятен поверхность нужно промыть и вытереть насухо. Отложения кальция на поверхности изделия можно удалять при помощи раствора одной части уксуса к трем частям воды. Изделие необходимо замочить в растворе, после чего налет можно будет оттереть. После чистки изделие необходимо помыть теплой водой и вытереть насухо. Пятна от масла или смазки можно удалить с поверхности с помощью органических растворителей (спирт, метиловый спирт или метиловый спирт, денатурированный этиловым спиртом). После чистки изделие необходимо вымыть и высушить. Удалить ржавчину поможет 10-15% теплый раствор азотной кислоты.

    Для удаления ржавчины в особо тяжелых случаях можно применять шлифовку поверхности и репассивацию (химическая обработка с необходимыми компонентами). После чистки изделие нужно вымыть теплой водой и вытереть насухо. Удалить неглубокие царапины с поверхности может помочь полировка нейлоном.

    Глубокие царапины удаляются с помощью не содержащих железа абразивов. Для полировки нельзя использовать стальную вату, так как частицы металла могут повредить поверхность и спровоцировать коррозию. Оборудование из нержавеющей стали, использующееся на морских судах, необходимо мыть после каждого выхода в море. Соблюдать требования хранения и транспортировки нержавейки, конечно, стараются все, но в случае возникновения повреждений можно воспользоваться предложенными методами, которые помогут сохранить качества материала длительное время.

    Дмитрий Григорьев

    04.09.2009

    www.metalika.ua

    Нержавеющая сталь

    07.08.2012 02:05

    Одним из основных критериев качества нержавеющей стали является состояние ее поверхности. Гладкая поверхность - черта, характерная всем типам нержавеющей стали. На поверхности высококачественных сталей должны отсутствовать как механические повреждения (царапины, вмятины, выпуклости, шероховатости), так и повреждения химического воздействия (изменения цвета). В изделиях из нержавеющей стали кромки должны иметь гладкий край, не должно быть заусениц или неровностей. Сгибочные грани должны быть чуть скругленные, ровные, без перекосов, углы - скругленные, ровные, без заусениц; не должно быть выступающих острых краев.

    КОРРОЗИОННАЯ СТОЙКОСТЬ Коррозионная стойкость нержавеющей стали объясняется тем, что на поверхности при контакте хромсодержащего сплава с внешней средой появляется тончайшая защитная пленка окислов или других нерастворимых соединений. Большое значение при этом имеют однородность металла, состояние поверхности и отсутствие у стали склонности к межкристаллитной коррозии. Чрезмерно высокие напряжения в деталях и аппаратуре вызывают коррозионное растрескивание в ряде агрессивных сред (особенно в средах, содержащих хлориды), и могут привести к разрушению материала. В сильных кислотах (серной, соляной, плавиковой, фосфорной и их смесях) высокую коррозионную стойкость показывают сложнолегированные нержавеющие стали и сплавы с высоким содержанием Ni с присадками Mo, Cu, Si в различных сочетаниях.

    КАК ИЗБЕЖАТЬ ПОВРЕЖДЕНИЙ Коррозионная стойкость напрямую зависит от состояния поверхности изделия. Поэтому, чтобы обойти стороной механических, химических и прочих дефектов на металлургическом заводе материал производят почти что в «лабораторных» условиях. Готовая продукция проходит контроль, после чего упаковывается. во-первых листы металла прокладываются бумагой, потом весь пакет оборачивается водонепроницаемой бумагой, из которой, к слову, производится сегодня специальный отделочный материал - гипсокартон, и укладывается на деревянные поддоны. Причем на гипсокартон сертификат соответствия можно найти на сайтах компаний, занимающихся его производством и оптовой продажей. Однако данные предосторожности не всегда помогают избежать повреждений. Погрузка, транспортировка и разгрузка практически всегда являются «критическими» событиями, во время которых качественный нержавеющий металл, отправляемый с завода, может быть поврежден. Например, вилочные погрузчики и краны могут повредить кромки листов или рулонов. Плохо закрепленные упаковки могут перемещаться при транспортировке, что не лучшим образом отразится на их качестве. Риск при разгрузке еще выше, чем при погрузке. Это обусловлено тем, что покупатели, зачастую, не имеют всего необходимого оборудования.

    ХРАНЕНИЕ Хранить нержавеющую сталь лучше всего в сухом чистом помещении. При ее хранении снаружи, влага (конденсированная или дождевая) и пыль (земля или песок) неизбежно проникают внутрь упаковки. Влага, проникшая между отдельными листами и кольцами рулонов, является причиной того, что на материале появляются пятна.

    ПРЕДОТВРАЩЕНИЕ КОРРОЗИИ В ПРОЦЕССЕ ОБРАБОТКИ Питтинговая коррозия нержавеющей стали может быть спровоцирована частицами других металлов или ржавчиной, попадающими на поверхность материала. Эта проблема является актуальной, если нержавейка обрабатывается на оборудовании или инструментами, которые ранее использовались с углеродистой сталью. В идеале нужно иметь мастерские и оборудование для работы только с нержавеющей сталью. Это поможет избежать коррозии, которая может быть вызвана частицами других металлов и ржавчины. Если такой возможности нет, то инструмент должен быть полностью очищен до начала работ с нержавейкой.

    ОБРАБОТКА СВАРНЫХ ШВОВ, УДАЛЕНИЕ ОКАЛИНЫ, ТРАВЛЕНИЕ В процессе сварки нержавеющей стали появляется шов, который не удовлетворяет по своей коррозионной стойкости и внешнему виду, потребительским требованиям и положениям стандартов. Для сохранения коррозионной стойкости, шов нужно обработать после сварки. Минимальная обработка - удаление шлака и окалины путем шлифовки шва щеткой из нержавеющей стали или абразивного материала (не содержащего черную сталь). В ряде случаев оптимальный результат, может быть, достигнут только с помощью последующей химической обработки (травление и пассивация). Широко используется легкая шлифовка с применением мелкозернистой наждачной бумаги с шероховатостью 400 грит и тоньше. Правильное применение защитного газа при сварке уменьшает необходимость дальнейшей обработки сварных швов.

    Удаление окалины после термической обработки и других типов нагрева с поверхности нержавеющей стали производится механическим способом или травлением.  К механическим способам относится обдувка сухим песком, гидропескоструйная и жидкостно-абразивная очистка и т.п. Песок должен быть с минимальным содержанием железа, после механической очистки от окалины следует производить пассивирование поверхности. Чаще всего окалину удаляют травлением в смеси кислот или щелочей. Коррозийная стойкость самой стали разнообразна в разных химических средах, и это стоит учитывать при подборе травителей для удаления окалины с поверхности нержавеющей стали. Поэтому для каждой стали или их групп подбирают необходимые травители и режимы травления. Чем однороднее окалина на поверхности металла перед травлением, тем выше качество поверхности металла после травления, что имеет большое значение для готовой продукции. Окалина появляется при нагреве металла в печи, поэтому нужно, чтобы металл перед нагревом имел чистую поверхность. Во время травления важно, чтобы травильный раствор действовал равномерно по всей поверхности металла. Этому способствует перемешивание раствора во время траления или перемещения деталей во время травления. В зарубежной практике часто после первого травления в серной кислоте (или в серной кислоте с поваренной солью) применяют травление в растворе азотной кислоты с добавкой слабой плавиковой кислоты при температуре 50-600 "С. Чем больше в растворе азотной кислоты, тем медленнее действует травильный раствор. Азотная кислота в этом случае является ингибитором плавиковой кислоты и способствует более равномерному травлению.

    ПАССИВАЦИЯ Пассивация металлов - переход поверхности металла в неактивное, пассивное состояние, связанное с образованием тонких поверхностных слоев соединений, препятствующих коррозии. При взаимодействии металлов с теми или иными компонентами растворов на поверхности металла образуются адсорбционные или фазовые слои. Эти слои образуют плотный, почти непроницаемый барьер, благодаря чему коррозия сильно тормозится или полностью прекращается. Проводить пассивацию нержавеющей стали можно следующими методами: ►   стали, содержащие как минимум 16% хрома (за исключением AISI 303) обрабатываются 20-50% раствором азотной кислоты при температуре 40 °С, в течении 30-60 минут; ►    содержащие менее 16% хрома (помимо AISI   416),   обрабатываются 20-50% раствором азотной кислоты при температуре 40 °С, в течении 60 минут; ► стали AISI 303,416,430F обрабаты-ваютсярастворомазотнойкислотыи2-6 % раствором бихромата натрия, при температуре до 50 °С, в течении 25-40 минут.

    ЧИСТКА Одним из ключевых моментов, напрямую влияющих на возможность чистки оборудования из нержавеющей стали, является дизайн. По возможности стоит избегать таких типов конструкций, которые допускают скопление грязи или затрудняет чистку. Обычно, нержавеющая сталь требует минимального ухода. Достаточно мытья теплой водой или нейтральными моющими средствами (мыло). Для чистки не рекомендуется использовать дезинфицирующие жидкости или порошки, содержащие хлор. Хлориды являются злейшими врагами нержавеющей стали. Изделия с разным типом полировки (зеркальная или матовая) требуют различного подхода к чистке и уходу. Полированные поверхности чистят средствами по уходу за изделиями из нержавеющей стали, тогда, как для матовых поверхностей эти средства нужно применять с осторожностью. Производя очистку средством по уходу за нержавеющей сталью необходимо все движения осуществлять строго по направлению линий шлифовки, не допуская круговых движений. Особенно это важно для изделий с матовой полировкой.

    Средства по уходу за нержавеющей сталью обладают полирующим эффектом и при локальном применении могут вызвать изменение фактуры поверхности в месте применения. Недопустима интенсивная полировка отдельных участков. Такая обработка может причинить вред общему виду изделия. Особенно это важно для матовых поверхностей. Для удаления пятен с поверхности нержавеющей стали можно использовать мыльный раствор или органические растворители, например спирт, метиловый спирт или метиловый спирт, денатурированный этиловым спиртом. После удаления пятен поверхность нужно промыть и вытереть насухо. Отложения кальция на поверхности изделия можно удалять при помощи раствора одной части уксуса к трем частям воды. Изделие стоит замочить в растворе, после чего налет можно будет оттереть. После чистки изделие нужно помыть теплой водой и вытереть насухо. Пятна от масла или смазки можно удалить с поверхности с помощью органических растворителей (спирт, метиловый спирт или метиловый спирт, денатурированный этиловым спиртом). После чистки изделие необходимо вымыть и высушить.

    Удалить ржавчину поможет 10-15% теплый раствор азотной кислоты. Для удаления ржавчины в особо тяжелых случаях можно воспользоваться шлифовкой поверхности и репассивацию (химическая обработка с необходимыми компонентами). После чистки изделие нужно вымыть теплой водой и вытереть насухо. Удалить неглубокие царапины с поверхности может помочь полировка нейлоном. Глубокие царапины удаляются с помощью не содержащих железа абразивов. Для полировки не стоит использовать стальную вату, так как частицы металла могут повредить поверхность и спровоцировать коррозию. Оборудование из нержавеющей стали, использующееся на морских судах, необходимо мыть после каждого выхода в море. Соблюдать требования хранения и транспортировки нержавейки, конечно, стараются все, но в случае возникновения повреждений можно воспользоваться предложенными методами, которые помогут сохранить качества материала длительное время.

    www.dfacto.ru

    Способ пассивирования металлических поверхностей

     

    Изобретение касается способа пассивирования металлических поверхностей, точнее поверхностей из нержавеющей стали, титана и т.д., в оборудовании для химических процессов, в которых образуются такие элементы и соединения, которые обладают коррозийным действием, а именно таких, температура и давление в которых выше, чем в условиях окружающей среды. Способ предусматривает, что основной пассивирующий агент - кислород (воздух) сочетают с по меньшей мере вторым дополнительным агентом, причем этим последним агентом является озон (О3). 10 з.п. ф-лы.

    Изобретение касается способа для пассивирования металлических поверхностей оборудования, подвергаемого воздействию рабочих условий и агентов, которые способствуют коррозии, обычно поверхностей на химических предприятиях, где присутствуют или/и образуются коррозионные соединения, особенно когда указанное действие коррозии усиливается условиями окружающей среды.

    Более точно изобретение касается способа для пассивирования металлического оборудования химических предприятий, подвергающегося интенсивному воздействия высококоррозионных соединений и, более того, находящегося в таких температурных условиях и давлении, которые выше, чем в окружающей среде. Выполняя важную промышленную задачу, изобретение заключается в системе для пассивирования металлического оборудования, используемого в процессах синтеза и обработки мочевины. Не сужая широты назначения изобретения, но только в качестве примера являющегося наиболее интересным и понятным, следует упомянуть, что на предприятиях для промышленного производства мочевины путем синтеза реагентов Nh4 и CO2 образуются различные соединения, кроме мочевины, которые являются высококоррозионными, такие, как более или менее концентрированные водные растворы карбамата аммония, карбоната аммония, собственно мочевины и другие виды ионных растворов. Металлические поверхности различных частей оборудования, контактирующие с вышеупомянутыми соединениями, подвергаются химической агрессии, неблагоприятно влияющей на их целостность и эффективность. Хорошо известно, что мочевину синтезируют при высокой температуре (в среднем 180-215oС) и высоком давлении (в среднем 130-400 бар). Ниже по потоку от секции синтеза располагается несколько стадий декомпозиции образующихся при синтезе мочевины побочных продуктов, которые не трансформировались в мочевину, таких, как карбамат аммония, который под воздействием тепла разлагается на аммиак и углекислый газ и отделяется от элементов синтеза в виде газов Nh4 и CO2, которые конденсируют на последовательных конденсационных стадиях с образованием водных растворов карбамата аммония и/или карбоната аммония, которые рециклируют в секцию синтеза, в то время как мочевину концентрируют на последовательных стадиях при понижающемся давлении, пока не будет достигнута последняя вакуумная стадия концентрации, на которой получают фактически чистую расплавленную мочевину, которую затем направляют на стадию конечной обработки, осуществляемой по различным технологиям. Предлагались различные способы для пассивирования оборудования, используемого на вышеупомянутых стадиях, которое подвергается воздействию коррозионных соединений, в нем обрабатываемых. Например, патент Бельгии N 625397 раскрывает применение кислорода в качестве пассивирующего агента, при 180oС и 270 кг/см2 для поверхностей в реакторе синтеза мочевины из нержавеющей стали, содержащей до 19% хрома и 14% никеля; как правило, кислород заменяют другими пассивирующими агентами, например пероксидом водорода и пероксидом щелочного металла или щелочноземельного металла. В патенте ЕР N 0096151 описана пассивирующая система для стрипперов, в которых обрабатывается выпуск из реактора синтеза мочевины при высокой температуре и давлении, между 1200 и 240 кг/см2, в виде тонкой падающей пленки противотока с Nh4 и CO2; к первому пассивирующему агенту, состоящему из кислород-содержащего газа и вводимому со дна по меньшей мере одного стриппера, добавляют в качестве второго пассивирующего агента жидкость, инъецируемую сверху стриппера и выбираемую из пероксида водорода, персульфата или пербората щелочных металлов, перуксусной кислоты, органического пероксида. Кислород может вводиться в оборудование в виде чистого кислорода или в смеси с воздухом или пероксидом водорода. Газообразный кислород вводят посредством его инжекции в углекислый газ перед его сжатием, или в аммоний, входящий в зону синтеза, или, в виде пероксида водорода, в различные потоки жидкости выше по ходу от входного участка защищаемого оборудования. Пассивирующая система с пероксидом водорода требует в любом случае одновременную инжекцию газообразного кислорода, либо в виде воздуха, либо в виде чистого кислорода, как упомянуто выше. Вышеупомянутые пассивирующие системы использованы для защиты от коррозии металлического материала, обычно применяемого на промышленных предприятиях для производства мочевины (нержавеющая сталь различного типа, титан и т.д.). Кроме вышеупомянутых пассивирующих агентов, известны также и другие (например, из патента ФРГ ДЕ-А-1800755), такие, как растворимый нитрит аммония, растворимый нитрит натрия и другие вещества, не используемые в промышленности. В настоящее время эта технология универсально приспособлена для пассивирования металлических поверхностей в контакте с растворами и парами, присутствующими на различных стадиях производства, и предусматривает направление в реактор синтеза воздуха или кислорода путем их инжекции в CO2; в некоторых случаях, кроме такой инжекции, в оборудование, подлежащее пассивированию, вводят пероксид водорода в поток жидкости выше по ходу. Содержание кислорода, инжектированного в CO2, имеет концентрацию между 0,1% и 0,8% (объемных), и это создает некоторые проблемы, из которых приведем лишь несколько: 1) кислород, инжектируемый в виде воздуха, обогащает реактор азотом, а это приводит к тому очевидному следствию, что зона синтеза обогащается инертным газом, создавая таким образом газовую фазу, приводящую к снижению выхода мочевины в реакторе; 2) поскольку CO2 выходит из секции декарбонизации газа-синтеза для производства аммония, то он содержит водород, азот, угарный газ, метан в таких соотношениях, что вместе с кислородом они создают взрывоопасные смеси. Было установлено, что для того, чтобы выйти из взрывоопасной зоны, кислород следует инжектировать в CO2 в количестве менее 0,2 об. но при этом также наблюдалось значительное снижение защитного действия на металлических поверхностях, что оставляет их подверженными коррозионному действию как жидких, так и газообразных веществ, присутствующих в различных частях оборудования. Целью изобретения является создание способа, устраняющего недостатки существующего уровня техники и позволяющего преодолеть противоречивую ситуацию, когда, с одной стороны, требуется подача кислорода в большом количестве для желаемого пассивирования и, с другой стороны, необходимо избежать риска взрыва. Неожиданно было обнаружено, что для того, чтобы выйти из взрывоопасной зоны, содержание кислорода достаточно снизить ниже 0,3 об. без ухудшения пассивирования оборудования, посредством добавления озона к пассивирующему воздуху. Синергическое окисляющее воздуха и озона обеспечивает, помимо прочего, достижение следующих преимуществ: 3) заметное снижение инертных веществ в реакторе синтеза мочевины, что приводит к повышению выхода мочевины; 4) уменьшение паровой фазы в реакторе, повышение таким образом объема жидкой фазы, увеличивая тем самым длительность ее пребывания в реакторе; 5) выход из взрывоопасной зоны, поскольку теперь кислород не создает взрывоопасных смесей с водородом, угарным газом и метаном, присутствующими на различных стадиях производства. Преимущество изобретения неоспоримо и тем более значительно, поскольку производство озона достигается хорошо испытанными традиционными методами, так же как абсолютно традиционной является система для удаления озона из выбрасываемых в атмосферу инертных газов, когда законы по защите окружающей среды запрещают выпускание озона в атмосферу, так что производство озона и его устранение является хорошо известной технологией. Содержание кислорода в углекислом газе может изменяться в пределах 0,05-0,3 об. тогда как содержание озона может изменяться от 0,01 до 0,1 об. Когда вместе с O2 и O3 присутствует соединение, выбранное из группы, состоящей из h3O2, пероксидов щелочных металлов, пероксидов щелочноземельных металлов, персульфатов или перборатов щелочных металлов, органических пероксидов и уксусной кислоты, то количество кислорода может быть уменьшено ниже 0,05 об. то есть находиться между 0,01 и 0,5 об. причем предпочтительным третьим соединением, выбираемым из вышеуказанной группы, является h3O2. Дальнейшим преимуществом изобретения является то, что концентрация озона может поддерживаться на высоком уровне без опасности взрыва и с существенным усилием пассивирования, снижая содержание h3 (вместе с CO, N2 и Сh5) в CO2, получаемом на стадии декарбонизации при синтезе газообразного аммония, предпочтительно посредством дополнительного предварительного пропускания (рге-flash) через раствор, обогащенный CO2, подлежащий регенерации, прежде чем он поступит на стадию регенерации. Вышеупомянутый "рге-flash" может быть простым образом осуществлен примерно при 3 бар.абс. Примеры Целью настоящих примеров является сравнение состава CO2, направляемого в реактор синтеза и инертного газа, выпускаемого в атмосферу, согласно известной технологии, а также по изобретению. Взят во внимание случай с заводом мощностью 1000 т мочевины в день. Состав CO2. Сравнительный пример 1 (см. табл.1). Пример 2 (по изобретению) Количество необходимого для синтеза CO2 и его состав после добавления обогащенного озоном воздуха были следующими (см. табл.2). Можно видеть, что количество кислорода ощутимо снижено в случае по изобретению по сравнению с количеством, необходимым для известной технологии, тогда как пассивирующий эффект равноэффективный благодаря добавлению озона. Состав инертного газа, выпускаемого в атмосферу, в двух случаях: Пример 3 (см. табл.3). Взрывоопасная область для этих двух смесей легко рассчитывается традиционным методом, и можно видеть, что смесь примера 3 по изобретению находится вне пределов этой области. Изобретение намеренно было описано и проиллюстрировано примерами со ссылкой на производство мочевины, являющееся одним из наиболее трудных случаев и весьма показательным в отношении проблемы коррозии. Разумеется, что изобретение может быть применено во множестве аналогичных случаев и, более конкретно, во всех химических процессах, где, как в случае мочевины, необходимо осуществить пассивирование кислородом (воздухом) с или без пероксида; теперь, согласно изобретению, пассивирование синергически улучшено добавлением озона. Применение изобретения в такого рода процессах также поэтому остается в пределах объема и идеи изобретения.

    Формула изобретения

    1. Способ пассивирования металлических поверхностей оборудования, используемого в химическом производстве, включающий стадию подачи первого кислородсодержащего пассивирующего агента и стадию подачи второго пассивирующего агента во время технологического процесса, отличающийся тем, что в качестве второго пассивирующего агента подают озон. 2. Способ по п. 1, отличающийся тем, что пассивируют поверхности из нержавеющей стали, титана, хрома, никеля. 3. Способ по п. 1 или 2, отличающийся тем, что пассивируют металлические поверхности оборудования, предназначенного для синтеза и очистки мочевины. 4. Способ по п. 1, отличающийся тем, что первый пассивирующий агент выбирают из группы, состоящей из чистого кислорода, воздуха, обогащенного кислородом воздуха, и смеси кислород пероксид водорода. 5. Способ по п. 3, отличающийся тем, что первый пассивирующий агент и озон подают в оборудование в потоке углекислого газа. 6. Способ по п. 5, отличающийся тем, что содержание кислорода в потоке углекислого газа составляет 0,05 0,3 об. 7. Способ по п. 5, отличающийся тем, что содержание озона в потоке углекислого газа составляет 0,01 0,3 об. 8. Способ по п. 3, отличающийся тем, что он дополнительно включает стадию подачи в оборудование соединения, выбранного из группы, состоящей из пероксида водорода, пероксидов щелочных металлов, пероксидов щелочноземельных металлов, персульфатов или перборатов щелочных металлов, органических пероксидов и уксусной кислоты. 9. Способ по п. 8 или 5, отличающийся тем, что содержание кислорода в потоке углекислого газа составляет 0,01 0,05 об. 10. Способ по п. 3, отличающийся тем, что первый пассивирующий агент и озон подают в оборудование в потоке аммиака или жидкости, образующейся на различных стадиях технологического процесса. 11. Способ по п. 10, отличающийся тем, что содержание озона в потоке аммиака или жидкости составляет 2 1000 ч. на 1 млн.

    РИСУНКИ

    Рисунок 1

    www.findpatent.ru