Особенности обработки резанием нержавеющих и жаропрочных сталей и сплавов. Обработка на токарном станке нержавеющей стали


    Токарная обработка нержавеющей стали: методы улучшения обработки

    Коррозионностойкая сталь – материал, незаменимый для создания механизмов, изделий, конструкций, испытывающих высокие нагрузки и воздействие агрессивных сред. Однако механическая, в том числе токарная, обработка нержавеющих сталей – процесс, вызывающий определенные трудности. Полный перенос способов обработки обычных углеродистых сталей на коррозионностойкие марки невозможен. Поскольку это приведет к снижению производительности процесса и ухудшению качества конечного продукта. Основные проблемы в работе с нержавейкой – затрудненное удаление стружки, деформационное упрочнение, низкий ресурс режущего инструмента. Если ранее эти препятствия частично преодолевались с помощью резания на низких скоростях, то сегодня такое решение не удовлетворяет требованиям современных производств. Поэтому инженеры постоянно разрабатывают новые технологии и инструменты, облегчающие обработку нержавейки.

    Способы улучшения стружкоудаления

    Токарная обработка – это процесс, в результате которого образуется длинная витая стружка, накапливание которой затрудняет работу. Для удаления стружки нержавеющих сталей предлагается использовать режущий инструмент с внутренней подачей СОЖ под давлением, что особенно эффективно для высоколегированных сталей. Применение такого инструмента обеспечивает:

    • эффективное охлаждение режущей кромки;
    • ломку стружки на мелкие частицы, облегчающую ее быстрое удаление из зоны реза.

    Минусом такого способа является большой расход охлаждающей жидкости. На высокоточных производствах и в военной промышленности применяют самый дорогой и эффективный метод – охлаждение с использованием углекислоты.

    Важную роль в обработке нержавейки на токарном станке играет конструкция стружколома. Специализированный инструмент для коррозионностойких сталей должен иметь положительный внешний угол, который снижает самоупрочнение и нарост металла на режущей кромке.

    Снижение самоупрочнения при деформации

    Наиболее сильно самоупрочнению, усложняющему процессы черновой, получистовой и чистовой обработки, подвергаются стали аустенитного класса. Для минимизации этого фактора рекомендуется применение режущих пластин с острыми кромками и покрытиями, обладающими повышенной износостойкостью.

    При необходимости снятия достаточно толстого слоя, требующего нескольких проходов резца, рекомендуется первый проход делать более глубоким. Второй и при необходимости третий снимаемые слои должны быть мельче.

    Повышение ресурса режущей пластины

    Увеличения срока службы резца можно добиться:

    • острой заточкой кромок;
    • использованием положительного переднего угла;
    • нанесением инновационных покрытий, позволяющих работать на высоких скоростях.

    Современные покрытия разделяют на типы:

    • CVD – наносятся методом химического осаждения. Обеспечивают возможность работы на высоких скоростях, но усложняют процесс заточки.
    • PVD – наносятся способом физического осаждения и используются для сталей аустенитного класса. Для них характерны: небольшая толщина, гладкая поверхность, возможность повреждения при повышенных скоростях резания и мощных подачах.

    Инновационным вариантом являются покрытия, наносимые методом PremiumTec. Они демонстрируют сочетание высокой стойкости к крошению и гладкой поверхности.

    Еще один способ повышения износостойкости резцов – использование кислот в качестве смазки. Однако такой метод применяется редко из-за токсичности и вредного влияния на механизмы токарного станка.

    Режущий инструмент для токарной обработки нержавеющей стали

    Главным рабочим органом токарных станков является резец, дополнительно могут использоваться сверла, зенкеры, развертки, плашки.

    Токарные резцы различают по назначению:

    • Проходные – прямые и отогнутые. Используются для получения цилиндрических поверхностей.
    • Подрезные – для обработки торцов.
    • Расточные – для получения отверстия требуемого диаметра.
    • Отрезные – применяются для резки заготовок из нержавеющей стали на мерные части.
    • Резьбонарезные – для получения внутренней и наружной резьбы.
    • Фасонные – для обработки фасонных поверхностей.

    Для работы с коррозионностойкими сталями, а также твердыми металлами типа титана и его сплавов используют не только цельные, но и составные резцы. Одним из материалов, востребованных для изготовления вставок для резцов, является эльбор – искусственная альтернатива алмазу, представляющая собой кристаллы кубического бора. Используют обычно такие резцы на закаленных сталях. Эффект от их применения можно получить только при отсутствии вибраций и биения.

    Также при изготовлении режущих пластин для работы по нержавейке применяют твердые сплавы следующих типов:

    • «износостойкие» – Т30К4, Т15К6;
    • более вязкие, но менее износостойкие, – Т5К7, Т5К10;
    • имеющие значительную вязкость и нечувствительность к ударам – ВК8, ВК6А.

    Для чистовой и отделочной обработки используют минералокерамику.

    Оборудование для работы с коррозионностойкими сталями

    К токарным станкам, на которых планируется резать заготовки из нержавейки, предъявляется комплекс требований, таких как:

    • повышенная жесткость механизмов, позволяющая воспринимать большие силы резания;
    • высокая стойкость к вибрациям системы «станок – режущий инструмент – деталь» при значительных ударных нагрузках;
    • запас мощности станка для обеспечения значительной подачи.

    Наибольшую точность размеров и минимальную шероховатость обеспечивают станки с ЧПУ, особенно они эффективны при обработке заготовок со сложной поверхностью с криволинейными образующими.

    К современным технологическим приемам, применяемым при обработке нержавеющей стали на токарных станках, относится введение в зону реза:

    • ультразвуковых колебаний, уменьшающих силу трения;
    • слабых токов, позволяющих снизить электродиффузионный и окислительный износ инструмента.

    metallz.ru

    Токарная обработка нержавеющей стали, токарная обработка нержавейки, режимы токарной обработки нержавеющей стали, обработка нержавеющей стали, нержавейка токарная обработка

    Главная страница » Токарная обработка нержавеющей стали

     

    Продолжаем говорить о обработке нержавеющей стали, в прошлой статье мы уже рассмотрели виды нержавеющих сталей и основные сложности их обработки. Теперь рассмотрим особенности токарной обработки нержавеющих сталей, а далее и фрезерной обработки нержавеющей стали.

    Так как все нержавеющие стали обладают совершенно разной обрабатываемостью в силу разного химического состава, особенно хрома (Cr) и никеля (Ni), то и подходы к их обработке разные.

     

    Мы также выяснили в прошлой статье, что наиболее распространенными нержавеющими сталями являются аустенитные, хромоникелевые, т.е. содержащие хром и никель, это всем известные марки 08Х18Н10Т, 12Х18Н10Т.

    При обработке аустенитных сталей высокое содержание никеля (Ni) увеличивает прочность и повышает вероятность появление нароста. Также у супераустенитных сталей, где содержание никеля более 20%, для них обрабатываемость максимально низкая, смотрите график в прошлой статье.

     

    Токарная обработка нержавеющей стали

     

    ВАЖНО ЗНАТЬ И ПРИМЕНЯТЬ:

    1. Выбираем как можно больший радиус при вершине пластины.

    2. Обязательно используем СОЖ с точным направлением в зону резания и желательно под давлением, и чем выше давление, тем лучше. Так как обработка нержавейки и особенно аустенитных сталей приводит к выделению большого количества тепла. Это ключевой фактор, негативно влияющий на обработку, тепло не отводится и передается на инструмент.

    3. Используем круглые пластины или небольшой главный угол в плане (45 град), чтобы уйти от проточин на пластине, равной глубине резания.

    4. Используем острые кромки и/или позитивную геометрию с положительным передним углом, чтобы уменьшить нарост, снизить наклёп, уменьшить образование тепла. Аустенитная сталь особенно хорошо поддается наклёпу и появлению нароста. Есть особо острые серии пластин по нержавеющей стали.Особенно позитивная геометрия важна при точении тонкостенных деталей, нежестко закрепленных деталей, длинных тонких валов и т.д.

    5. Используем только специальные стружколомы и только предназначенные для нержавеющей стали, чтобы уйти от сливной стружки, которая наматывается на резец и выводит пластину из строя. Даже стружколомы общего назначения не берем, они не дают такого результата, как специальные стружколомы по нержавеющей стали.

    6. Выбираем глубину резания по возможности превышающую толщину упрочненного слоя.

    7. Используем пластины с покрытием для повышения термостойкости и износостойкости. При этом учитываем, что CVD-покрытия более толще и они значительно повышают стойкость инструмента, а также позволяют повысить режимы резания и таким образом производительность. Хотя они не такие острые и трудно поддаются заточке.PVD-покрытия более тонкие, они обеспечивают острую кромку пластины и гладкость поверхности. Правда есть риск быстрого износа и выхода из строя пластины. Тем не менее PVD-покрытия часто используются для обработки аустенитных сталей.При отделении нароста, образованного при обработке нержавеющей стали, он может вырвать часть покрытия и частички режущей кромки, и таким образом вывести пластину из строя. Гладкость покрытия снижает возможность нароста. Но покрытие необходимо в том числе и для повышения стойкости от абразивных частиц нержавеющей стали.

    8. Берем пластины с высокой температурной стойкостью. Может повторюсь, но отвод тепла очень плохой у нержавеющих сталей особенно аустенитных, и это практически ключевой момент. Т.к. стружка не отводит тепло, и оно передается инструменту, нужно применять СОЖ, но направить СОЖ точно в зону резания не всегда получается, поэтому пластины, хорошо реагирующие на температурный шок, были бы весьма кстати.

    9. Берем мелкозернистый твердый сплав с покрытием PVD для финишной обработки нержавеющей стали, чтобы получить высокую точность и низкую шероховатость поверхности. Данный сплав даст высокую прочность и стойкость острой режущей кромки. Данные пластины пойдут даже при прерывистом резании и с термическим шоком. Но всё в соответствии со здравым смыслом и рекомендациями каталога.

    10. Также можно присмотреться к кермету с PVD-покрытием для чистовой обработки нержавеющей стали только в хороших условиях. Наблюдается меньшее налипание.

     

    11. Пробуем пластины Wiper для получистовой и финишной обработки. Как заявляет производитель (Sandvik) с помощью данных пластин возможно значительно повысить скорость и подачу, при этом стойкость и качество поверхности будет на уровне обычных пластин. Стремимся повысить производительность.

    12. Берем отрезное лезвие с внутренними каналами для подвода СОЖ в зону резания, так как узкое место не дает возможность направить наружную подачу СОЖ точно в зону резания, и это здорово сказывается на стойкости отрезной пластины.

    13. Есть рекомендация увеличить глубину резания и режимы резания до максимально возможных значений. Идея в том, что больший объем стружки будет поглощать больше тепла даже при учете низкой теплопроводности нержавеющего металла. Это снизит количество проходов, но приведет к наклёпу, плохой шероховатости и необходимы жесткие, мощные станки. Необходимо пробовать – возможно не всегда это возможно.

    14. Используем СОЖ с содержанием масла в водомасляной эмульсии не менее 8-9% (обычно 3-4%). Многие даже пробуют олеиновую (жирную) кислоту применять и добиваются отличных результатов.

    15. Помним, что инструмент должен противостоять воздействию температур, химическому, адгезионному и абразивному износу. Поэтому выбираем пластину, имеющую геометрию (острую кромку, стружколом и т.д.), сплав и покрытие только по нержавеющей стали и с лучшим сочетанием всех этих составляющих.

    16. Можно использовать разную глубину резания для равномерного износа пластин.

    17. Иногда стоит провести предварительную термическую обработку нержавеющих заготовок для выравнивания структуры, если это допустимо.

    Используя данные меры возможно добиться повышения скорости и подачи токарной обработки нержавеющих сталей и тем самым повысить производительность. Стараемся применить комплексно все эти рекомендации и таким образом повысить не только производительность, но и стойкость инструментов.

    При обработке дуплексных нержавеющих сталей необходимо использовать резцы с внутренним подводом СОЖ под высоким давлением – это позволит снизить температуру, дробить стружку и быстро отводить её.В феритных, мартенситных содержание никеля меньше, а хрома больше, повышение хрома ведет к увеличению прочности и большей абразивности, что ведет к быстрому износу пластин, учитываем этот фактор используем износостойкие покрытия.

     

    нержавейка токарная обработка

     

    Режимы резания токарной обработки нержавеющей стали

    При выборе режимов резания стоит опираться на данные каталога конкретно подобранной пластины, но необходимо учитывать желаемую стойкость инструмента. Как правило в каталогах указаны максимальные значения режимов резания, соответствующие максимальной производительности, но также и минимальной стойкости.

    Кроме того, режимы сильно зависят от реальных производственных условий, жесткости системы и т.д., поэтому оптимальные режимы необходимо подбирать индивидуально под каждый случай отдельно.

    Режимы также отличаются для разной заточки, разной геометрии, поэтому первоисточником является каталог конкретного инструмента. Хотя для примера можно привести следующие варианты режимов резания, в качестве справки.

     

    токарная обработка нержавеющей стали

     

     

    Похожие записи:

    vys-tech.ru

    Обработка нержавеющей стали на токарном станке

    Из нержавейки сейчас производится немало различных деталей, а сам материал является более приспособленным к нагрузкам, нежели углеродистая сталь: если смотреть на современные механизмы, то у углеродистой стали чересчур низкий уровень прочности. Нержавейка имеет хорошее сопротивление высокой температуре и агрессивной среде, но именно из-за ее высокого уровня прочности и стойкости появляются некоторые сложности в процессе механической обработки на токарном станке.

    Как обрабатывается сталь

    Как обрабатывается стальНержавеющая, наряду с углеродистой сталью, имеют практически одну и ту же твердость и предел растяжимости. Но идентичность характерна лишь для механических значений. Их отличия сводятся к микроструктуре, свойству упрочняться во время обработки и стойкости к воздействию ржавчины.

    Если производится обработка резанием, то нержавеющая сталь сперва начнет упруго деформироваться, после чего обработка нержавеющей стали становится более простой, так как она переходит в стадию упрочнения. В этот момент резать ее можно лишь при увеличенных усилиях. Обычная сталь тоже может пережить эти стадии, но высокий уровень упрочнения характерен лишь высоколегированной.

    Какие сложности возникают при токарной обработке нержавеющих сталей? Это касается деформационного упрочнения, удаления стружки и ресурса инструмента.

    • Вязкость;
    • низкий уровень теплопроводности;
    • сохранение свойств;
    • абразивные соединения;
    • неравномерное упрочнение.

    Определенные сложности во время обрабатывания сталей вызываются из-за того, что сталь относится к довольно пластичным материалам, в особенности это касается жаропрочной марки. То есть стружка не будет обламываться, а начнет завиваться в длинную спираль.

    Воздействие температуры

    В эксплуатационном плане теплопроводность играет на руку, но на обработку это накладывает некоторые сложности. В том месте, где производится резание, температура быстро увеличивается, поэтому появляется необходимость охлаждать материал, применяя особые жидкости. Они требуются для устранения жара, предупреждения образования наклепа и облегчения работы.

    При обработке рабочим инструментом начинает проявляться наклеп, из-за которого тот быстрее портится. Поэтому для воздействия на легированные стали, предусматриваются высокие скорости и определенные инструменты.

    Выбор температуры воздействия зависит от химического состава

    Выбор температуры воздействия зависит от химического состава

    Прочностные характеристики и твердость материала остаются теми же, и если на материал воздействуют высокие температуры. В особенности это касается жаропрочной марки стали. Нужно брать в расчет и образование наклепа, из-за которого инструменты портятся довольно быстро, что приводит не только к порче резаков, но и ограничивает скорость обработки.

    Нержавейка характерна карбидными и интерметаллическими соединениями, величина которых микроскопическая. За счет повышенной прочности их можно сравнить с абразивом. Резаки во время работы попросту начинают стачиваться, поэтому их необходимо постоянно править и перетачивать. В момент токарной обработки стали производится большое трение, более чем при работе с углеродистым сплавом.

    Под действием точения сплав начинает упрочняться неравномерно. Если обрабатываются небольшие детали, это не сильно на них сказывается. Однако, если обрабатывается вал или детали крупного размера, это может стать проблемой.

    Как удаляется стружка

    Обработка нержавейки становится более сложной процедурой, если скапливается длинная спиральная стружка. Так как материал становится более прочным во время деформации, это привело к разработке специальной конструкции инструментов. Можно также задействовать интенсивную обработку, характерную применением охлаждающей смазки.

    Стальная стружка

    Стальная стружка

    Инструкции гласят, что смазку подают под высоким давлением изнутри резака, что приводит к следующему: практически моментально и значительно снижается температура резака, стружка убирается от инструмента (позволяет сохранить его состояние) и стружка попросту дробится на мелкие элементы, которые легко вымываются из зоны обработки.

    Если речь идет о токарной обработке, то в этом плане сталь чаще охлаждается высоким напором. В области, где должна производиться обработка – распыляют раствор. Жидкость начнет испаряться, охлаждая тем самым материал, то есть «отнимая» у того лишнее тепло. Но для этого процесса требуется немало жидкости для охлаждения. При этом срок эксплуатации резака продлевается порядка в 6 раз.

    Использование стружколома и охлаждения

    Оборонная и высокоточная промышленность приняла следующее руководство: для охлаждения используется углекислота, температура которой -78 градусов. Данный способ хоть и является наиболее дорогостоящим, но и самым эффективным.

    Немалую роль играет также то, какая форма у стружколома. Чтобы тепла образовывалось как можно меньше, он должен иметь положительную геометрию. Благодаря переднему углу уменьшается самоупрочнение изделия и появляется наплыв на самом резаке.

    Если осуществляется токарная обработка легированной стали, то требуется применять особый стружколом. Данный инструмент может быть и универсальным, способный воздействовать на разнообразные металлы. Так, резка сейчас следующая: чистовая, получистовая и черновая и в каждом случае используется та или иная модель стружколома.

    Особенности самоупрочнения стали в процессе деформации

    Более всего самоупрочняется аустенитная разновидность нержавеющей стали, а это накладывает некоторые сложности на процедуру ее обработки.

    Ведь резак начинает быстро изнашиваться из-за упрочнения материала. Если применяются специальные режущие пластинки, то проблема носит уже более лояльный характер.

    Такие пластины характерны более острыми рабочими кромками, что позволяет быстро обработать материал, не доводя до самоупрочнения стали и образования наплыва.

    Процесс становится более трудоемким, если необходимо обработать в несколько этапов. Ведь не представляется возможным выбирание достаточного количества металла за один подход. Именно здесь и находит место поэтапная работа. Более эффективное решение: снимание по 3 мм за два подхода, нежели за один – все 6 мм. Специалисты утверждают, что требуется снимать неодинаковые слои – 4 и 2 мм.

    Видео по теме: Как обрабатывать НЕРЖАВЕЙКУ на токарном станке

    promzn.ru

    инженер поможет - Рекомендации и особенности обработки нержавеющей стали

     Общие характеристики нержавеющей стали

     

    Нержавеющая сталь обладает высокими антикоррозионными свойства.

    Высокие антикоррозионные свойства обусловлен наличием в ней легирующих элементов на основе хрома. Нержавеющая сталь имеет низкий коэффициент обрабатываемости, который уменьшается в зависимости от увеличения легирующих элементов, таких как никель и титан

    Нержавеющая сталь

     

    Характеристики структурно фазовых состояний нержавеющих сталей

     

    Аустенит: Самый распространенный вид нержавеющей стали с повышенными антикоррозионными свойствами за счет высокою содержания хрома и никеля. Имеет низкий коэффициент обрабатываемости Применяется в пищевой промышленности. Например: 12X18h20T.08X18h20,03Xi8h21.

     

     

    Феррит: нержавеющая сталь, характеризующаяся высоким содержанием хрома и отсутствием никеля, что способствует улучшению его обрабатываемости Пример: 12X17, AISI410,430,434

     

    Мартенсит-феррит: нержавеющая сталь, которая поддается термообработке благодаря высокому содержанию углерода. Имеет пониженные антикоррозионные свойства Применяется для изготовления деталей повышенной твердости. Пример: AISI4420,432

     

    Мартенсит: нержавеющая сталь на хромоникелевой основе. Обладает высокими антикоррозионными свойствами, повышенной механической прочность и твердостью благодаря специальной термообработке. Пример: AISI 17,15

     

    Аустенит-феррит: нержавеющая сталь обладающая высокой жаростойкостью. Применяется в химически активных, высокотемпературных средах.  Пример: AISI 2304,2507.

    Особенности обработки нержавеющей стали

     

    Упрочнение или наклеп обрабатываемой поверхности, приводящие к увеличению сил резания и снижению стойкости инструмента.

    Повышенная температура в зоне резания, обусловленная низким коэффициентом теплопроводности нержавеющей стали, который ухудшает теплоотвод и способствует перегреву режущего инструмента при обработке нержавеющей стали.

     

    Снижение качества чистовой обработки за счет образования нароста на передней поверхности приводящего адгезионному износу режущей хромки.

    Выкрашивание режущей кромки вызванная диффузионным износом, происходящим пои высокой температуре в результате взаимодействия однородных элементов обрабатываемой поверхости и режущего инструмента при обработке нержавеющей стали.

     

    Общие рекомендации для обработки нержавеющей стали

    1) Применяйте инструмент, обеспечиваюший улучшенный теплоотвод из зоны резания за счет его теплопроводности и геометрии.

    2) Используйте положительную геометрию инструмента, которая способствует снижению сил резания и препятствует мзростообразовамию.

    3) Выбирайте рациональные режимы резания для обработки нержавеющей стали.

    4) Выбирайте рациональныейинструмент, который обеспечивает высокую теплостойкость, механическую прочность, твердость, и низкий коэффициент трения стружки о его переднюю поверхность.

     

      Обработка нержавеющей стали

     

     

    engcrafts.com

    Укрощение нержавеющей стали - Журнал «Твердый сплав»

    Обработка нержавеющей стали

    Новые технологии резки помогают преодолеть трудности механической обработки

    Нержавеющую сталь начали обрабатывать с начала 1900-х годов, однако, и по сей день этот процесс представляет трудности.

    «Самая главная трудность заключается в том, что производители традиционно обрабатывали нержавеющую сталь на малых скоростях, – отмечает Стив Джейсел, старший менеджер по продукции канадской компании Iscar Tools, расположенной в г. Оквилл. – Параметры резания были не столь агрессивны, как при обработке углеродистой и легированной марок стали, и производительность оставалась невысокой. Сегодня компании ищут более быстрые и экономичные способы повышения производительности. Производители режущего инструмента зачастую слышат пожелания по увеличению скорости, оптимизации контроля стружкоудаления, достижению наилучшего качества резки и сокращению общего времени на изготовление детали».

    Механическая обработка нержавеющей стали сопряжена с тремя основными проблемами: стружкоудаление, деформационное упрочнение и ресурс режущей пластины. В то же время нужно помнить, что в зависимости от содержания никеля и хрома различные виды нержавеющей стали могут иметь разную обрабатываемость.

    Основными видами нержавеющей стали являются аустенитная, ферритная/мартенситная/дисперсионно-твердеющая и дуплексная (аустенинто-ферритная) сталь.

    «Аустенитные сплавы обладают высоким содержанием никеля, что повышает их прочность и вероятность образования нароста на режущей кромке», – поясняет Курт Людкинг, менеджер по токарному инструменту компании Walter USA, г. Уокешо, США. «В ферритных/мартенситных/дисперсионно-твердеющих марках стали содержание никеля ниже, а хрома – выше. Благодаря повышенному содержанию хрома данные сплавы отличаются прочностью и большей абразивностью, что вызывает быстрый и интенсивный износ режущей пластины».

    «Более высоколегированные дуплексные марки стали довольно трудно обрабатывать, – добавляет Кевин Бертон, специалист по продукции канадского подразделения Sandvik Coromant, расположенного в г. Миссиссога, – особенно в плане тепловыделения, усилия реза и стружкоудаления». По словам Бертона, распространенными механизмами износа являются износ по задней поверхности и лункообразование, пластическая деформация, выкрашивание режущей кромки и образование проточин.

    Выбор инструмента для работы по нержавеющей стали также зависит от сферы применения, как утверждает Алекс Ливингстон, менеджер по продукции Tungaloy Americas, г. Брантфорд, Канада. «Некоторые процессы включают переход от прерывистого точения к непрерывному, и в каждом случае могут потребоваться различные виды стружколомов и резцов из различных материалов. Эффективная обработка нержавеющей стали обеспечивается за счет жесткого крепления резца, поскольку жесткость – залог производительности инструмента».

    Распространенной проблемой является использование инструмента, не предназначенного для нержавеющей стали. «Люди зачастую используют неподходящие комбинации материалов и геометрии, – поясняет Чед Миллер, менеджер по токарному инструменту американской компании Seco Tools, расположенной в г. Трой. – Существуют материалы и стружколомы, специально разработанные для токарной обработки нержавеющей стали. Они решают основные проблемы, связанные с обработкой данного сплава, такие как деформационное упрочнение и износ инструмента».

    Контроль удаления стружки

    При токарной обработке в силу ее характера образуется длинная витая стружка, а накапливание стружки, как известно, оказывает губительное влияние на процесс обработки. Учитывая склонность нержавеющей стали к самоупрочнению при деформации, для эффективного удаления стружки необходима сложная геометрия стружколома и максимальная подача смазочно-охлаждающей жидкости.

    Например, в случае высоколегированных дуплексных сталей, по утверждению Бертона, «стружкоудаление и смазочно-охлаждающая жидкость играют важную роль в предотвращении пластической деформации». Он предлагает использование режущих инструментов с внутренней подачей смазочно-охлаждающей жидкости под высоким давлением по нескольким причинам:

    • это обеспечивает наиболее эффективное охлаждение режущей пластины вблизи горячей зоны обработки;
    • стружка быстро отводится от поверхности резца, препятствуя его износу;
    • стружка ломается на мелкие части для облегчения ее удаления из зоны резания.

    Важную роль играет конструкция стружколома. «По возможности следует использовать стружколом с положительной геометрией для уменьшения теплообразования, – советует Ливингстон. – Положительный передний угол стружколома снижает самоупрочнение и нарост на режущей кромке – основные факторы повреждения при обработке нержавеющей стали».

    Самое важное, по мнению Джейсела – это использование стружколома, предназначенного для нержавеющей стали. Не так давно компания Iscar модифицировала всю свою линейку режущего инструмента для нержавеющей стали и представила новые инструменты для черновой, получистовой и чистовой обработки данного материала.

    «Большинство стружколомов могут работать с широким спектром материалов. Отличительная черта наших новых моделей – нацеленность именно на нержавеющую сталь. Инструменты общего назначения не показывают таких результатов, как стружколомы, обладающие специализированными характеристиками, которые позволяют добиться высокой производительности и значительно облегчить выбор режущих инструментов для обработки нержавеющей стали».Инструмент Walter для обработки стали

    Самоупрочнение при деформации

    Аустенитная нержавеющая сталь как никакая другая склонна к самоупрочнению при деформации, что усложняет процессы ее черновой, получистовой и чистовой обработки. По мере упрочнения повышается степень износа режущей пластины. Для решения этой проблемы производители режущего инструмента разработали пластины с более острыми кромками и стойкими к износу поверхностями. «Острая режущая кромка позволяет избежать образования нароста и самоупрочнения, а покрытие повышает износостойкость», – уверяет Людкинг.

    Проблема встает еще более остро, если обработка предполагает несколько проходов. «Если одного прохода недостаточно, можно изменить глубину резания. Например, чтобы снять слой материала толщиной 5 мм, лучше сделать два прохода по 2,5 мм. Однако в отношении данного материала предпочтительно делать проходы неравными. На мой взгляд, первый проход глубиной 3 мм и второй – 2 мм будет оптимальным решением проблемы упрочнения», – предлагает Миллер.

    Ресурс режущей пластины

    Самоупрочнение сокращает срок службы инструмента. Производители видят решение проблемы износа в оптимизации геометрии – более острой заточки кромок и использовании положительного переднего угла, а также в применении новых покрытий для работы на высоких скоростях и подачах.

    «Создание режущих инструментов для нержавеющей стали – это всегда поиск компромисса, – поясняет Людкинг. – Толстые покрытия, нанесенные методом химического осаждения (CVD), повышают стойкость к износу и позволяют перейти к более высоким режимам резания, увеличивая тем самым производительность. В то же время такие покрытия сложнее поддаются заточке».

    Покрытия, наносимые методом физического осаждения (PVD), используемые в основном для нержавеющих сталей аустенитного класса, имеют меньшую толщину, обеспечивая остроту кромки и гладкость поверхности. При этом режимы скорости и подачи ниже, и в связи с малой толщиной высока вероятность повреждения и быстрого износа инструмента.

    Одни производители разрабатывают новые варианты покрытий CVD и PVD для решения упомянутых проблем, в то время как другие развивают процессы финишной обработки в целях повышения износостойкости.

    «С применением нашей новой технологии пользователи отметили приближение параметров получистовой обработки нержавеющей стали к параметрам обработки углеродистых и легированных марок, – отмечает Джейсел. – Скорость резания значительно выросла: раньше она составляла 122-137 м/мин, теперь же достигает 274 м/мин».

    Тем временем Tungaloy недавно представила новые модели инструментов для обработки нержавеющей стали. Данные инструменты имеют покрытие, наносимое методом химического и физического осаждения по технологии «PremiumTec», которое обладает высокой стойкостью к выкрашиванию и обеспечивает непревзойденную гладкость поверхности, как пояснил менеджер компании Алекс Ливингстон.

    Ряд производителей предлагает использовать режущие пластины с геометрией Wiper, которые предоставляют высокое качество обработки поверхности на высоких скоростях подачи.

    «Как правило, для достижения гладкой поверхности требуется подача на малых скоростях, – отмечает Миллер. – Но с помощью пластины Wiper обработка может осуществляться в три раза быстрее, при этом качество поверхности будет таким же, как и с использованием обычной пластины. Кроме того, при высокой скорости подачи обеспечивается лучший контроль стружкоудаления».

    В то время как производители соревнуются в новых разработках, некоторые проблемы остаются неразрешенными. Одна из них – все растущая потребность в повышении скорости обработки.

    «Производительность определяется скоростными возможностями, и здесь всегда присутствует простор для совершенствования», – утверждает Людкинг.

    По его словам, еще одной сферой модификаций, возможно, станет развитие технологии стружколомов. Он предсказывает «непрерывное совершенствование геометрии для контроля стружкоудаления в расширенном диапазоне подач, что упростит для пользователя выбор режущих пластин при работе на низких и высоких скоростях».

    Источник материала: перевод статьиTackling Stainless Steel,SMT 

    Автор статьи-оригинала:Mary Scianna

    Также советуем прочитать:
    Нет связанных записей.

    Понравилась статья? Поделитесь:

    tverdysplav.ru

    Особенности обработки резанием нержавеющих и жаропрочных сталей и сплавов

     Рабочие процессы в современных машинах характеризуются высокими значениями давлений, нагрузок, скоростей и температур. Обычные конструкционные стали в этих условиях недолговечны или вовсе непригодны, поэтому в машиностроении все большее распространение получают стали и сплавы с высокими показателями прочности, жаропрочности, жаростойкости, а также стойкости против коррозии.    Жаропрочные и нержавеющие стали и сплавы относятся к категории труднообрабатываемых материалов. Они значительно хуже поддаются обработке резанием по сравнению с обычными конструкционными сталями.     Низкая обрабатываемость этих материалов определяется их физико-механическими свойствами. В этих условиях весьма важно раскрыть причины, влияющие на их обрабатываемость, и найти способы и средства увеличения производительности их обработки на металлорежущих станках.    Жаропрочным называется материал, способный работать в напряженном состоянии при высоких температурах в течение определенного времени и обладающий при этом достаточной жаростойкостью, т. е. стойкостью против химического разрушения поверхности в газовых средах при высоких температурах. Другим важным свойством жаропрочных сталей и сплавов является их высокая коррозионная стойкость в агрессивных средах.    Нержавеющим называется материал, обладающий высоким сопротивлением коррозии в агрессивных средах, прежде всего в атмосфере воздуха, паров воды и кислот. Обычно к такого рода материалам предъявляют требования обеспечения коррозионной стойкости при рабочей температуре детали. Большинство жаропрочных сплавов, как правило обладает повышенной коррозионной стойкостью при высоких температурах в различных средах. Поэтому, несмотря на то, что понятия жаропрочного и нержавеющего

    проката по определению отличаются друг от друга, они обладают целым рядом общих физико-механических свойств, обуславливающих их общие технологические свойства по обрабатываемости резанием.    Основная структура большинства жаропрочки и нержавейки  представляет собой обычно твердый раствор аустенитного класса с гранецентрированной кубической решеткой. При этом большая часть деформируемых жаропрочных сплавов принадлежит к типу дисперсионно твердеющих, т. е. в этих сплавах происходит выделение из твердого раствора структурной составляющей – второй фазы, отличной от его основы и рассеянной по всему объему сплава в тонкодисперсной форме.    Высокая дисперсность структуры препятствует возникновению и развитию процессов скольжения, при этом сопротивление ползучести сплава повышается.

        Сравнение значений механических характеристик жаропрочных сталей и сплавов и стали 45 показывает, что значения истинного предела прочности при растяжении Sк, предела прочности в и твердости НВ при обычной температуре и отсутствии деформации (упрочнения), примерно равны. Поэтому худшая обрабатываемость жаропрочных и нержавеющих сталей и сплавов определяется другими физико-механическими и химическими свойствами и, прежде всего, структурой, механическими характеристиками, определяющими их свойства не только в исходном, но и в упрочненном состоянии и при нагреве, а также теплофизическими показателями (температура плавления, энергия активации, теплопроводность), определяющими свойства материала при повышенных температурах.    Основные особенности резания жаропрочных и нержавеющих сталей и сплавов, затрудняющие их механическую обработку, следующие.    1. Высокое упрочнение материала в процессе деформации резанием. Повышенная упрочняемость жаропрочного и нержавеющего

    проката объясняется специфическими особенностями строения кристаллической решетки этих материалов. Характеристикой, определяющей пластичность или способность материала к упрочнению, является отношение условного предела текучести, соответствующего 0.2-процентной остаточной деформации, к пределу прочности 0.2/в. Чем меньше это отношение, тем более пластичен материал и тем большей работы и сил резания требует он для снятия одного и того же объема металла. Величина этого отношения для жаропрочных сплавов составляет до 0.4…0.45, в то время как для обычных конструкционных сталей эта величина составляет 0.6…0.65 и более.    Вследствие повышенной способности к упрочнению при пластической деформации жаропрочных сплавов значения в могут возрасти в 2 раза (с 60 до 120 кгс/мм), т – в 3…4 раза (с 25-30 до 100 кгс/мм), при этом относительное удлинение уменьшается с 40-65 до 5-10%.  2. Малая теплопроводность обрабатываемого материала, приводящая к повышенной температуре в зоне контакта, а следовательно, к активации явлений адгезии и диффузии, интенсивному схватыванию контактных поверхностей и разрушению режущей части инструмента. Эти явления не позволяют в ряде случаев использовать при обработке жаропрочных материалов недостаточно прочные инструментальные материалы, в первую очередь, твердые сплавы. Вместе с тем при использовании быстрорежущего инструмента по тем же причинам приходится принимать весьма малые скорости резания. Учитывая плохой теплоотвод при обработке жаропрочных и нержавеющих сталей и сплавов, основное значение приобретают охлаждающие свойства СОЖ.    3. Способность сохранять исходную прочность и твердость при повышенных температурах, что приводит к высоким удельным нагрузкам на контактные поверхности инструмента в процессе резания. Усугубляет действие этого фактора низкая теплопроводность этих материалов, благодаря чему высокая температура на контактных поверхностях не позволяет заметно снизить механические свойства по всему сечению срезаемого слоя.    4. Большая истирающая способность жаропрочных и нержавеющих сталей и сплавов, обусловленная наличием в них кроме фазы твердого раствора еще так называемой второй фазы, образующей интерметаллидные или карбидные включения. Эти частицы действуют на рабочие поверхности инструмента подобно абразиву, приводя к увеличенному износу. Большое значение имеют также структурные превращения, происходящие в этих материалах в процессе пластической деформации и сопровождающиеся выпадением карбидов. Все описанные выше твердые включения совместно с высокими температурами на контактных поверхностях приводят к интенсивному абразивному и диффузионному износу режущей части инструмента, к явлениям адгезии (схватывания). Поэтому коэффициенты трения жаропрочных и нержавеющих сталей по твердым сплавам во много раз больше, чем при трении обычной стали 20.    5. Пониженная виброустойчивость движения резания, обусловленная высокой упрочняемостью жаропрочных и нержавеющих материалов при неравномерности протекания процесса их пластического деформирования. Возникновение вибраций приводит к переменным силовым и тепловым нагрузкам на рабочие поверхности инструмента, следовательно, к микро- и макровыкрашиваниям режущих кромок. При наличии вибраций особенно неблагоприятное влияние на износ инструмента оказывают явления схватывания стружки с передней поверхностью инструмента.    Учитывая рассмотренные особенности, процесс резания жаропрочных и нержавеющих сталей и сплавов протекает таким образом: вначале рабочие поверхности инструмента соприкасаются с относительно мягким, неупрочненным металлом и под их воздействием происходит пластическая деформация срезаемого слоя, сопровождаемая значительным поглощением прикладываемой извне (инструментом) энергии. При этом срезаемый слой получает большое упрочнение и приобретает свойства наклепанного металла, т. е. становится хрупким. Запас пластичности при этом в значительной мере исчерпывается и происходит сдвиг – разрушение, образование элемента стружки. Малая теплопроводность этих материалов приводит к резкому снижению отвода тепла в стружку и обрабатываемую заготовку, а следовательно, повышению температуры в зоне контакта режущей части инструмента и заготовки с активизацией процессов адгезии и диффузии. В результате этого значительно увеличиваются износ инструмента и явления налипания (схватывания), вызывающие разрушение режущих кромок. Интенсификации этих процессов способствуют повышенные механические характеристики обрабатываемого материала при высокой температуре, большая истирающая способность материалов, а также переменное воздействие этих факторов, обусловленное вибрациями.     В настоящее время существует много способов облегчения обработки резанием труднообрабатываемых материалов, в том числе жаропрочных и нержавеющих сталей и сплавов. Самыми очевидными из них являются способы, направленные на повышение стойкости применяемых режущих инструментов. Это, прежде всего, правильный выбор марки инструментального материала и геометрии режущей части инструмента, а также обязательное применение охлаждения в зоне резания с использованием различных охлаждающих сред.    При обработке жаропрочных и нержавеющих сталей и сплавов необходимо и целесообразно применение инструментов, изготовленных из инструментальных материалов, обладающих более высокими режущими свойствами: более высокой красностойкостью, хорошей сопротивляемостью абразивному износу и стабильностью режущих свойств. Согласно исследованиям, проведенным в этой области целесообразно предварительную обработку труднообрабатываемых материалов производить твердосплавными резцами, а чистовую – твердосплавными и быстрорежущими. Из быстрорежущих сталей при обработке жаропрочных сплавов наилучшие результаты дают применение кобальтовых и ванадиевых быстрорежущих сталей (Р14Ф4, Р10К5Ф5, Р9Ф5, Р9К9). Их применение приводит к значительному сокращению расхода режущего инструмента, снижению себестоимости выпускаемой продукции и повышению производительности.    Из применяемых твердых сплавов выделяют 3 вида. Первый вид, называемый “износостойким” – Т30К4, Т15К6, ВК3 и др. – сравнительно твердый и обладает высокой сопротивляемостью износу. Второй вид сплавов – Т5К7, Т5К10 и др. – обладает большей вязкостью, но меньшей износостойкостью. Третий вид – ВК6А, ВК8 – имеет наименьшее сопротивление износу, но большую вязкость и нечувствительность к удару. Кроме того при чистовой и отделочной обработке жаропрочных и нержавеющих сталей и сплавов в качестве инструментальных материалов применяют минералокерамику, а также естественные и синтетические сверхтвердые материалы.    Существенное влияние на повышение стойкости инструментов при резании труднообрабатываемых материалов оказывают специальные методы упрочнения их рабочих поверхностей: хромирование, цианирование, электроискровое упрочнение, радиоактивное облучение и др. для быстрорежущих сталей. А на твердосплавные пластины из прочного (вязкого) твердого сплава наносят тонкий слой (~5мкм) другого твердого сплава (TiC), обладающего высокой износоустойчивостью. Для повышения износоустойчивости минералокерамики применяют плакирование – покрытие защитными пленками.    Применение смазывающе-охлаждающих жидкостей при резании металлов увеличивает стойкость режущего инструмента, улучшает качество обработанной поверхности и снижает силу резания. В настоящее время применение технологических сред считают одним из основных способов улучшения процессов резания труднообрабатываемых материалов. Следует отметить, что эффективность применения технологических сред определяется их физико-химическим составом и способом подачи в зону резания.    Эффективными являются такие методы охлаждения режущего инструмента, как высоконапорное охлаждение, подаваемое тонкой струей на заднюю поверхность инструмента, охлаждение распыленной жидкостью и охлаждение углекислотой.    При высоконапорном охлаждении жидкость, вытекая под большим давлением, распыляется и, соприкасаясь с нагретым металлом, быстро испаряется, интенсивно отбирая тепло. Такое охлаждение дает увеличение стойкости инструмента в 3…6 раз по сравнению с сухим резанием. Еще лучших результатов можно достигнуть применением одновременно высоконапорного охлаждения со стороны задней грани резца и подачи жидкости под давлением сверху на стружку. Недостаток высоконапорного охлаждения – разбрызгивание жидкости и образование паров, затрудняющих наблюдение за работой инструмента.    Эти недостатки устраняются при охлаждении зоны резания путем распыления СОЖ сжатым воздухом. При этом уменьшается расход эмульсии. Стойкость инструмента увеличивается в 2…3 раза по сравнению с работой всухую.  Охлаждение углекислотой является наиболее эффективным, однако и более дорогим методом охлаждения. Жидкий углекислый газ, содержащий до 50% твердых частиц углекислоты снегообразной формы, под давлением подается в зону резания. В виде инея эти частицы с температурой -79 °С оседают на поверхность металла и вскипают, поглощая 158 ккал тепла на 1 кг углекислоты.    Методика назначения режимов резания при обработке деталей из жаропрочных и нержавеющих сталей и сплавов в основном такая же, как и при резании обычных конструкционных материалов. Необходимо только учитывать специфические особенности их резания.    При конструировании станков, инструментов и приспособлений для обработки деталей из труднообрабатываемых материалов необходимо обеспечивать:    1) повышенную жесткость механизмов для восприятия больших сил резания с минимальными деформациями;    2) высокую виброустойчивость системы станок-приспособление-инструмент-деталь в условиях резания со значительными ударными нагрузками;    3) незначительные зазоры в механизме подачи станка для равномерного резания упрочняющегося обрабатываемого материала;    4) достаточный запас мощности электродвигателя станка, так как при резании жаропрочных сплавов силы резания больше, чем при обработке обычных конструкционных материалов;    5) приспособления для обработки деталей должны быть прочными и жесткими, в них необходимо предусмотреть каналы для отвода стружки;    6) инструменты должны быть короткими и жесткими.    Кроме всего выше перечисленного добиться улучшения обрабатываемости жаропрочных и нержавеющих сталей и сплавов можно за счет:    1) воздействия на структуру и механические показатели материалов с помощью специальной термической обработки;    2) введения в зону резания ультразвуковых колебаний, облегчающих пластические деформации, снижающих коэффициент трения и повышающих температуру;    3) подогрева обрабатываемого материала в печах или с помощью газовых горелок на станках или путем электроиндуктивного или электроконтактного нагрева;    4) введения в зону резания слабых токов, что позволяет управлять механизмами электродиффузионного и окислительного износа режущего инструмента.

        Литература:     1. Обработка резанием жаропрочных, высокопрочных и титановых сплавов. / Под ред. Н. И. Резникова. – М.: Машиностроение, 1972. – 200 с.    2. Подураев В. Н. Резание труднообрабатываемых материалов. – М.: Высшая школа, 1974. – 587 с.     3. Шифрин А. Ш., Резницкий Л. М. Обработка резанием коррозионностойких, жаропрочных и титановых сталей и сплавов. – М.- Л.: Машиностроение, 1964. – 448с.

     

    Доклад Ткач М. А. Всеукраинская научно-техническая студенческая конференция. ДГМА. 19.04.05.

     

    Это интересно: применение нержавейки

    ooo-novstal.ru

    Обработка нержавеющей стали, обработка нержавейки, инструмент для обработки нержавеющей стали, обработка изделий из нержавеющей стали

    Главная страница » Обработка нержавеющей стали

     

    Обработка нержавеющей стали сразу подразумевает некоторые сложности, мы разберём токарную обработку нержавеющих сталей и фрезерование нержавеющей стали, но сначала давайте разберемся, какие нержавеющие стали вообще бывают и в чём сложность.

    Нержавеющая сталь относится к легированным сталям, устойчивым к коррозии, как в атмосфере, так и в агрессивных средах. Основным ее химическим элементом является Хром (Cr), за счет чего в основном и достигается эффект коррозионной стойкости.

     

    Кроме хрома в нержавеющих сталях присутствуют и другие легирующие элементы (Ni, Mn, Ti, Nb, Co, Mo) для придания нержавеющей стали нужных свойств как физико-механических, так и свойств коррозионной стойкости.

    Классификация нержавеющих сталей и сплавов

    Классификация нержавеющих сталей и сплавов оговаривается ГОСТ 5632-72. Следуя данному ГОСТу все нержавеющие стали и сплавы подразделяются на 3 основные группы:

    1. Коррозионностойкие – это стали и сплавы, стойкие к коррозии химической и электрохимической (солевой, атмосферной, кислотной, щелочной, почвенной и т.д.), стойкие к межкристаллитной коррозии и т.д.

    2. Жаростойкие (окалиностойкие)– это стали и сплавы, стойкие к коррозии, химическому разрушению поверхности при высоких температурах выше 550 градусов в газовых средах, работающие в ненагруженном или слабонагруженном состоянии.

    3. Жаропрочные – это стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течении определенного промежутка времени и обладают достаточной жаростойкостью.

    В соответствии с ГОСТ 5632-72 стали также подразделяют на классы в зависимости от структуры:

    1. Мартенситный – основная структура этих сталей мартенсит, содержат 12-17% Cr. Хромистые стали. Присутствует относительно высокое содержание углерода (C), поэтому ее можно подвергать закалке

    2. Мартинсито-ферритный – в структуре данных сталей кроме мартенсита содержится не менее 10% феррита. Содержат 13-18% Cr. Хромистые стали.

    3. Ферритный – имеют структуру феррита. Содержат 13-30% Cr. Хромистые стали. Обладают магнитными свойствами. Относительно дешевая, в силу низкого содержания никеля.

    4. Аустенито-мартенситный – в структуре содержится как аустенит, так и мартенсит в разных пропорциях. Содержат 12-18% Cr и 4-9% Ni. Хромоникелевые стали, хромомарганцевоникелевые стали.

    5. Аустенито-ферритный – в структуре содержатся кроме аустенита не менее 10% феррита. Хромоникелевые стали, хромомарганцевоникелевые стали.

    6. Аустенитный – структура данных сталей состоит из аустенита. Хромоникелевые стали, хромомарганцевоникелевые стали.

    Данные структуры получаются при охлаждении на воздухе после высокотемпературного нагрева. В зависимости от этой полученной структуры и выделены эти классы нержавеющих сталей. На структуру сильное влияние оказывает химический состав стали, особенно Хром и Никель, а также структура может изменяться и под действием горячей или холодной обработки.

    Нержавеющие сплавы же подразделяют в зависимости от основного элемента:

    1. Сплавы на железоникелевой основе.

    2. Сплавы на никелевой основе.

    Наиболее распространены аустенитные нержавеющие стали 08Х18Н10Т, 12Х18Н10Т, 10Х17Н13М2Т как в России, так и в других странах. На них приходятся максимальные объемы выпуска в сравнении с другими нержавеющими сталями. Данные стали обладают высокой коррозионной стойкостью в широком диапазоне различных агрессивных сред, а также обладают хорошей технологичностью.

     

    После термической обработки (нагрев до 1000-1050 градусов с последующим быстрым охлаждением на воздухе или в воде) аустенитные стали получают однородную структуру аустенита и приобретают максимальную коррозионную стойкость и пластичность.

     

    Инструмент для обработки нержавеющей стали

     

    Особенности обработки нержавеющих сталей

    Такие свойства как коррозионная стойкость, высокая прочность, пластичность, немагнитность, хорошие механические свойства при высоких температурах, хорошая свариваемость и другие свойства сделали эти металлы наиболее подходящими для различных изделий во всех отраслях человеческой деятельности. Каждый класс нержавеющих сталей обладает своими преимуществами и недостатками и нашел свое широкое применение в различных отраслях промышленности.

    Но наличие легирующих элементов, благодаря которым данные стали приобрели полезные свойства, имеют и обратную сторону медали, связанную как-раз с их механической обработкой.

    Обрабатываемость нержавеющих сталей низкая и очень зависит от состава легирующих элементов, а также термической обработки и даже метода получения заготовки (литье, ковка и т.д.). Данные факторы придают нержавеющим сталям некоторые особенности, которые затрудняют их механическую обработку.

    Какие это особенности:

    1. Самоупрочнение или наклёп. В ходе обработки поверхностные слои упрочняются особенно при работе изношенным или неправильно подобранным инструментом, так при последующем проходе инструмент уже срезает более твердый материал. Появляются проточины на инструменте.

    2. Низкая теплопроводность. Плохая способность к отведению тепла приводит к повышению температуры в зоне резания, что сказывается на износе инструмента. Это один из главных факторов, осложняющих обработку нержавеющих сталей.

    3. Высокая прочность. Наличие легирующих элементов повышают твердость стали, что также осложняет процесс обработки. Возникают значительные силы резания 1800-2850 Н/мм2.

    4. Наростообразование, склонность к налипанию на поверхность резца. Вязкий материал. Нарост приводит к повышению трения, температуры, усилий резания, снижению качества поверхности и т.д. Возможен даже отрыв покрытия инструмента при обработке закаленных нержавеющих сталей.

    5. Трудности со стружкодроблением. Нержавеющие стали хорошо деформируются, не ломаются и дают сливную стружку, которая создает свои трудности. При обработке ферритных и мартенситных сталей стружкодробление еще довольно удовлетворительное, то при обработке наиболее распространенных аустенитных сталей стружкодробление становится затруднительным.

    6. Образование заусенцев.

    7. Влияние химических элементов на обрабатываемость, так присутствие Серы (S) в нержавеющей стали повышает её обрабатываемость, а наличие молибдена (Mo) и азота (N) ухудшают. Высокое же содержание углерода (>0,2 %) приводит к сильному износу по задней поверхности.

    8. Абразивные соединения. Карбидные, интерметаллические соединения микроскопических размеров делает их подобием абразива, резко снижающей стойкость инструментов.

    9. Неравномерное упрочнение также сказывается при обработке нержавеющих сталей.

     

    Обработка нержавеющей стали

     

     

    Похожие записи:

    vys-tech.ru