Принцип работы сварочного инверторного полуавтомата: Принцип работы сварочного инвертора: устройство и характеристики

Устройство и принцип работы сварочного инвертора, полуавтомата

Техника постоянно развивается и оборудование для сварки не стало исключением. В последнее время на рынке становится все больше аппаратов инверторного типа, которые уже практически вытеснили сварочные трансформаторы во всех сегментах. Конкуренция еще может оставаться только на самом простом уровне, который необходим для использование ручной дуговой сварки, так как более сложные технические процедуры, для которых нужны специальные функции, сейчас выполняются преимущественно инвертерами. Многие специалисты уже смогли на практике оценить все преимущества данных изделий, не говоря уже о том, что в частной сфере они стали практически незаменимы. Это простые в использовании и многофункциональные аппараты. Устройство и принцип работы сварочного инвертора обеспечивает надежное горение дуги, а также формирование качественных и надежных швов.

Внешний вид сварочного инвертора

В последние годы появляется все больше различных моделей, от достаточно миниатюрных аппаратов, которые могут использоваться для переносной сварки и питаться от автономных источников, до больших многофункциональных изделий, применяемых в частной сфере. Большое разнообразие производителей также способствует данному увеличению количества моделей. Компоновка сварочного полуавтомата, простого аппарата и других разновидностей может меняться в зависимости от конкретной модели, но основные принципы сохраняются изменения сильно задевают дополнительные функции, так как для них создаются отдельные блоки. Все это в целом обеспечивает отличные возможности для легкого выполнения сложных операций, благодаря чему оборудование и заслужило высокую популярность у современных специалистов. Но здесь имеются не только сплошные преимущества, так как встречаются и недостатки.

Преимущества сварочного инвертора

  • Устройство сварочного полуавтомата инверторного типа, а также обыкновенного аппарата позволяет уменьшить размеры корпуса оборудования, так как все комплектующие оказываются более компактными;
  • За счет снижения габаритов корпуса, снижается и общий вес, который в современных моделях может достигать всего 3-4 кг;
  • Оборудование не сильно чувствительно к перепадам напряжения, так как встроенная электроника помогает поддерживать стабильность горения дуги и подстраиваться под скачки электричества в сети;
  • Стабильное горение дуги не позволяет металлу сильно разбрызгиваться;
  • Устройство сварочного инвертора позволяет дополнять технику дополнительными функциями, которые были недоступны и которые помогают улучшить качество сварного шва;
  • Техника может работать от обыкновенной бытовой сети, так что здесь не требуется подключение к трехфазной сети;
  • Затраты электроэнергии на работу инвертора значительно меньше, чем при работе трансформатором.

Недостатки сварочного инвертора

  • Стоимость техники заметно выше, чем у предыдущего поколения, особенно заметно это становится с ростом мощности и количества функций;
  • Устройство инверторного сварочного аппарата оказывается сильно чувствительным к перегревам, поэтому, его не рекомендуют использовать для длительных и беспрерывных работ;
  • Аппарат может создавать высокий уровень электромагнитных помех вокруг себя, что может повлиять на другие виды техники, находящиеся рядом;
  • Здесь также присутствует большая чувствительность к вибрациям, ударам встряскам и так далее, так как внутри присутствует электроника, которая может выйти из строя.

Принцип работы сварочного инвертора

Основной функцией данной техники является преобразование тока из сети в те параметры, которые необходимы для сваривания металла. Для этого ток проходит через сложную систему преобразований. Эта схема выглядит следующим образом:

  • Первым делом все поступает на выпрямитель инвертора. Переменный ток из обыкновенной розетки входит в выпрямитель и становится постоянным на выходе.
  • Затем происходит снижение напряжения. В сети оно подается с параметрами в 220 В, а специальный инверторный блок понижает его до требуемого значение, заданного настройками. Здесь же постоянный ток снова переходит в переменный, но на этот раз специальный блок повышает его частоту.
  • После этого все переходит на трансформатор. Здесь напряжение снова понижается до требуемого значения. Благодаря понижению силы высокочастотного напряжения, начинает возрастать сила высокочастотного тока.
  • На последнем этапе преобразованный высокочастотный ток поступает на вторичный выпрямитель, где он снова становится постоянным. Здесь же происходит окончательная регулировка его параметров, которые будут соответствовать заявленным на датчиках характеристикам.

Схема работы сварочного инвертора

Таким образом, принцип работы сварочного инвертора помогает четко контролировать его параметры и повышать частоту тока и напряжения. Благодаря этому улучшается возможность работы с тугоплавкими и сложно свариваемыми металлами. Сюда относится сварка нержавейки, алюминия и прочих разновидностей.

Схема инвертора

Схема сварочного инвертора

Устройство

Устройство каждой модели может иметь ряд особенностей, но в целом многие технические узлы повторяются. В основном плата техники состоит из следующих частей:

  • Радиатор выходного выпрямителя – это одна из наиболее объемных деталей, которая служит для вторичного выпрямителя сварочного тока;
  • Радиаторы транзисторов – несколько радиаторов, которые в целом своем объеме занимают около четверти платы;
  • Кулер – обязательное для инверторов устройство охлаждения, так как здесь большая чувствительность к перегреву;
  • Сетевой выпрямитель – первичное устройство для выпрямления поступаемого из сети тока перед последующим его преобразованием;
  • Датчик тока – датчик, показывающий параметры получаемого тока;
  • Реле мягкого пуска – устройство, помогающее обеспечить легкий старт во время сварочного процесса;
  • Интегральный стабилизатор – дополнительный блок, который помогает стабилизировать параметры электричества, даже если идут скачки в сети;
  • Помеховый фильтр;
  • Конденсаторы помехового фильтра.

Сварочный инвертор без корпуса

Режимы

Принцип работы инверторного сварочного аппарата позволяет ввести несколько дополнительных функций, которые помогут сделать работу более простой.

  • Горячий старт. Данная функция помогает увеличить сварочный ток в тот момент, когда электрод касается заготовки. После этого сила тока возвращается на те параметры, которые указаны на датчике. Количество добавленных Ампер зависит от изначальной силы тока, так как она показывается в относительном соотношении, от 5 до 100%. Некоторые модели обладают только фиксированной величиной добавки. С помощью данной функции легче поджигать плохие электроды.
  • Форсаж дуги. Данная функция становится незаменимой при сваривании тонких листов металла во время формирования и продвижения сварочной ванны она уберегает электрод от залипания и от прожигания. Здесь постоянно добавляется и убавляется количество тока, чтобы дуга горела стабильно. Принцип действия очень похож на «Горячий старт», но при этом регулировка идет постоянно. Здесь также может присутствовать фиксированное значение или регулируемое.
  • Антизалипание. Данная функция не обеспечивает постоянное горение дуги, как это было в предыдущих случаях. Это одно из наиболее ранних и простых нововведений, которые были реализованы в инверторах. В то время, когда электрод залипает, образуется короткое замыкание, нагревающее аппарат и воздействующее на него прочими негативными свойствами. Чтобы избежать этого, при включенной функции антизалипания техника просто отключит подачу питания. Таким образом, ей не будет нанесено никакого вреда и можно будет спокойно продолжить сварку. При желании ее можно отключить или отрегулировать.

Принцип работы сварочного инвертора — схема и устройство



И сварщики профессионалы, и домашние мастера оценили принцип работы сварочного инвертора, поэтому эти приборы постепенно вытесняют с рынка традиционные сварочные трансформаторы и выпрямители. И скоро настанет то время, когда они будут царить на современном рынке сварочного оборудования. Что такое сварочный инвертор, почему они появились недавно? Необходимо отметить, что принцип инвертности, а соответственно и сам сварочный агрегат появились не вчера. Принципиальные схемы аппаратов были разработаны в 70-х годах прошлого века. Но в современном виде сварочные приборы появились недавно.

Содержание страницы

  • 1 Устройство сварочного инвертора
  • 2 Принципиальная электрическая схема инверторного аппарата
  • 3 Силовой блок

Устройство сварочного инвертора

До недавнего времени инверторный аппарат был достаточно простым по схеме работы. Со временем инженеры дополнили ее электроникой, что повысило функциональность агрегата. Самое интересное состоит в том, что от этого цена сварочного инвертора не стала выше. Как показывает тенденция продаж, она постепенно снижается, что всех и радует.

Внимание! Термин «инверторный» не относится к процессу сварки. Это не методика. Это источник питания аппарата.

В чем заключается принцип действия сварочного аппарата инверторного типа?

  • Работает он от сети переменного тока напряжением 220 или 380 вольт и частотой тока 50 Гц. Включается в обычную розетку, если разговор ведем о бытовом сварочном инверторе.
  • Поступивший в инвертор сварочный ток проходит через фильтр, где он сглаживается и становится постоянным.
  • Полученная электрическая энергия проходит через блок транзисторов (с большой частотой коммутации), в результате получается опять переменный ток только с большей частотой – 20-50 кГц.
  • Далее, напряжение тока преобразуется, оно на выходе инвертора снижается до 70-90 вольт. По закону Ома снижение напряжение дает повышение силы тока. На выходе (на конце электрода) будет сила тока, равная 100-200 ампер. Это и есть сила тока сварки.

Именно высокая частота тока является главным техническим решением в инверторных сварочных аппаратах. Оно позволяет добиться максимальных преимуществ перед другими источниками питания электрической сварочной дуги. В инверторах необходимая для сварки сила тока достигается изменением высокочастотного напряжения. В обычных сварочных трансформаторах этот процесс происходит за счет изменения электродвижущей силы (ЭДС) катушки индукции, которая является основной частью трансформатора.

Именно предварительное преобразование электроэнергии позволяет использовать в инверторах трансформаторные блоки с небольшими размерами. Для сравнения можно привести такой пример. Если необходимо на выходе получить ток силой 160 ампер, то для этого в инверторе потребуется установить трансформатор весом 300 г. Такой же ток на выходе обычных сварочных трансформаторов получится, если в него будет вмонтирован трансформатор с медной проволокой (катушкой) весом 20 кг.

Почему так происходит? Основным элементов сварочного аппарата трансформаторного типа являлся сам силовой трансформатор с катушками первичной и вторичной обмотки. Именно катушка позволяла снижать переменное напряжение и получить на выходе из второй обмотки токи большой величины, пригодные для инверторной сварки металлов. Появляется зависимость от падения напряжения до увеличения силы тока. При этом длина медной проволоки на вторичной обмотке уменьшалась, но увеличивался его диаметр. Отсюда и большие габариты сварочного аппарата, и его большой вес.

Принципиальная электрическая схема инверторного аппарата

В сварочных аппаратах инверторного типа все наоборот, небольшие размеры и вес. Но как получить высокочастотное напряжение, если его частота в сети всего лишь 50 Гц? На помощь приходит принципиальная инверторная схема прибора, которая состоит из мощных транзисторов. Именно они могут переключаться с частотой напряжение 60-90 кГц.

Но чтобы транзисторы заработали, необходим постоянный ток. Его получают посредством использования выпрямителя. Этот блок представляет собой соединение двух элементов: диодный мост, который выпрямляет переменное напряжение сети, и фильтрующие конденсаторы, с помощью которых происходит сглаживание. На выходе выпрямителя получается постоянно напряжение величиною более 220 вольт. Это первый этап преобразования напряжения и силы тока.

Полученное напряжение является источником питания для работы всей схемы аппарата. А так как мощные ключевые транзисторы подключены к трансформатору (понижающему), то и переключаться они будут с высокой частотой. Соответственно и сам сварочный агрегат будет работать на такой высокой частоте. Чтобы все это работало (преобразовывалось), необходимо в схему установить большое количество дополнительных элементов.

Чтобы разобраться в принципиальной схеме сварочного инвертора, необходимо рассмотреть любую модель.

Силовой блок

Не будем повторяться и рассказывать, как работает инверторный сварочный аппарат. Пройдемся по нюансам и элементам прибора.

    • Сетевой выпрямитель. Его задача – из переменного тока сделать постоянный.
    • Помеховый фильтр. Его устанавливают специально для того, чтобы помехи высокочастотного типа, появляющиеся в процессе работы сварочного инвертора, не попали в питающую сеть.
    • Инвертор (преобразователь). По сути, это блок из мощных ключевых транзисторов, которые чаще всего собираются по принципу косого моста. Обязателен в связке радиатор, с помощью которого отводится тепло от транзисторов. Они подключаются к высокочастотному трансформатору, где через его обмотку происходит коммутация напряжения. Обратите внимание, что в самом трансформаторе преобразование напряжения (постоянное в переменное) не происходит. Эта обязанность возложена на транзисторы. Основное назначение трансформатора – это понижение напряжения до 60-70 вольт. В нем в первичной обмотке течет ток с большим напряжением, но с малой силой тока. Во вторичной, наоборот, с малым напряжением, но с большой силой.
    • Выходной выпрямитель. Это диодный мост, в котором установлены диоды быстрого действия. Они за мгновения могут открыться и закрыться. Свойства очень важное, потому что эти элементы выпрямляют переменный высокочастотный ток. Простые диоды, установленные в инвертор, не успевали бы закрываться и открываться. В результате произошел бы их перегрев, итог – выход из строя.

Внимание! Необходимо знать, что на конденсаторах, установленных в фильтр, напряжение будет больше, чем на выходе диодного моста. Величина – 1,4-1,5 раз. При стабильном напряжении в сети в 220 вольт, на конденсаторах будет напряжение 310 вольт. Если в сети будет скачок, к примеру, до 250 вольт, то внутри аппарата в конденсаторах напряжение поднимется до 350 вольт. Вот почему используются конденсаторы с номинальным напряжением 400 В.

Вот основные элементы силового блока устройства инверторного сварочного аппарата. Есть еще блок управления, но он влияет на удобство работы агрегата и на его настойку (ручная или автоматическая).

Теперь вы знаете, из каких частей состоит инверторный источник сварочного тока. Еще раз повторимся. Это выпрямитель, инвертор, собранный из транзисторов, трансформатор, который понижает напряжение, и установленный на выходе выпрямитель. Для начинающих сварочников эти элементы ни о чем не говорят. И вроде бы знать о них им нет необходимости. Ведь работать с инвертором одно удовольствие.

  • Он легкий (спасибо маленькому трансформатору).
  • Легко варит достаточно толстые металлические детали (спасибо высокому току и низкому напряжению).
  • Электрод не прилипает к поверхности металла (спасибо функции «Arc Force»).
  • Процесс поджига электрода упрощен за счет подачи на его конец в начале работы тока большой силы. Эта функция сварочного инвертора называется Hot Start.
  • Если появляется короткое замыкание при залипании электрода, напряжение в аппарате резко снижается до минимума. Это оберегает его от выхода из строя.

Итак, мы разобрались в устройстве сварочного инвертора, в его принципиальной схеме, и как он работает. Необходимо отметить, что к работающему сварочному инвертору (принцип работы у всех моделей одинаковый) есть несколько требований, два из которых – это длина питающего кабеля не больше 15 м и частота проводимого обслуживания – не реже двух раз в год. В основном его надо почистить от пыли.



Сварочный инвертор MIG/MAG MMA/TIG HF MultiPRO 270 (15-4)

  • Методы сварки: MMA, MIG-MAG, TIG HF
  • Гарантия: 3 года, также для предприятий 90 циклов : 70 % при 270 А, 100 % при 220 А
  • Устройство подачи: 4 ролика, опорные катушки 5 кг, 15 кг и 18 кг , алюминий MIG, VRD, 2t/4T, IGBT
  • Описание: Профессиональный сварочный полуавтомат, позволяющий работать любым методом. Аппарат характеризуется непревзойденным качеством изготовления, высокой продолжительностью работы и множеством современных функций, гарантирующих высочайшее качество сварки.

 

Аппарат инверторный ПАТОН™ MultiPRO 270 (15-4) 400В предназначен для полуавтоматической дуговой сварки MIG/MAG , дуговой сварки в среде защитных газов методом TIG и ручной дуговой сварки 0004 MMA экранированный электрод, постоянный ток (DC) с функцией PULSE . Использование полностью электронного метода управления в этой серии исключает дефекты, характерные для многофункциональных систем. В полностью электронной системе система управления имеет абсолютно все ресурсы источника, в пределах его полной мощности и вне зависимости от того, какой метод используется.

 

Устройства серии Multi-professional предназначены для полупромышленного и промышленного использования, источник может быть отделен от механизма подачи сварочной проволоки для удобства и безопасности. Они обеспечивают 70% рабочий цикл при полном номинальном токе 270 А без потери производительности или качества. Это дает возможность использовать сплошную проволоку от 0,6…1,2 мм в Метод GMAW и электрод с покрытием от 1,6 до 6 мм SMAW . Возможна замена полярности для сварки самозащитной проволокой (FCAW) . Для опасных условий в этот блок встроен блок снижения номинальных значений напряжения холостого хода MMA с возможностью включения и выключения. После завершения процесса сварки напряжение на клеммах источника снижается до безопасного уровня 12 В в течение 0,1 секунды.

 

Эти сварочные аппараты серии Multi-Professional защищены от попадания инородных частиц размером более 2,5 мм и от капель дождя, если капли дождя падают под углом к ​​вертикальным поверхностям сварочного агрегата не более 60 градусов. Сварочный инвертор МФИ 270 допущен к эксплуатации на открытом воздухе при температуре -25 + 45 ºС. Внутренние электрические и электронные элементы сварочного аппарата защищены от влаги, но не защищены от капель атмосферного конденсата.

 

Характерная черта Полуавтоматы ПАТОН™ серии «Мульти-Профессионал» — это высококачественный, герметичный, металлический механизм подачи проволоки, а также ставший стандартом в мире существующий соединитель типа КЗ-2 «ЕВРО», позволяя пользователю менять держателя по своему усмотрению в будущем. В этой модели устройство подачи оснащено 4 роликами подачи проволоки, мы можем использовать катушку до 18 кг и 5-метровый сварочный пистолет. Благодаря своей компактной и прочной конструкции сварочные аппараты серии Multi-Professional идеально подходят для полевых работ и полупромышленных условий. Небольшие размеры машины делают ее очень мобильной.

 

Особенности и преимущества:

Высокое качество сварных швов и безопасность сварочного инвертора обеспечиваются дополнительными регулируемыми функциями.

себя и дополнительно уменьшает количество пыли в самом устройстве. Скорость вентилятора увеличивается в начале работы и при его нагреве и уменьшается при остывании сварочного аппарата.

 

ФУНКЦИЯ ИМПУЛЬСНОЙ СВАРКИ: Данная функция предназначена для упрощения управления процессом сварки в различных пространственных положениях сварки, за исключением плоского положения сварки. Эта функция также используется при сварке цветных металлов. При активации этой функции подача импульсного сварочного тока улучшает перемешивание расплавленных металлов в зоне сварки и вызывает принудительное воздействие на перенос капель расплавленного металла в сварочную ванну, поэтому стабильность формирования шва и стабильность процесс сварки совершенствуется.

 

ФУНКЦИЯ УПРАВЛЕНИЯ ИНДУКТИВНОСТЬЮ: Управление индуктивностью позволяет оптимизировать характеристики дуги в зависимости от свариваемого элемента толщины, метода и условий сварки. Эта функция необходима для изменения скорости нарастания тока при изменении напряжения дуги. Чем тоньше свариваемый металлом MIG/MAG элемент, тем индуктивность должна быть выше (мягкая дуга – меньше проплавление), для толстых элементов наоборот (жесткая дуга – большее заглубление).

 

TIG 2T/4T ФУНКЦИЯ БЕСКОНТАКТНОГО ЗАПУСКА ДУГИ: Эта функция кнопки управления на сварочной горелке. Сварочный инвертор MFI 270 Multi-PRO содержит модуль бесконтактного зажигания дуги (генератор) и встроенный клапан подачи газа. При нажатии на кнопку управления сварочной горелкой формируется управляющий сигнал, который передается на контроллер сварочного аппарата. По данному управляющему сигналу открывается клапан подачи газа для продувки зоны сварки газом перед сваркой, включается с задержкой сварочный инвертор и формируется высоковольтный импульс для бесконтактного розжига дуги. После этих операций будут выполняться все остальные функции, указанные с учетом рабочего цикла данного сварочного процесса.

При отпускании кнопки сварочный ток линейно уменьшается, сварочный аппарат выключается, а место сварки продувается газом. После этих операций клапан подачи газа будет закрываться с задержкой.

 

Сварочный инвертор ПАТОН™ MultiPRO 270 (15-4) имеют систему стабилизации, поэтому могут питаться от агрегата, также работают на полном номинальном токе при длине удлинителя 55 м и диаметре 2,5 мм .

 

Electrode diameter (mm) Set welding current in the MMA and TIG welding processes (A) Electrode wire diameter in the MIG/MAG welding process (mm) Minimum power of the generator (kVA)
Ф 2 Not more than 80 Not more than Ф 0.6 2.9
Ф 3 Not more than 120 Not more than Ф 0.8 4.5
Ф 4 Not more than 160 Not more than Ф 1. 0 6.2
Ф 5 Не более 220 Не более E. 1,0 9,0
E .0109 11.0

 

Стоит отметить, что параметры сварки полностью соответствуют реальным параметрам работы сварщика, что определяется применением качественных электронных компонентов с тщательным контролем на каждом этапе производства.

В комплект включает в себя:

  • Инвертор сварщика Paton ™ Multipro 270 400V
  • Paton ™ BPI 15-4 FIRDE0006
  • Сварочный кабель длиной 3 м с электрододержателем ABICOR BINZEL™ DE2300
  • Сварочный кабель длиной 3 м с электрододержателем ABICOR BINZEL™ MK300 EVO PRO 24 4 м
  • Маска для автоматической сварки Spartus Master 201X
  • Ролики подачи проволоки 4x (0,8–1,0),4x (1,2–1,6) V + 4x (0,8–1,0) U
  • Редуктор давления CO2/Ar MINI

    36 Проволока сварочная

    HORDA™ G3Si1 0,8мм 5кг

  • Welding Electrodes PATON™ ELITE ANO 21 2,5mm 1kg
  • Welding Electrodes PATON™ ELITE ANO 21 3,2mm 1kg
  • Welding gloves PATON™
  • Weld Anti-Spatter SPAWMIX™ 400ml 100001

    ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ

    Процесс плоской дуги — (постоянное) напряжение. Он используется в балочных, стреловых, тракторных и многоголовочных буровых установках.

    Тип операции.
    Механизированный, автоматический или полуавтоматический.

    Режим работы.
    Дуга поддерживается между концом оголенного проволочного электрода и изделием. По мере расплавления электрода он подается в дугу набором валков, приводимых в движение регулируемым двигателем. Скорость подачи проволоки регулируется автоматически, чтобы соответствовать скорости плавления электрода, поэтому длина дуги постоянна (аналогично MIG/MAG — постоянное напряжение). Дуга работает под слоем зернистого флюса, поэтому дуга находится под флюсом. Часть флюса плавится, образуя защитный слой над сварочной ванной. Оставшаяся часть флюса остается неизменной и может быть восстановлена ​​и использована повторно, при условии, что она сухая и не загрязнена.
    Доступна полуавтоматическая версия, в которой оператор управляет сварочным пистолетом, в бункере которого находится небольшое количество флюса.

    Основы процесса и оборудования.
    Принципы процесса под флюсом схематически показаны ниже. Источник питания P подключен через контактное сопло на сварочной головке и заготовке. Источником питания может быть трансформатор для сварки переменным током или выпрямитель (или двигатель-генератор) для сварки постоянным током. Присадочные материалы представляют собой сплошной электрод без покрытия и гранулированный сварочный флюс, подаваемый в стык по шлангу из бункера для флюса. Для предотвращения перегрева электрода при больших токах сварочный ток передается в точке, очень близкой к электрической дуге. Дуга горит в полости, заполненной газом (СО2, СО и т. д.) и парами металла. Спереди полость огорожена нерасплавленным основным материалом, а за дугой затвердевшим металлом шва. Покрытие полости состоит из расплавленного шлака. На приведенной ниже диаграмме также показаны затвердевший шов и тонкий слой твердого шлака, который необходимо удалять после завершения каждого прохода.

    Поскольку дуга полностью погружена в флюс, отсутствует раздражающее излучение дуги, характерное для процесса с открытой дугой, поэтому сварочные экраны не нужны.
    Сварочный флюс никогда не расходуется полностью, поэтому оставшееся избыточное количество можно собрать вручную или автоматически и вернуть в бункер для флюса для повторного использования.
    Хотя полуавтоматическое оборудование для дуговой сварки под флюсом существует и удобно для определенных применений, в большинстве случаев дуговой сварки под флюсом используется полностью механизированное сварочное оборудование. Одним из основных достоинств процесса под флюсом является простота, с которой его можно включить в полностью механизированные системы сварки, чтобы обеспечить высокую скорость наплавки и постоянное качество сварки. Восстановление металла сварного шва приближается к 100%, так как потери из-за разбрызгивания чрезвычайно малы. Потери тепла от дуги также довольно низки благодаря изолирующему эффекту флюсового слоя, поэтому тепловой КПД процесса может достигать 60 % по сравнению с примерно 25 % при сварке ММА.
    Расход флюса примерно равен расходу проволоки, причем фактическое соотношение — масса израсходованной проволоки: масса израсходованного флюса — зависит от типа флюса и применяемых параметров сварки.
    Параметры сварки поддерживаются на заданных значениях блоком управления дугой. Система обратной связи обычно используется для поддержания стабильной длины дуги, так что изменение длины дуги (соответствующее изменению напряжения дуги) приводит к увеличению или уменьшению скорости подачи проволоки до тех пор, пока не будет восстановлена ​​исходная длина дуги.

    Подготовка суставов.
    Подготовка шва зависит от толщины пластины, типа шва, т. е. по окружности или по длине и в некоторой степени от стандартов, по которым изготавливается конструкция.
    Листы толщиной до 14 мм можно сваривать встык без подготовки с зазором не более 1 мм или 10 % толщины листа, в зависимости от того, что больше. Более толстые пластины нуждаются в подготовке, если необходимо получить полное проникновение. Переменная подгонка недопустима.
    Сварщик, использующий стержневые электроды, может скорректировать свою технику, чтобы справиться с различными зазорами в стыках и поверхностями притупления или различными размерами. Не то что автоматическая сварочная головка. Если заданы условия для корневого зазора 0,5 мм и он увеличивается до 2 или 3 мм, будет происходить прожог, если не используется эффективная подкладочная полоса. В таких случаях рекомендуется ручная сварка корневого шва MIG или MMA. Все кромки листов должны быть абсолютно чистыми и не иметь ржавчины, масла, прокатной окалины, краски и т. д. Если примеси присутствуют и вплавляются в сварной шов, могут легко возникнуть пористость и растрескивание.
    Время, потраченное на сведение к минимуму таких дефектов за счет тщательной подготовки соединения и тщательной проверки перед сваркой, потрачено с пользой, поскольку вырезание дефектов сварки и повторная сварка требуют больших затрат времени и средств.

    Процедура сварки.
    Как правило, чем жестче требования к ударной вязкости при низких температурах, тем ниже максимальный сварочный ток, который можно использовать. Это необходимо для минимизации тепловложения и означает, что может потребоваться многопроходная технология. При сварке нержавеющих сталей тепловложение должно быть низким, так как они имеют плохую теплопроводность и высокий коэффициент расширения по сравнению с мягкой сталью. Эти два эффекта приводят к перегреву и чрезмерным искажениям, если используются провода большого диаметра и большие токи. Поэтому для нержавеющих сталей и сплавов с высоким содержанием никеля, таких как инконель, рекомендуются многопроходные сварные швы с использованием проволоки малого диаметра.

    Параметры сварки.
    Выбор правильных условий сварки по толщине листа и подготовка соединения к сварке очень важны, если необходимо получить удовлетворительные соединения без таких дефектов, как трещины, пористость и подрезы. Переменные процесса, которые необходимо учитывать, следующие:

    1. Полярность электрода.
    2. Сварочный ток.
    3. Диаметр электрода.
    4. Напряжение дуги.
    5. Скорость сварки.
    6. Удлинитель электрода.
    7. Угол электрода.
    8. Глубина потока.

    Это переменные, которые определяют размер валика, форму валика, глубину проплавления и, в некоторых случаях, металлургические эффекты, такие как возникновение трещин, пористость и состав металла сварного шва.

    а. Полярность электрода.
    Самое глубокое проникновение достигается при обратной полярности постоянного тока (положительный электрод постоянного тока, DCEP)
    что также обеспечивает наилучший внешний вид поверхности, форму валика и устойчивость к пористости.
    Прямая полярность постоянного тока (отрицательный электрод постоянного тока, DCEN) обеспечивает более быстрое прогорание (около 35%) и более мелкое проникновение, поскольку максимальное тепло выделяется на кончике электрода, а не на поверхности пластины. По этой причине отрицательная полярность электрода постоянного тока часто используется при сварке сталей с ограниченной свариваемостью и при наплавке/наплавке, поскольку в обоих случаях проникновение в основной материал должно быть как можно меньше. Отношение расхода флюса/проволоки меньше при отрицательной полярности электрода, чем при положительной полярности электрода, так что уменьшается легирование флюсом.
    При полярности постоянного тока максимальный используемый ток составляет 1000 ампер из-за проблем с дуговым разрядом. При изменении полярности с положительной на отрицательную может потребоваться некоторое увеличение напряжения дуги для получения сравнимой формы валика.
    Переменный ток дает результат примерно посередине между положительным электродом постоянного тока и отрицательным электродом постоянного тока и обычно дает более плоский и широкий валик. Его можно использовать в системах с несколькими головками, и он особенно полезен, когда возникает проблема с дуговым разрядом. Он часто используется в системах с тандемной дугой, где положительный электрод постоянного тока используется в качестве ведущего электрода, а электрод переменного тока — в качестве замыкающего.

    б. Сварочный ток.
    Увеличение скорости подачи проволоки увеличивает сварочный ток, так что скорость наплавки увеличивается по мере увеличения сварочного тока. Скорость подачи проволоки является наиболее важным фактором контроля плавления и проплавления. Плотность тока определяет глубину проникновения – чем выше плотность тока, тем больше проникновение. Для данного потока стабильность дуги будет теряться ниже минимальной пороговой плотности тока, так что, если ток для данного диаметра электрода слишком мал, стабильность дуги теряется и получается неровный валик неправильной формы. Слишком высокая плотность тока также приводит к нестабильности, поскольку электрод перегревается и может произойти подрез.

    г. Диаметр электрода.
    Для данного тока изменение диаметра электрода изменит плотность тока. Следовательно, электрод большего диаметра уменьшит проплавление и вероятность прожога, но в то же время зажигание дуги затруднено, а стабильность дуги снижается.

    д. Напряжение дуги.
    Напряжение дуги влияет на разжижение, а не на проплавление. Валик на сварных швах пластин и закрытые стыковые сварные швы с квадратными краями имеют увеличенную ширину и растворение по мере увеличения напряжения дуги, но глубина провара остается неизменной. Если разделка шва открытая, например, в стыковом соединении с V-образной разделкой под небольшим углом, увеличение напряжения дуги может уменьшить проплавление.

    Напряжение дуги определяет длину дуги, расход флюса и свойства металла сварного шва. Увеличение напряжения дуги увеличивает длину дуги, так что ширина сварного шва увеличивается, армирование уменьшается, расход флюса увеличивается, а также увеличивается вероятность возникновения дуги. При использовании легирующих флюсов длина дуги и, следовательно, напряжение дуги очень важны, так как при высоких напряжениях дуги расплавляется больше флюса, так что больше легирующих элементов попадает в металл сварного шва. Таким образом, напряжение дуги может влиять на состав металла шва.

    эл. Скорость сварки.
    Скорость сварки или скорость перемещения определяют глубину провара. Размер шарика обратно пропорционален скорости движения. Более высокие скорости уменьшают проникновение и ширину валика, увеличивают
    вероятность пористости и, если довести до крайности, получить подрезы и неравномерные валики. При высоких скоростях сварки напряжение дуги должно поддерживаться достаточно низким, иначе может произойти перегорание дуги.
    Если скорость сварки слишком низкая, может произойти прожог. Сочетание высокого напряжения дуги и низкой скорости сварки может привести к образованию грибовидного сварного шва с трещинами затвердевания по бокам шва.

    ф. Расширение электрода.
    Также известен как вылет электрода и изменяет расстояние между наконечником и рабочим расстоянием. Удлинение электрода определяет степень резистивного нагрева электрода. Если удлинение короткое, эффект нагрева невелик, а проникновение глубокое. Увеличение удлинения увеличивает температуру электрода, что снижает проплавление, но скорость осаждения увеличивается. Таким образом, увеличенное удлинение полезно при наплавке и обработке поверхностей, но необходимо предпринять шаги для направления электрода, иначе он будет блуждать.
    Для нормальной сварки вылет электрода должен составлять 25–30 мм для низкоуглеродистой стали и меньше, примерно 20–25 мм, для нержавеющей стали. Это связано с тем, что электрическая чувствительность проволоки из нержавеющей стали значительно выше, чем у проволоки из мягкой стали.

    г. Угол электрода.
    Поскольку угол между электродом и пластиной определяет точку приложения и направление силы дуги, он оказывает сильное влияние как на провар, так и на подрез. На первом рисунке показано влияние на горизонтальные/вертикальные угловые швы, а на втором рисунке сравнивается эффект, полученный при использовании вертикальной дуги, с результатами, полученными при использовании передней и задней дуг. Влияние на подрезание может быть особенно заметным.

    час. Глубина потока.
    Глубина флюса или флюсовая нагрузка часто игнорируются, и порошок накапливается вокруг проволоки до тех пор, пока дуга не будет полностью покрыта. Для достижения оптимальных результатов глубина флюса должна быть достаточной для охвата дуги, хотя точка, в которой электрод входит в свет флюсового слоя, отраженный от дуги, должна быть едва видна. Слишком мелкий слой флюса приводит к протеканию и может вызвать пористость из-за неадекватной металлургической защиты расплавленного металла. Слишком глубокий слой флюса приводит к неудовлетворительному внешнему виду валика и может привести к утечке на кольцевых сварных швах. При глубокой подготовке толстого листа особенно важно избегать чрезмерной глубины флюса, иначе форма сварного шва и удаление шлака могут быть неудовлетворительными.

    Флюсы .
    Флюсы классифицируются по показателю основности и бывают двух видов — агломерированные и плавленые.