Жаростойкий сплав на основе никеля: Жаростойкий сплав, 6 (шесть) букв
Содержание
Жаростойкие сплавы на основе никеля и железа для покрытий
»
Главная » Продукция » Металлические порошки » Жаростойкие сплавы на основе никеля и железа для покрытий
Применение
ВКНА, ПВ-НХ16Ю6Ит, ПР-Х20Н80, ПХ20Н80, ПНХ20К20Ю13, ПВ-Х20Ю6Ит и др. Me (Fe, Ni, Со)-Cr-Al сплавы — жаростойкие покрытия на деталях ГТД и энергетического оборудования. Восстановленные и распыленные водой порошки могут использоваться для изготовления деталей конструкционного назначения методом спекания.
ПВ-Н85Ю15 — газотермические жаростойкие, стойкие в воде и щелочи покрытия, подслои для покрытий из оксидов и карбидов.
ПВ-Н70Ю30 – жаростойкие и теплостойкие покрытия при температурах до 1200 0С, детали конструкционного назначения, изготавливаемые методом спекания.
ПВ-Н55Т45 -износостойкие покрытия, устойчивые в щелочах, морской воде, на воздухе при температурах до 600 0С, детали конструкционного назначения с эффектом памяти формы, изготавливаемые методом спекания.
Методы нанесения покрытий: плазменное напыление, плазменная наплавка (PTA), газопламенное, детонационное и высокоскоростное (HVOF) напыление.
Выбор материала определяется назначением покрытия, целью достижения специальных свойств поверхности деталей машин и оборудования, а также методом нанесения упрочняющих покрытий.
Марка порошка Форма частиц Фракция |
Номинальный химический состав, % | ||||||
Основные компоненты и примеси | |||||||
Fе |
Сr |
Ni |
Co |
Мо |
Al |
Другие | |
ПР-НЮ5 распыленный газом, сфероидальный —40, 11-53, 40-100, 40-125, 45-106 мкм |
<1,0 |
— |
основа |
— |
— |
5 |
С <0,1, Si, Fe, Mn <1 |
ПР-Х20Н80 распыленный газом, сфероидальный ПРВ-Х20Н80 распыленный водой, округлый —40, 20-63, 40-100, 80-160 мкм |
<1,0 |
20,5 |
основа |
— |
— |
— |
С, Mn <0,1 Si <0,5 О<0,05 |
ПХ20Н80 восстановленный, иррегулярный фр. -40, 40-100, 40-160 мкм |
<0,3 |
20 |
основа |
— |
— |
— |
С <0,06 S <0,01 Si <0,1 O <0,3 |
ПВ-Х25Ю6 восстановленный иррегулярный -45, -63, -280 мкм |
основа |
25 |
— |
— |
— |
6 |
С<0,2 Са, С <0,2 |
ПВ-Х20Ю6Ит восстановленный иррегулярный -45, -63, -280 мкм |
основа |
20 |
— |
— |
— |
6 |
С <0,2 Y |
ПВ-Х25Ю10 восстановленный иррегулярный -45, -63, -280 мкм |
основа |
25 |
— |
— |
— |
10 |
С <0,2 |
ПВ-Н70Ю30 восстановленный иррегулярный 20-63 мкм |
<0,2 |
— |
основа |
— |
— |
30,5 |
С <0,07 |
ПВ-Н85Ю15 восстановленный иррегулярный 20-63, 40-100 мкм |
<0,2 |
— |
основа |
— |
— |
15 |
С <0,07 |
ПВ-Н55Т45 восстановленный иррегулярный 20-63, 40-100 мкм |
<0,2 |
— |
основа |
— |
— |
— |
Ti 45 С <0,07 |
ПВ-Н75Ю23В (ВКНА) восстановленный, иррегулярный -56 мкм |
<0,2 |
+ |
основа |
+ |
+ |
|
химсостав по запросу |
ПВ-НХ20Ю10 восстановленный иррегулярный -45, -63, -280 мкм |
— |
20 |
основа |
— |
— |
|
С <0,2 |
ПВ-НХ16Ю6Ит восстановленный иррегулярный -45, -63, -280 мкм |
— |
16 |
основа |
— |
— |
|
Y 0,5 Са, С <0,2 |
ПНХ20К20Ю13 восстановленный иррегулярный -40,-63, 40-100 мкм |
<0,3 |
20 |
основа |
20 |
— |
|
Y Si Nb С 0,01-0,15 |
ПР-НХ22Ю10Ит * распыленный газом, сфероидальный (аналог Amdry 962 / NiCrAlY 66 22 10 1) |
— |
21,00-23,00 |
основа |
— |
— |
9,00-11,00 |
Y 0,80-1,20 S+P+Si+Mn не более 1,00 % |
ПР-ХН67Ю12* распыленный газом, сфероидальный (аналог Amperit 457. 642) |
— |
19,00-21,00 |
основа |
— |
— |
11,00-12,00 |
Y 0,20-0,50 Re 0,70-0,90 Hf 0,70-0,90 |
ПВ-НХ20С восстановленный иррегулярный -40,-63, 40-100 мкм |
— |
20 |
основа |
— |
— |
|
Si 2 |
Порошки распыленные могут поставляться с другими размерами частиц, не указанными в таблице, мкм: 45-125, -125, 100-140, 100-280, 160-280, 280-400
*Новые материалы: сплавы системы Ni-Cr-Al-Y для покрытий в авиакосмической отрасли.
Сплавы системы Ni-Cr-Al-Y наиболее широко применяются для получения покрытий на лопатках работающих при высоких температурах и термических напряжениях.
Свойства NiAl Металлидов
Основная фаза в структуре материала ПВ-Н70Ю30 — металлид NiAl (β` — фаза >95%), в ПВ-Н85Ю15 – металлид Ni3Al (γ`- фаза >95%), в ВКНА — металлид Ni3Al (γ`- фаза). Структура материалов в покрытии отличается высокой устойчивостью к рекристаллизации в процессе их эксплуатации при повышенных температурах.
Форма частиц
ПВ-Н85Ю15
ВКНА
Размер частиц
Основная фракция 20-63 мкм, порошка ВКНА — 56 мкм.
Типичный средний размер (условный диаметр) частиц порошков 30-40 мкм
Физико-механические свойства порошков и покрытий
ВКНА — жаропрочный суперсплав на основе металлида Ni3Al , фазоупрочненного добавками тугоплавких металлов, характеризуется великолепными физико-механическими свойствами плазменных покрытий — структурной термостабильностью, жаростойкостью и износостойкостью в условиях работы деталей ГТД при 1150-12000С.
ПВ-Н70Ю30 (Ni70Al30)
Температура плавления 1640 0С. Исключительно высокая жаростойкость при нагреве на воздухе, превышающая в три раза сопротивление коррозии известного жаропрочного сплава ХН77ТЮР.
Материал |
| ||
1000 |
1100 |
1200 | |
ПВ-Н70Ю30 (Ni70Al30) |
0,06 |
0,1 |
0,2 |
ХН77ТЮР (NiCr20Ti2,5Al) |
0,14 |
0,36 |
0,65 |
ПВ-Н70Ю30 в плазменных покрытиях обладает коррозионной стойкостью в атмосфере, воде и щелочах (растворах NaOH, KOH).
Твердость покрытия около 40 HRC, материал образует прочные покрытия со сталью и медью, отлично прессуется и спекается в вакууме.
ПВ-Н85Ю15 (Ni85Al15)
Температура плавления 1400 0С, великолепная жаростойкость покрытий при нагреве на воздухе до 1150 0С, материал и покрытия стойки в атмосфере, воде и щелочах.
Твердость плазменных покрытий около 300 НВ, материал образует прочные покрытия со сталью и медью.
Жаростойкий Сплав 6 Букв — ответ на кроссворд и сканворд
Решение этого кроссворда состоит из 6 букв длиной и начинается с буквы Н
Ниже вы найдете правильный ответ на Жаростойкий сплав 6 букв, если вам нужна дополнительная помощь в завершении кроссворда, продолжайте навигацию и воспользуйтесь нашей функцией поиска.
ответ на кроссворд и сканворд
Среда, 20 Ноября 2019 Г.
НИХРОМ
предыдущий
следующий
другие решения
НИХРОМ
ты знаешь ответ ?
ответ:
связанные кроссворды
- Нихром
- Сплав никеля с хромом, железом и марганцем
- Сплав никеля с хромом
- Нихром
- Сплав никеля с хромом, железом и марганцем 6 букв
- Сплав никеля 6 букв
- Общее название группы сплавов 6 букв
- Сплав никеля с хромом для изготовления нагревательных элементов 6 букв
Обработка никеля | Британика
никелевые брикеты
Просмотреть все материалы
- Похожие темы:
- обработка материалов
никель
См. все связанные материалы →
обработка никеля , подготовка металла для использования в различных продуктах.
Несмотря на то, что никель (Ni) наиболее известен своим использованием в чеканке монет, он приобрел гораздо большее значение благодаря своим многочисленным промышленным применениям, которые обязаны своим значением уникальному сочетанию свойств. Никель имеет относительно высокую температуру плавления 1453 ° C (2647 ° F) и гранецентрированную кубическую кристаллическую структуру, что придает металлу хорошую пластичность. Никелевые сплавы обладают высокой коррозионной стойкостью в самых различных средах и обладают способностью выдерживать диапазон высоких и низких температур. В нержавеющих сталях никель улучшает стабильность защитной оксидной пленки, обеспечивающей коррозионную стойкость. Его основной вклад связан с хромом в аустенитных нержавеющих сталях, в которых никель позволяет сохранить аустенитную структуру при комнатной температуре. Современные технологии в значительной степени зависят от этих материалов, которые составляют жизненно важную часть химической, нефтехимической, энергетической и смежных отраслей промышленности.
История
Никель использовался в промышленности в качестве легирующего металла почти за 2000 лет до того, как он был выделен и признан новым элементом. Еще в 200 г. до н. э. китайцы производили значительное количество белого сплава из цинка и медно-никелевой руды, найденной в провинции Юньнань. Сплав, известный как pai-t’ung , экспортировался на Ближний Восток и даже в Европу.
Позже горняки в Саксонии обнаружили нечто похожее на медную руду, но обнаружили, что при ее переработке получается только бесполезный шлакоподобный материал. Они считали его заколдованным и приписывали дьяволу, «Старому Нику». Таким образом, он стал известен как купферникель (медь Старого Ника). Именно из этой руды, изученной Акселем Фредриком Кронштедтом, в 1751 г. был выделен и признан новым элементом никель. В 1776 г. было установлено, что pai-t’ung , который теперь называется нейзильбером, состоял из меди, никеля и цинка.
Спрос на нейзильбер был стимулирован в Англии примерно в 1844 г. развитием гальваники серебра, для которой он оказался наиболее подходящей основой. Использование чистого никеля в качестве антикоррозионного гальванического покрытия появилось несколько позже; оба эти использования по-прежнему важны.
Небольшие количества никеля производились в Германии в середине 19 века. Более значительные объемы поступали из Норвегии, а немного — с шахты в Гэпе, штат Пенсильвания, в Соединенных Штатах. Новый источник, Новая Каледония в южной части Тихого океана, начал добычу примерно в 1877 г. и доминировал до разработки медно-никелевых руд в регионе Коппер-Клифф-Садбери, Онтарио в Канаде, который после 1905 стал крупнейшим в мире источником никеля. К концу 1970-х производство в Советской России превысило производство в Канаде. К началу 21 века Китай стал мировым лидером по производству никеля, за ним следуют Россия, Япония, Австралия и Канада.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Канадские руды представляют собой сульфиды, содержащие никель, медь и железо. Наиболее важным минералом никеля является пентландит (Ni, Fe) 9. S 8 , за которым следует пирротин, обычно в диапазоне от FeS до Fe 7 S 8 , в котором часть железа может быть заменена никелем. Халькопирит, CuFeS 2 , является преобладающим минералом меди в этих рудах, с небольшими количествами другого минерала меди, кубанита, CuFe 2 S 3 . Также присутствуют некоторое количество золота, серебра и шести металлов платиновой группы, и их извлечение имеет важное значение. Кобальт, селен, теллур и сера также могут быть извлечены из руд.
Другими важными классами руд являются латериты, которые являются результатом длительного выветривания перидотита, первоначально содержащего небольшой процент никеля. Выветривание в субтропическом климате удаляет большую часть вмещающей породы, но содержащийся никель растворяется и просачивается вниз, и его концентрация может достигать достаточно высокой концентрации, чтобы сделать добычу экономически выгодной. Из-за этого способа образования латеритные отложения обнаруживаются вблизи поверхности в виде мягкого, часто глинистого материала с концентрацией никеля в пластах в результате выветривания. Гарниерит, (NiMg) 6 Si 4 O 10 (OH) 8 , никель-магниевый силикат, самый богатый никелем, но никельсодержащий лимонит, (Fe, Ni)O(OH)· n H 2 O, составляет основную часть латеритов. Месторождения Новой Каледонии относятся к типу гарниерита, а многочисленные другие месторождения латерита разбросаны по всему миру, что создает широкий спектр проблем с добычей, транспортировкой и добычей. Содержание никеля в латеритах сильно варьируется: например, в Ле Никеле в Новой Каледонии руда, доставленная на плавильный завод в 1900 содержал 9 процентов никеля; в настоящее время он содержит от 1 до 3 процентов.
Поскольку никель обнаружен в двух совершенно разных типах руды, неудивительно, что методы добычи различаются. Сульфидные месторождения обычно добываются подземным способом, как и медь, хотя некоторые месторождения на ранних стадиях добывались открытым способом. Добыча латеритов в основном представляет собой землеройную операцию с использованием больших экскаваторов, драглайнов или фронтальных погрузчиков, извлекающих богатые никелем пласты и выбрасывающих большие валуны и отходы. Руда загружается в самосвалы в забое, как в карьере, и доставляется на плавильный завод.
Жаропрочные суперсплавы и их применение – руководство
Суперсплавы на основе никеля, имеющиеся на складе Corrotherm, представляют собой невероятно важную группу продуктов. Они широко используются в высокотемпературных средах, где материалы должны противостоять коррозии и сохранять свою прочность, ударную вязкость и структуру. Каждый суперсплав производится тщательно, балансируя ключевые элементы состава, чтобы обеспечить желаемые свойства для ряда промышленных применений.
Например, в аэрокосмической промышленности суперсплавы на основе никеля имеют множество важных применений. Они используются в самых горячих зонах реактивных двигателей, где температура может регулярно превышать 1200°C. Материалы в этой области должны выдерживать такие условия без ущерба для структурной целостности двигателя. Такие суперсплавы идеально подходят для этой работы, поскольку они обеспечивают превосходную устойчивость к коррозии и окислению при повышенных температурах.
Реактивные двигатели
При использовании суперсплавов в реактивных двигателях важно обратить внимание на продукт на основе никеля с высоким содержанием хрома, железа, титана и кобальта. Хорошим примером этого является сплав INCONEL 601. В нем 58% никеля и 20-23% хрома, а также все остальные необходимые ключевые элементы. В частности, в него добавлен алюминий, что позволяет сплаву противостоять высокотемпературному окислению и водной коррозии. Он также обладает высокой механической прочностью и легко поддается механической обработке и сварке, что делает его очень универсальным материалом для использования в реактивных двигателях.
Внедрение лучших суперсплавов помогло разработать реактивный двигатель. Поскольку материалы изготавливаются со все более высокими свойствами, такими как повышенная стойкость к высоким температурам и коррозионная стойкость, инженеры-конструкторы могут улучшать характеристики реактивного двигателя, включая увеличение тяги и снижение расхода топлива.
Переработка химикатов и отходов
На земле есть и другие среды, в которых используются суперсплавы и их исключительная термостойкость. В обрабатывающей промышленности такие высокоэффективные материалы являются неотъемлемой частью систем, на которые мы все полагаемся.
Установки по очистке сточных вод, например, являются необходимыми, но сложными условиями. Они очень агрессивны и очень горячие. Сплав INCONEL C-276 известен своей выдающейся коррозионной стойкостью в самых негостеприимных атмосферах. Его состав таков, что он может выдержать даже самую жесткую систему. Он имеет низкое содержание углерода, что сводит к минимуму выделение карбида во время сварки, что помогает ему сохранять коррозионную стойкость в сварных конструкциях, повышая его полезность. Также в нем высокий уровень молибдена (15-17%), что придает сплаву прочность, а также лучшую стойкость к точечной и щелевой коррозии. Помимо обработки отходов, этот суперсплав благодаря своим уникальным характеристикам используется в системах контроля загрязнения, химической обработке и производстве целлюлозы и бумаги.
Добыча нефти и газа
В нефтяной и газовой промышленности приходится сталкиваться с чрезвычайно агрессивными высокотемпературными ситуациями. Материалы, используемые в этих системах, имеют первостепенное значение для безопасного извлечения основных ресурсов, и поэтому они должны соответствовать работе. Никелевые суперсплавы используются как для наземных, так и для морских проектов добычи, для всего, от насосов и клапанов до оборудования управления технологическим процессом.
Одним из основных используемых материалов является сплав INCONEL 625, ведущий никелевый сплав благодаря своим исключительным свойствам. Этот материал обладает высокой прочностью, выдающейся коррозионной стойкостью и стойкостью к высоким температурам.