Сварка металлов технологии сварочного производства. 09Г2С сталь чем варить


    Электроды для сварки низколегированных сталей

    Сообщество сварка электродами

    Сварка низколегированных сталей, которые имеют предел текучести не более 390 МПа, не представляется трудной. Она практически ничем не отличается от сварки низкоуглеродистых сталей. Стали данного вида не закаливаются и не расположены к перегреву, который ведет к снижению пластических свойств. Однако стоит помнить, что с увеличением содержания углерода свойства стали меняются.

    Например, стали 15ХСНД и 14Г2 содержат в своем составе 0,18% углерода и имеют склонность к образованию закалочных структур и перегревам в зоне влияния температуры. По этим причинам при сваривании сталей данного вида нужно подбирать оптимальный режим, который не будет допускать образование закалочных структур и перегрева металлической конструкции. Сваривание производится с использованием электродов диаметром 4 – 5 миллиметров. Сварочный процесс происходит в несколько шаров. Если толщина свариваемого металла превышает толщину в 15 миллиметров, то сваривание производится методом блоков или каскадом, однако металл в зоне сварке до высокой температуры не разогревается, чтобы не допускать перегрева зоны влияния.

    Для сварки популярных низколегированных сталей 15ХСНД и 14Г2 используют сварочные электроды Э55 и Э50А, которые перед использованием необходимо прокаливать. При сварке сталей 09Г2С, 14Г2 и 10Г2С1 используются электроды, имеющие в своем составе 18 процентов углерода. Этими электродами являются Э42 и Э50А. Проведение сварочных работ со сталями с пределом текучести более 390 МПа требует большего внимания. Сталь с такими свойствами склонна к образованию кристаллизационных трещин, однако она менее подвергается перегреву околошовной зоны, потому что является легированной. Сварку такой стали выполняют электродами Э60, Э50А и Э55. Сварочные электроды Э60 используются для сваривания низколегированной стали во всех пространственных положениях сварочного шва, а также для работы с ними нужно использовать постоянный ток обратной полярности.

    Легирующие элементы в таблице

    Для сварки таких видов сталей можно использовать электроды УОНИ 13/55, ПСК-50 и СК»-50. Низколегированные виды сталей перед свариванием нужно обязательно тщательно подготавливать к сварке. Их нужно очищать от ржавчины и разного рода загрязнений. Свариваемый металл и прилегающие к нему его части должны быть очищены на 20 миллиметров. Кроме этого, все обвисающие части металла и выступы должны быть обработаны абразивным инструментом и стать в один уровень с остальным металлом. Если толщина свариваемого металла составляет более 25 миллиметров, то сваривание нужно производить с использованием местного подогрева при температуре 120 – 160 градусов. Однако если температура окружающей среды составляет -15 градусов по Цельсию и ниже, то предварительный местный подогрев металла обязателен, независимо от толщины свариваемого изделия или от его формы и массы. Таким образом, поддерживая необходимую температуру металла при сваривании, Вы сможете проводить сварочный процесс низколегированных сталей успешно.

    elektrod-3g.ru

    Сварка низколегированных сталей

    Основы сварочного дела

    Низколегированные стали получи­ли большое применение В СВЯЗИ с тем, что они, обладая повышенными механическими свойствами, позволяют изготовлять строительные конструк­ции более легкими и экономичными. Для изготовления различных конст­рукций промышленных и гражданских сооружений применяются стали марок 15ХСНД, 14Г2, 09Г2С, 10Г2С1, 16ГС и др. Для изготовления арматуры железобетонных конструкций и свар­ных труб применяют стали 18Г2С, 25Г2С, 25ГС и 20ХГ2Ц. Эти стали относятся к категории удовлетвори­тельно свариваемых сталей; содержат углерода не более 0,25% и леги­рующих примесей не более 3,0%. Следует учитывать, что при содер­жании в стали углерода более 0,25% возможно образование закалочных структур и даже трещин в зоне сварного шва. Кроме того, выгорание углерода вызывает образование пор в металле шва.

    Сталь 15ХСНД сваривают вручнукг электродами типа Э50А или Э55А. Наилучшие результаты дают электро­ды УОНИ-13/55 и электроды Днеп­ровского электродного завода ДСК-50. Сварку электродами ДСК-50 можно выполнять переменным то­ком, но лучшие результаты дает сварка постоянным током обратной полярности. Многослойную сварку следует производить каскадным мето­дом. Чтобы предупредить перегрев стали, следует выполнять сварку при токах 40...50 А на 1 мм диаметра электрода. Рекомендуется применять электроды диаметром 4...5 мм. Авто­матическую сварку стали 15ХСНД производят проволокой Св-08ГА или Св-ЮГА под флюсом АН-348-А или ОСЦ-45

    Толщина металла, мм................................

    Диаметр электрода, мм.............................

    Сварочный ток, А.......................................

    при высоких скоростях, но при малой погонной энергии. В зимних условиях сварку конструкций из стали 15ХСНД, 15ГС и 14Г2 можно производить при температурах не ниже — 10°С. При бо­лее низких температурах зону сварки на ширине 100... 120 мм по обе стороны от шва предварительно нагревают до Ю0...150°С. При температуре —25°С сварка не допускается.

    Стали 09Г2С и 10Г2С1 относятся к группе незакаливающихся сталей, не склонных к перегреву и стой­ких против образования трещин. Ручная сварка электродами Э50А и Э55А выполняется на режимах, пре­дусмотренных для сварки низкоугле­родистой стали. Механические свойст­ва сварного шва не уступают пока­зателям основного металла. Автомати­ческая и полуавтоматическая сварка выполняется электродной проволокой Св-08ГА, Св-ЮГА или Св-10Г2 под флюсом АН-348-А или ОСЦ-45. Свар­ку листов толщиной до 40 мм производят без разделки кромок. При этом равнопрочность сварного шва обеспечивается за счет перехода ле­гирующих элементов из электродной проволоки в металл шва.

    Стали хромокремнемарганцови - стые (20ХГСА, 25ХГСА,30ХГСА и 35ХГСА) при сварке дают закалоч­ные структуры и склонны к образова­нию трещин. При этом чем меньше толщина кромок, тем больше опас­ность закалки металла и образования трещин, особенно в околошовной зоне. Стали с содержанием углеро­да ^0,25% свариваются лучше, чем стали с большим содержанием углерода. Для сварки могут приме­няться электроды НИАТ-ЗМ типа Э70, Э85. Для ответственных сварных швов рекомендуются электроды, изго­товленные из проволоки Св-18ХГС или Св-18ХМА с покрытием ЦЛ-18-63, ЦК-18Мо, УОНИ-13/65, УОНИ-13/85, УОНИ-13/НЖ.

    При сварке можно рекомендовать следующие режимы:

    0,5... 1,5 2...3 4.„6 7...10

    1.5.. .2.0 2,5...3 3...5 4...6

    20.. .40 50...90 100...160 200...240

    При сварке более толстых метал­лов применяется многослойная сварка с малыми интервалами времени между наложениями последующих слоев. При сварке кромок разной толщины сварочный ток выбирается по кромке большей толщины и на нее направ­ляется большая часть зоны дуги. Для устранения закалки и повышения твердости металла шва и околошов - ной зоны рекомендуется после сварки нагреть изделие до температуры

    650.. .680°С, выдержать при этой тем­пературе определенное время в зави­симости от толщины металла (1 ч на каждые 25 мм) и охладить на воздухе или в горячей воде.

    Сварку низколегированных сталей в защитном газе производят при плотностях тока более 80 А/мм2. Сварка в углекислом газе выполняет­ся на постоянном токе обратной поляр­ности. Рекомендуется электродная проволока диаметром 1,6—2,0 мм мар­ки Св-08Г2С - или Св-10Г2, а для сталей, содержащих хром и никель,— Св-08ХГ2С, Св-08ГСМТ.

    Электрошлаковая сварка сталей любой толщины успешно производит­ся электродной проволокой марки Св-10Г2 или Св-18ХМА под флюсом АН-8 при любой температуре окру­жающего воздуха. Прогрессивным способом является сварка в углекис­лом газе с применением порошковой проволоки.

    Газовая сварка отличается значи­тельным разогревом свариваемых кро­мок, снижением коррозионной стой­кости, более интенсивным выгоранием легирующих примесей. Поэтому каче­ство сварных соединений ниже, чем при других способах сварки. При газовой сварке пользуются только нор­мальным пламенем при удельной мощ­ности 75... 100 л/(ч-мм) при левом способе, а при правом способе —

    100.. .130 л/(ч-мм). Присадочным ма­териалом служат проволоки Св-08, Св-08А, Св-10Г2, а для ответственных швов — Св-18ХГС и Св-18ХМА. Про­ковка шва при температуре 800... 850°С с последующей нормализацией несколько повышает механические свойства шва.

    В последнее время с появлением китайской техники на мировом рынке, сварочный аппарат стал наиболее популярным инструментом у владельцев частных домов, коттеджей, дач и гаражей. Учитывая соотношение цен на приобретение сварки …

    Выполнение сварочных работ на строительно-монтажной площадке требует особо четкого выполнения всех правил безопасности производ­ства работ. Сварочные работы на высоте с лесов, подмостей и люлек разрешается производить только по­сле проверки этих …

    Из применяемых средств контроля особую опасность представляют рент­геновские и гамма-лучи. Рентгенов­ские и гамма-лучи опасны для человека при продолжительном облу­чении и большой дозе. Предельно ДО­пустимая доза, которая не вызывает необратимых изменений …

    msd.com.ua

    Обенности технологии сварки различных материалов

    Информация по данным сайта: www.sio.su

    ОСОБЕННОСТИ ТЕХНОЛОГИИ СВАРКИ РАЗЛИЧНЫХ МАТЕРИАЛОВ, НАПЛАВОЧНЫЕ РАБОТЫ. СВАРКА ТРУБОПРОВОДОВ

    СВАРКА ЛЕГИРОВАННЫХ СТАЛЕЙ

    Свариваемость легированных сталей

    Свариваемость легированных сталей оценивается не только возможностью получения сварного соединения с физико-механическими свойствами, близкими к свойствам основного металла, но и возможностью сохранения специальных свойств: коррозионной стойкости, жаропрочности, химической стойкости, стойкости против образования закалочных структур и др. Большое влияние на свариваемость стали оказывает наличие в ней различных легирующих примесей: марганца, кремния, хрома, никеля, молибдена и др.

    Хром - содержание его в низколегированных сталях не превышает 0,9%. При таком содержании хром не оказывает существенного влияния на свариваемость стали. В конструкционных сталях хрома содержится 0,7...3,5%, в хромистых-12...18%, в хромоникелевых -9...35%. При таком содержании хром снижает свариваемость стали, так как, окисляясь, образует тугоплавкие оксиды СГ2О3, резко повышает твердость стали в зоне термического влияния, образуя карбиды хрома, а также способствует возникновению закалочных структур.

    Никель в низколегированных сталях содержится в пределах 0,3...0,6%, в конструкционных сталях-1,0...5%, а в легированных сталях - 8...35%.

    Никель способствует измельчению кристаллических зерен, повышению пластичности и прочности стали; не снижает свариваемости.

    Молибден в теплоустойчивых сталях содержится от 0,15 до 0,8%; в сталях, работающих при высоких температурах и ударных нагрузках, его содержание достигает 3,5%. Способствует измельчению кристаллических зерен, повышению прочности и ударной вязкости стали. Ухудшает свариваемость стали, так как способствует образованию трещин в металле шва и в зоне термического влияния. В процессе сварки легко окисляется и выгорает. Поэтому требуются специальные меры для надежной защиты от выгорания молибдена при сварке.

    Ванадий содержится в легированных сталях от 0,2 до 1,5%. Придает стали высокую прочность, повышает ее вязкость и упругость. Ухудшает сварку, так как способствует образованию закалочных структур в металле шва и околошовной зоны. При сварке легко окисляется и выгорает.

    Вольфрам содержится в легированных сталях от 0,8 до 18%. Значительно повышает твердость стали и его теплостойкость. Снижает свариваемость стали; в процессе сварки легко окисляется и выгорает.

    Титан и ниобий содержатся в нержавеющих и жаропрочных сталях в количестве от 0,5 до 1,0%. Они являются хорошими карбидообразова-телями и поэтому препятствуют образованию карбидов хрома. При сварке нержавеющих сталей ниобий способствует образованию горячих трещин.

     Сварка низколегированных сталей

    Низколегированные стали получили большое применение в связи с тем, что они, обладая повышенными механическими свойствами, позволяют изготовлять строительные конструкции более легкими и экономичными. Для изготовления различных конструкций промышленных и гражданских сооружений применяются стали марок 15ХСНД, 14Г2, 09Г2С, 10Г2С1, 16ГС и др. Для изготовления арматуры железобетонных конструкций и сварных труб применяют стали 18Г2С, 25Г2С, 25ГС и 20ХГ2Ц. Эти стали относятся к категории удовлетворительно свариваемых сталей; содержат углерода не более 0,25% и легирующих примесей не более 3,0%. Следует учитывать, что при содержании в стали углерода более 0,25% возможно образование закалочных структур и даже трещин в зоне сварного шва. Кроме того, выгорание углерода вызывает образование пор в металле шва.

    Сталь 15ХСНД сваривают вручную* электродами типа Э50А или Э55А. Наилучшие результаты дают электроды УОНИ-13/55 и электроды Днепровского электродного завода ДСК-50. Сварку электродами ДСК-50 можно выполнять переменным током, но лучшие результаты дает сварка постоянным током обратной полярности. Многослойную сварку следует производить каскадным методом. Чтобы предупредить перегрев стали, следует выполнять сварку при токах 40...50 А на 1 мм диаметра электрода. Рекомендуется применять электроды диаметром 4...5 мм. Автоматическую сварку стали 15ХСНД производят проволокой Св-08ГА или Св-10ГА под флюсом АН-348-А или ОСЦ-45 при высоких скоростях, но при малой погонной энергии. В зимних условиях сварку конструкций из стали 15ХСНД, 15ГС и 14Г2 можно производить при температурах не ниже - 10°С. При более низких температурах зону сварки на ширине 100...120 мм по обе стороны от шва предварительно нагревают до 100...150°С. При температуре -25°С сварка не допускается.

    Стали 09Г2С и 10Г2С1 относятся к группе незакаливающихся сталей, не склонных к перегреву и стойких против образования трещин. Ручная сварка электродами Э50А и Э55А выполняется на режимах, предусмотренных для сварки низкоуглеродистой стали. Механические свойства сварного шва не уступают показателям основного металла. Автоматическая и полуавтоматическая сварка выполняется электродной проволокой Св-08ГА, Св-10ГА или Св-10Г2 под флюсом АН-348-А или ОСЦ-45. Сварку листов толщиной до 40 мм производят без разделки кромок. При этом равнопрочность сварного шва обеспечивается за счет перехода легирующих элементов из электродной проволоки в металл шва.

    Стали хромокремнемарганцови-стые (20ХГСА, 25ХГСА,30ХГСА и 35ХГСА) при сварке дают закалочные структуры и склонны к образованию трещин. При этом чем меньше толщина кромок, тем больше опасность закалки металла и образования трещин, особенно в околошовной зоне. Стали с содержанием углерода 0,25% свариваются лучше, чем стали с большим содержанием углерода. Для сварки могут применяться электроды НИАТ-ЗМ типа Э70, Э85. Для ответственных сварных швов рекомендуются электроды, изготовленные из проволоки Св- 18ХГС или Св-18ХМА с покрытием ЦЛ-18-63, ЦК-18Мо, УОНИЧЗ/65, УОНИ-13/85, УОНИ-13/НЖ.

    При сварке можно рекомендовать следующие режимы:

    0,5.1,5 2...3 4...6 7...10 1,5...2,0 2.5...3 3...5 4...6 20...40 50...90 100...160 200...240

    При сварке более толстых металлов применяется многослойная сварка с малыми интервалами времени между наложениями последующих слоев. При сварке кромок разной толщины сварочный ток выбирается по кромке большей толщины и на нее направляется большая часть зоны дуги. Для устранения закалки и повышения твердости металла шва и околошовной зоны рекомендуется после сварки нагреть изделие до температуры 650...680°С, выдержать при этой температуре определенное время в зависимости от толщины металла (1 ч на каждые 25 мм) и охладить на воздухе или в горячей воде.

    Сварку низколегированных сталей в защитном газе производят при плотностях тока более 80 А/мм2. Сварка в углекислом газе выполняется на постоянном токе обратной полярности. Рекомендуется электродная проволока диаметром 1,6-2,0 мм марки Св-08Г2С - или Св-10Г2, а для сталей, содержащих хром и никель,- Св-08ХГ2С, Св-08ГСМТ.

    Электрошлаковая сварка сталей любой толщины успешно производится электродной проволокой марки Св-10Г2 или Св-18ХМА под флюсом АН-8 при любой температуре окружающего воздуха. Прогрессивным способом является сварка в углекислом газе с применением порошковой проволоки.

    Газовая сварка отличается значительным разогревом свариваемых кромок, снижением коррозионной стойкости, более интенсивным выгоранием легирующих примесей. Поэтому качество сварных соединений ниже, чем при других способах сварки. При газовой сварке пользуются только нормальным пламенем при удельной мощности 75... 100 л/(ч-мм) при левом способе, а при правом способе - 100...130 л/(ч-мм). Присадочным материалом служат проволоки Св-08, Св-08А, Св-10Г2, а для ответственных швов - Св-18ХГС и Св-18ХМА. Проковка шва при температуре 800... 850°С с последующей нормализацией несколько повышает механические свойства шва.

    Сварка средне-и высоколегированных сталей

    Сварка средне- и высоколегированных сталей затруднена по следующим причинам: в процессе сварки происходит частичное выгорание легирующих примесей и углерода; вследствие малой теплопроводности возможен перегрев свариваемого металла; повышенная склонность к образованию закалочных структур; больший, чем у низкоуглеродистых сталей, коэффициент линейного расширения может вызвать значительные деформации и напряжения, связанные с тепловым влиянием дуги. Чем больше в стали углерода и легирующих примесей, тем сильнее сказываются эти причины. Для устранения влияния их на качество сварного соединения рекомендуются следующие технологические меры:

    тщательно подготавливать изделие под сварку;

    сварку вести при больших скоростях с малой погонной энергией, чтобы не допускать перегрева металла;

    применять термическую обработку для предупреждения образования закалочных структур и снижения внутренних напряжений;

    применять легирование металла шва через электродную проволоку и покрытие, чтобы восполнить выгорающие в процессе сварки примеси.

    Для сварки высоколегированных сталей применяют электроды по ГОСТ 10052-75 «Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами. Типы». Электроды изготовляют из высоколегированной сварочной проволоки по ГОСТ 2246-70. Применяют покрытие типа Б. Обозначение типа электрода состоит из индекса Э и следующих за ним цифр и букв. Две или три цифры, следующие за индексом, указывают на количество углерода в металле шва в сотых долях процента. Следующие затем буквы и цифры указывают химический состав металла,

    Выбор стали производится в соответствии с табл. 24.2. Поскольку последняя редакция СНиП П-23-81* «Стальные конструкции» ориентирована на ГОСТ 27772-88, марки стали могут быть заменены классами стали по этому ГОСТ в соответствии с табл. 24.3.

    Таблица 24.2

    Стали по ГОСТ 27772-88 для строительных конструкций

    Расчетная температура в

    °С в районе строительства

    и группа конструкций

    Сталь

    И4 (-30°>Т>40°)

    11,112, П3

    I,

    п5

    и др. (Т>-30°)

    (-40°>Т>-50°)

    (-50°>Т>-65°)

    1

    2

    3 4

    1

    2

    3 4

    1

    2 3 4

    С235

    -

    -

    + +

    С245

    -

    +

    +

    -

    -

    +

    -

    - - +

    С255

    +

    +

    + -

    -

    -

    + +

    -

    - - +

    С275

    -

    +

    +

    -

    -

    +

    -

    +

    С285

    +

    +

    +

    -

    -

    + +

    -

    - - +

    С345

    +3

    +1

    +1 -

    +3

    +1

    +1 -

    +4

    +4 +2.3 -

    С345К

    -

    +

    +

    -

    -

    +

    С375

    +3

    +1

    +1 -

    +3

    +3

    +1 -

    +4

    +4 +2,3 -

    С390

    +

    +

    +

    +

    +

    +

    +

    + + -

    С590

    +

    +

    С590К

    -

    -

    -

    -

    +

    +

    -

    + + -

    Примечание. Знаки « + » и «-» означают, что данную сталь применять следует или не следует. Цифра обозначает категорию стали. Стали для конструкций, возводимых в климатических районах 1ь 12, И2 и П3, но эксплуатируемых в отапливаемых помещениях, следует принимать как для района II, за исключением стали С245 и С275 для конструкций группы 2. Остальные примечания в нормах.

    Таблица 24.3 Нормативные и расчетные сопротивления стали

    Нормативное

    Расчетное

    Марка-

    Сталь

    Вид проката

    Толщина, мм

    сопротивление, МПа

    сопротивление, МПа

    аналог по другим

    R,w

    Л,

    К

    стандартам

    лист,

    фасон

    до 20

    235

    350

    230

    350

    С235

    лист,

    21-40

    225

    360

    220

    350

    ВСтЗкп2

    фасон

    41-100

    215

    360

    210

    350

    лист

    С245

    лист, фасон лист

    2-20 21-30

    245 235

    370 370

    240 230

    360 360

    ВСтЗпсб

    лист

    4-10

    245

    380

    240

    370

    С255

    фасон

    4-10

    255

    380

    250

    370

    ВСтЗсп5,

    лист

    11-20

    245

    370

    240

    360

    ВСтЗГпс5

    фасон

    21-40

    235

    370

    230

    360

    лист, фасон

    2-10

    275

    380

    270

    370

    С275

    11-20

    265

    370

    260

    360

    ВСтЗпсб-2

    лист фасон

    11-20

    275

    380

    270

    370

    лист

    4-10

    275

    390

    270

    380

    С285

    лист

    11-20

    265

    380

    260

    370

    ВСтЗсп5-2,

    фасон

    4-10

    285

    400

    280

    390

    ВСтЗГпс5-5

    фасон

    11-20

    275

    390

    270

    380

    лист, фасон

    2-10

    345

    490

    335

    480

    09Г2С, 14Г2, 12Г2С, ВСтГпс

    С345(Т)

    11-20 21-40

    325 305

    470 460

    315 300

    460 450

    лист, фасон

    2-10

    375

    510

    365

    500

    10Г2С1,

    С375

    11-20 21-40

    355 335

    490 480

    345 325

    480 470

    15ХНД, 10ХСНД

    14Г2АФ,

    С390

    лист

    4-50

    390

    540

    380

    525

    10Г2С1т.о.,

    юхснд

    С440

    лист

    4-30 31-50

    440 410

    590 570

    430 400

    575 555

    16Г2АФ

    С590

    лист

    10-36

    540

    635

    515

    620

    12Г2СМФ

    Основными расчетными характеристиками стали являются расчетные сопротивления на растяжение, сжатие и изгиб, определяемые делением нормативных сопротивлений (предела текучести и предела прочности) на коэффициент надежности по материалу:

    Ry--,K-~-(24.3)

    Коэффициент надежности по материалу изменяется в пределах 1,025-1,15.

    Значения нормативных и расчетных сопротивлений основных строительных сталей приведены в табл. 24.3.

    При расчете конструкций с использованием расчетного сопротивления по пределу прочности учитывают повышенную опасность такого состояния путем введения дополнительного коэффициента надежности уи = 1,3.

    При срезе расчетные сопротивления Rs определяют путем умножения расчетного сопротивления Ry на коэффициент перехода 0,58.

    При сжатии торцевой поверхности в случае плотной пригонки (строжка или фрезеровка торца), согласно нормам, расчетное сопротивление в зоне контакта Rp = Ru.

    При расчете проката на растяжение в направлении, перпендикулярном плоскости проката из предположения о возможности расслоя, расчетное сопротивление Rth = 0,5RU.

    24.1.2. Алюминиевые сплавы

    Алюминий по своим свойствам существенно отличается от стали. Плотность его р = 2700 кг/м3, т.е. почти в три раза меньше плотности стали. Модуль упругости алюминия £=0,71 хЮ5 МПа, модуль сдвига С=0,27х105 МПа, что примерно в три раза меньше, чем соответствующие величины для стали. Коэффициент линейного расширения алюминия а=2,3х10"5 Мград, что почти в два раза больше, чем у стали. Вследствие весьма низкой прочности технически чистый алюминий в строительных конструкциях применяется очень редко.

    С целью повышения прочности алюминия его легируют, добавляя в сплав магний, марганец, медь, кремний, цинк и некоторые другие элементы. Легирующие элементы практически не увеличивают массу сплавов. С той же целью повышения прочности применяют различные приемы - термическое упрочнение, нагартовка (наклеп).

     Информация по данным сайта: www.sio.su

     

    company-germes.ru

    1.2 Свойства основных материалов.

    Основным материалом является сталь 09Г2С ГОСТ 19281-89.

    Классификация: сталь конструкционная низколегированная для сварных конструкций.

    Использование в промышленности: Прокат из данной марки стали используется для разнообразных строительных конструкций благодаря высокой механической прочности, что позволяет использовать более тонкие элементы, чем при использовании других сталей. Устойчивость свойств в широком температурном диапазоне позволяет применять детали из этой марки в диапазоне температур от -70 до +450 С. Также легкая свариваемость позволяет изготавливать из листового проката этой марки сложные конструкции для химической, нефтяной, строительной, судостроительной и других отраслей.

    Механические свойства химический состав стали 09Г2С ГОСТ 19281-89.

    Таблица 2

    Химический состав в % стали 09Г2С ГОСТ 19281-89.

    С

    Si

    Mn

    Ni

    S

    P

    Cr

    Cu

    As

    N

    Fe

    До 0,12

    0,5-0,8

    1,3-1,7

    До 0,3

    До 0,04

    До 0,035

    До 0,3

    До 0,3

    До 0,08

    До 0,008

    96-97

    Таблица 3

    Механические свойства при Т=20̊ С ГОСТ 19281-89.

    Предел прочности, МПа

    Предел текучести, МПа

    Относительное сужение, %

    Относительное удлинение при разрыве, %

    470

    325

    66

    21

    Оценка свариваемости стали 09Г2С.

    Свариваемость основного металла по его влиянию на состав и свойства металла шва, а также по его сопротивляемости образованию холодных трещин можно приближенно оценить, исходя из химического состава основного металла низколегированной стали, на ее сопротивляемость образования трещин при сварке принято выражать посредством эквивалента углерода .

    Эквивалент углерода высчитывается по формуле [1]:

    Согласно химическому составу стали 09Г2С (таблица 1) эквивалент углерода равен:

    Так как 0,25 то сталь 09Г2С является хорошо свариваемой.

    1.3 Технические условия изготовления изделия.

    Общие положения.

    Металлоконструкции грузоподъемных кранов должны изготовляться в соответствии с требованиями «Правил устройства и безопасной эксплуатации грузоподъемных кранов» (Г1Б-10-14-92) и конструкторско-технологической документацией, разработанной и утвержденной в установленном порядке.

    Элементы металлоконструкций кранов должны быть изготовлены из сталей, марки и категории которых должны соответствовать РД 24.090.97- 98.

    Соответствие применяемых марок сталей требованиям стандартов или технических условий должно подтверждаться сертификатами заводов- изготовителей.

    Прокат из конструкционных сталей, используемый для изготовления сварных металлоконструкций кранов, при поступлении па склад должен быть подвергнут входному контролю.

    Перед подачей в производство металлопрокат должен быть очищен от загрязнений, просушен и выправлен.

    Вырезка заготовок элементов металлоконструкций из проката допускается любым промышленным способом резки, в соответствии с конструкторской документацией.

    Поверхность реза несущих и вспомогательных элементов металлоконструкций, подлежащих сварке, после термической резки должна быть очищена от грата, шлака и брызг.

    Сборка и подготовка металлоконструкций к сварке.

    Сборка стальных конструкций при изготовлении должна производиться на стендах или в условиях, исключающих возможность смещения свариваемых кромок и деформации собираемых сборочных единиц и конструкций.

    В металлоконструкциях коробчатого сечения стыки поясов должны быть смещены относительно стыков стенок не менее, чем на 150 мм, а при наличии диафрагм, стыки поясов и стенок должны отстоять от нее на расстоянии не меньше, чем 50 мм.

    Для выполнения стыковых сварных соединений должны быть предусмотрены выводные технологические планки. Размеры выводных планок должны быть:

    - длина не менее 100 мм;

    - ширина не менее 60 мм;

    - толщина, равная толщине свариваемых элементов.

    Допускается смещение свариваемых кромок элементов в плоскости перпендикулярной оси шва в стыковых соединениях, не более:

    - для элементов толщиной до 4,0 мм включительно - 0,5 мм;

    - для элементов толщиной свыше 4,0 до 10 мм включительно - 1,0 мм;

    - для элементов толщиной свыше 10,0 мм — 0,1S мм, (S - толщина

    элемента), но не более 3 мм.

    Длина прихваток на несущих элементах (сборочных единицах) металлоконструкции должна быть не менее 30 мм. Размер прихваток по высоте выполнять не менее 0,75К (К - катет шва или толщина элементов свариваемых встык).

    Прихватки при сборке перед сваркой, накладываемые на расчетные элементы металлоконструкций должны выполнять сварщики, имеющие удостоверение на право производства указанных работ.

    Сварка металлоконструкций.

    Сварку металлоконструкций при изготовлении необходимо производить в соответствии с требованиями технологического процесса, устанавливающего способ сварки, порядок положения швов, режимы сварки.

    Перед сваркой необходимо очистить сварочную проволоку от грязи и ржавчины. Электроды и флюс просушить и прокалить по режимам, указанным в паспортах на эти материалы.

    К выполнению работ по сварке несущих металлоконструкций должны допускаться только сварщики, аттестованные в соответствии с требованиями. С правилами аттестации си специалистов сварочного производства знакомят через ПБ 03-273-99.

    Сварщик обязан проставлять присвоенный ему номер или условный знак (клеймо) рядом с выполненным им швом. Место клеймения и способ нанесения указываются в конструкторской документации.

    Сварка деталей или сборочных единиц должна производиться только после проверки правильности их установки, сборки (контроль ОГК, БТК).

    При многослойной сварке каждый слой шва должен быть перед наложением последующего слоя очищен от шлака и брызг металла. Участки слоев шва с порами и недопустимыми дефектами (раковинами и трещинами) должны быть вырублены до чистого металла. Перед наложением шва с обратной стороны стыкового соединения при ручной подварке и двухсторонней сварке корень шва должен быть вырублен (или выплавлен) и очищен от шлака до чистого металла. Не разрешается зажигать дугу на основном металле вне границ шва, а также выводить кратер на основной металл. При перерыве процесса сварки, возобновлять его разрешается только после очистки концевого участка шва длиной не менее 50 мм и кратера от шлака. Кратер должен быть заплавлен (заварен). По окончании сварки швы и прилегающие к ним зоны, должны быть зачищены от шлака, брызг и натеков металла, а выводные планки удалены термической резкой. Ширина зоны очистки устанавливается технологическим процессом, но не менее 20 мм по обе стороны от оси шва.

    Контроль качества сварных соединений:

    - внешним осмотром и замерами швов;

    - радиографическим;

    - ультразвуковым;

    - другими методами неразрушающего контроля, обеспечивающими выявляемость дефектов в объемах и по размерам, согласованными с головной организацией по краностроению;

    - механическими испытаниями.

    Заключение о качестве сварных соединений при изготовлении, ремонте и реконструкции металлоконструкций грузоподъемных кранов выдает подразделение неразрушающего контроля предприятия-изготовителя или независимая лаборатория неразрушающего контроля, аттестованные и имеющие соответствующие лицензии Ростехнадзора России.

    Внешний осмотр.

    Вчычнешнему осмотру должны подвергаться 100% сварных

    соединений. Форма и размеры сварных швов должны соответствовать требованиям соответствующих стандартов, чертежам.

    Недопустимыми дефектами сварных соединений и швов, выявленными внешним осмотром являются:

    - трещины всех размеров и направлений;

    - местные наплывы общей длиной более 10 мм на участке шва 1000 мм;

    - подрезы глубиной более 0,5 мм при толщине наиболее тонкого из свариваемых элементов до 20 мм включительно;

    - подрезы глубиной более 3% толщины наиболее тонкого из свариваемых элементов, при его толщине свыше 20 мм;

    - поры в количестве более 4 штук на длине шва 100 мм, при этом максимальный размер пор не должен быть более 1,0 мм, при толщине свариваемых элементов до 8,0 мм включительно, и более 1,5 мм при толщине свариваемых элементов свыше 8,0 мм до 50,0 м включительно;

    - скопление пор в количестве более 5 штук на 1 см2 площади шва, при этом максимальный размер любой из пор не должен быть более 1 мм;

    - незаваренные кратеры;

    - прожоги и свищи.

    В стыковых сварных соединениях разность высот гребешка и впадины поверхности шва в любом сечении по его длине не должна быть более допуска на выпуклость шва. Частота чередования гребешков и впадин на единицу длины шва не регламентируется.

    В угловых швах разность высот гребешка и впадины, замеренных по толщине шва, в любом месте его длины, не должна быть более 0,7Е (Е - допуск на катет углового шва). Частота гребешков и впадин на единицу углового шва не регламентируется.

    Радиографический контроль.

    Контроль радиографический выполняется в соответствии с требованиями ГОСТ 7512, РД РОСЭК-002-96. «Правил устройства и безопасной эксплуатации грузоподъемных кранов» (ПБ-10-14-94)

    Радиографическому методу контроля должны подвергаться стыковые сварные соединения несущих (расчетных) элементов

    радиографический метод контроля применяется с целью выявления внутренних дефектов сварного соединения (шва), при этом:

    - за размеры внутренних дефектов принимаются размеры их изображения на радиограммах;

    - за размер непроваров и трещин принимается их длина;

    - за размер пор, шлаковых включений: для сферических пор и включений - их длина, для удлиненных пор и включений - их длина и ширина.

    Радиографический контроль стыковых сварных соединений несущих (расчетных) элементов металлоконструкций проводится только после устранения дефектов, выполненных внешним осмотром, при этом:

    - обязательному контролю подвергаются начало и окончание сварных швов стыковых соединений поясов и стенок металлоконструкций коробчатого сечения;

    - на каждом стыке растянутого пояса коробчатой или решетчатой металлоконструкции суммарная длина радиограмм должна быть не менее 50% длины стыка;

    - на стыках сжатых поясов или сжатых участках стенок суммарная длина радиограмм должна быть не менее 25% длины стыка или сжатого участка

    - на каждом стыке конструкций стрел, хоботов и реечных коробок портальных кранов суммарная длина радиограмм должна быть не менее 75% длины стыка.

    Oi

    недопустимыми дефектами сварных швов, выявляемыми при радиографическом методе контроля

    - трещины и непровары;

    - дефекты (поры и шлаковые включения) размером или суммарной длиной больше допустимых;

    - скопление пор и шлаковых включений более 5 штук на 1 см2 площади шва (проекция шва на радиограмме), при этом максимальный размер любой из пор или любого шлакового включения не должна быть более 1,5 мм.

    Ультразвуковой контроль.

    Ультразвуковой контроль выполняется в соответствии с требованиями «Правила устройства и безопасной эксплуатации грузоподъёмных кранов», ГОСТ 14782, ГОСТ 20415, РД РОСЭК-001096.

    Ультразвуковой контроль стыковых сварных соединений несущих (расчётных) элементов металлоконструкций проводится только после устранения дефектов, выявленных внешним осмотром;

    Недопустимыми эффектами сварных стыковых соединений при УЗК являются:

    - трещины и непровары (как трещиноподобные) любой протяжённости;

    - поры, шлаковые включения или их скопления, характеристики которых или их количество превышают нормы.

    Контроль качества механическими испытаниями.

    Механическими испытаниями должны проверяться сварные соединения в соответствии с Правилами устройства и безопасной эксплуатации грузоподъёмных кранов Ростехнадзора России, а также конструкторско-технологической ремонтной документацией, установленной в утверждённом порядке, и данными РД.

    studfiles.net

    Сталь 09г2с

    Сталь 09г2с Сталь марки 09г2с является разновидностью конструкционной низколегированной стали. В отличие от высоколегированных сталей, процентное содержание легирующих добавок в которых свыше 10%, данный показатель для стали 09г2с составляет не более 2,5%. Аналогами стали 09г2с являются стали марок: 19Мn-6, 09г2, 10г2с, 09г2дт, 09г2т.

    Буквенное обозначение маркировки стали складывается в соответствии с ГОСТ 5058-65. Согласно настоящему стандарту, в химический состав стали 09г2с входит углерод в количестве 0,09% (цифры перед буквами говорят о % содержании углерода в стали), марганец («Г») в количестве 2% и менее 1% кремния («С»).

    Наиболее часто сталь марки 09г2с используют для изготовления сварных конструкций. Хорошие сварные свойства объясняются низким содержанием углерода (менее 0,25%) в сплаве.

    Сварка стали может осуществляться как при нагреве листа до температуры 100-120°С с последующей термообработкой, так и без нагрева и обработки. Увеличение содержания углерода приводит к образованию в сварных швах микропор при его выгорании и возникновению закалочной структуры, что, несомненно, приводит к ухудшению качества шва.

    Другим достоинством стали 09г2с является то, что сплав не склонен к отпускной хрупкости. Иначе говоря, вязкость стали не снижается после процедуры отпуска. Кроме того, она устойчива к образованию трещин и перегреву.

    Сваривая сталь марки 09г2с, когда толщина листов не превышает 40 мм, используют способ без разделки кромок. В этом случае осуществляется переход легирующих элементов из электрода в металл шва, обеспечивая прочность сварного шва. Каскадный метод применяют при многослойной сварке, используя токи 40-50А на 1 мм электрода толщиной 4-5мм, предупреждая перегрева стали. Более толстые листы рекомендуют сваривать многослойно, накладывая следующие слои через небольшие временные промежутки.

    Сваривая кромки различной толщины дуговой сваркой, большая часть дуги должна приходиться на более толстую кромку, по которой так же выбираются параметры тока. Увеличение твердости шва и устранение закалки устраняется нагревом изделия до 650°С с последующей его выдержкой при данной температуре. Средняя продолжительность такой выдержки составляет 1 час на каждые 25 мм толщины. Затем изделие необходимо охладить в горячей воде либо на воздухе.

    Сталь 09г2с широко распространена в самых различных областях промышленности. Благодаря высоким механическим свойствам, сплав востребован в строительстве. Конструкции, изготавливаемые из стали 09г2с экономичны по цене и достаточно легки по сравнению с аналогами, выпускаемыми из других сталей. Другим достоинством этой марки стали является широкий температурный диапазон (от -70°С до +450°С), при котором могут работать детали и механизмы, изготовленные из данного материала. Трубы 09г2с благодаря устойчивости к низким температурам используют в условиях крайнего севера для прокладки газо– и нефтепроводов. Также в нефтяной и химической промышленностях, машино- и судостроении пользуются спросом листовые конструкции, изготавливаемые из данного сплава.

    Подробнее о конструкционных сталях

    concernmetal.ru

    Сварка низколегированной стали | Сварка металлов

    Низколегированные стали сваривать труднее, чем низкоуглеродистые конструкционные. Низколегированная сталь более чувствительна к тепловым воздействиям при сварке. В зависимости от марки низколегированной стали при сварке могут образоваться закалочные структуры или перегрев в зоне термического влияния сварного соединения.

    Покрытые электроды и другие сварочные материалы при сварке низколегированных сталей подбираются такими, чтобы содержание углерода, серы, фосфора и вредных элементов в них было ниже по сравнению с материалами, предназначенными для сварки низкоуглеродистых конструкционных сталей. Этим самым удается увеличить стойкость металла шва против кристаллизационных трещин, так как низколегированные стали в значительной степени склонны к их образованию.

    Технология сварки

    Основы технологии сварки низколегированной стали. Низколегированные низкоуглеродистые стали 09Г2, 09Г2С,

    10ХСНД, 10Г2С1 и 10Г2Б при сварке покрытыми электродами не закаливаются и мало склонны к перегреву. Сварку этих сталей производят по технологии аналогичной технологии сварки низкоуглеродистой стали.

    Для обеспечения равнопрочности соединения ручную сварку выполняют электродами типов Э46А и Э50А. Твердость и прочность околошовной зоны практически не отличаются от основного металла.

    Режим сварки необходимо подбирать так, чтобы не было большого количества закалочных микроструктур и сильного (очень крупных в большом количестве зерен) перегрева металла. Тогда можно будет производить сварку стали любой толщины без ограничений при окружающей температуре не ниже минус 10°С. При более низкой температуре окружающего воздуха необходим предварительный подогрев до 120 - 150 °С. При температуре ниже минус 25 °С сварка изделий из закаливающихся сталей запрещается.

    Для обеспечения равнопрочности основного металла и сварного соединения при сварке сталей 15ХСНД и 14ХГС надо применять электроды типа Э50А или Э55.

    Технология сварки низколегированных среднеуглеродистых сталей 17ГС, 18Г2АФ, 35ХМ и других подобна технологии сварки среднелегированных сталей.

    www.svarkametallov.ru

    Сварка низколегированных сталей - Сварка различных металлов

    Сварка низколегированных сталей

    Категория:

    Сварка различных металлов

    Сварка низколегированных сталей

    Легированные стали подразделяются на низколегированные (легирующих элементов в сумме менее 2,5%), среднелегированные (от 2,5 до 10%) и высоколегированные (более 10%). Низколегированные стали делят на низколегированные низкоуглеродистые, низколегированные теплоустойчивые и низколегированные среднеугле-родистые.

    Содержание углерода в низколегированных низкоуглеродистых конструкционных сталях не превышает 0,22%- В зависимости от легирования стали подразделяют на марганцовистые (14Г, 14Г2), кремнемарганцовистые (09Г2С, 10Г2С1, 14ГС, 17ГС и др.), хромо-кремнемарганцовистые (14ХГС и др.), марганцовоазотнованадие-вые (14Г2АФ, 18Г2АФ, 18Г2АФпс и др.), марганцовониобиевая (10Г2Б), хромокремненикельмедистые (ЮХСНД, 15ХСНД) и т. д.

    Низколегированные низкоуглеродистые стали применяют в транспортном машиностроении, судостроении, гидротехническом строительстве, в производстве труб и др. Низколегированные стали поставляют по ГОСТ 19281—73 и 19282—73 и специальным техническим условиям.

    Низколегированные теплоустойчивые стали должны обладать повышенной прочностью при высоких температурах эксплуатации Наиболее широко теплоустойчивые стали применяют при изготовлении паровых энергетических установок. Для повышения жаропрочности в их состав вводят молибден (М), вольфрам (В) и ванадий (Ф), а для обеспечения жаростойкости — хром (X), образующий плотную защитную пленку на поверхности металла.

    Низколегированные сред-неуглеродистые (более 0,22% углерода) конструкционные стали применяют в машиностроении обычно в термо-обработанном состоянии. Технология сварки низколегированных среднеуглероди-стых сталей подобна технологии сварки среднелегиро-ванных сталей.

    Особенности сварки низ= колегированных сталей. Низколегированные стали сваривать труднее, чем низкоуглеродистые конструкционные. Низколегированная сталь более чувствительна к тепловым воздействиям при сварке. В зависимости от марки низколегированной стали при сварке могут образоваться закалочные структуры или перегрев в зоне термического влияния сварного соединения.

    Структура околошовного металла зависит от его химического состава, скорости охлаждения и длительности пребывания металла при соответствующих температурах, при которых происходит изменение микроструктуры и размера зерен. Если в доэвтектоид-ной стали получить нагревом аустенит (рис. 1), а затем сталь охлаждать с различной скоростью, то критические точки стали снижаются.

    При малой скорости охлаждения получают структуру перлит (механическая смесь феррита и цементита). При большой скорости охлаждения аустенит распадается на составляющие структуры при относительно низких температурах и образуются структуры — сорбит, троостит, бейнит и при очень высокой скорости охлаждения — мартенсит. Наиболее хрупкой структурой является мартенситная, поэтому не следует при охлаждении допускать превращения аустенита в мартенсит при сварке низколегированных сталей.

    Рис. 1. Диаграмма изотермического (при постоянной температуре) распада аустенита низкоуглеродистой стали: А — начало распада, Б — конец распада, Ai — критическая точка стали, Мн и Мк — начало и конец превращения аустенита в мартенсит; v2, v3 и vt — скорости охлаждения с образованием различных структур

    Скорость охлаждения стали, особенно большой толщины, при сварке всегда значительно превышает обычную скорость охлаждения металла на воздухе, вследствие чего при сварке легированных сталей возможно образование мартенсита.

    Для предупреждения образования при сварке закалочной мар-тенситной структуры необходимо применять меры, замедляющие охлаждение зоны термического влияния, — подогрев изделия и применение многослойной сварки.

    В некоторых случаях в зависимости от условий эксплуатации изделий допускают перегрев, т. е. укрупнение зерен в металле зоны термического влияния сварных соединений, выполненных из низколегированных сталей.

    При высоких температурах эксплуатации изделий для повышения сопротивления ползучести (деформирование изделия яри высоких температурах с течением времени) необходимо иметь крупнозернистую структуру и в сварном соединении. Но металл с очень крупным зерном обладает пониженной пластичностью и поэтому размер зерен допускается до известного предела.

    При эксплуатации изделий в условиях низких температур ползучесть исключается и необходима мелкозернистая структура металла, обеспечивающая увеличенную прочность и пластичность.

    Покрытые электроды и другие сварочные материалы при сварке низколегированных сталей подбираются такими, чтобы содержание углерода, серы, фосфора и других вредных элементов в них было ниже по сравнению с материалами для сварки низкоуглеродистых конструкционных сталей. Этим удается увеличить стойкость металла шва против кристаллизационных трещин, так как низколегированные стали в значительной степени склонны к их образованию.

    Технология сварки низколегированной стали. Низколегированные низкоуглеродистые стали 09Г2, 09Г2С, 10ХСНД, 10Г2С1 и 10Г2Б при сварке не закаливаются и не склонны к перегреву. Сварку этих сталей производят при любом тепловом режиме, аналогично режиму сварки низкоуглеродистой стали.

    Для обеспечения равнопрочности соединения ручную сварку выполняют электродами типа Э50А. Твердость и прочность околошовной зоны практически не отличаются от основного металла.

    Сварочные материалы при сварке порошковой проволокой и в защитном газе подбирают такими, чтобы обеспечить прочностные свойства металлу шва на уровне прочности, достигаемой электродами типа Э50А.

    Низколегированные низкоуглеродистые стали 12ГС, 14Г, 14Г2 14ХГС, 15ХСНД, 15Г2Ф, 15Г2СФ, 15Г2АФ при сварке могут образовывать закалочные микроструктуры и перегрев металла шва и зоны термического влияния. Количество закаливающихся структур резко уменьшается, если сварка выполняется с относительно большой погонной энергией, необходимой для уменьшения скорости охлаждения сварного соединения. Однако снижение скорости охлаждения металла при сварке приводит к укрупнению зерен (перегреву) металла шва и околошовного металла вследствие повышенного содержания углерода в этих сталях. Это особенно касается сталей 15ХСНД, 14ХГС. Стали 15Г2Ф, 15Г2СФ и 15Г2АФ менее склонны к перегреву в околошовной зоне, так как они легированы ванадием и азотом. Поэтому сварка большинства указанных сталей ограничивается более узкими пределами тепловых режимов, чем сварка низкоуглеродистой стали.

    Режим сварки необходимо подбирать так, чтобы не было большого количества закалочных микроструктур и сильного перегрева металла. Тогда можно производить сварку стали любой толщины без ограничений при окружающей температуре не ниже —10 °С. При более низкой температуре необходим предварительный подогрев до 120—150 °С. При температуре ниже —25 °С сварка изделий из закаливающихся сталей запрещается. Для предупреждения большого перегрева сварку сталей 15ХСНД и 14ХГС следует проводить на пониженной погонной тепловой энергии (при пониженных значениях тока электродами меньшего диаметра) по сравнению со сваркой низкоуглеродистой стали.

    Для обеспечения равнопрочности основного металла и сварного соединения при сварке этих сталей надо применять электроды типа Э50А или Э55.

    Технология сварки низколегированных среднеуглеродистых сталей 17ГС, 18Г2АФ, 35ХМ и других подобна технологии сварки среднелегированных сталей.

    Читать далее:

    Сварка среднелегированных сталей

    Статьи по теме:

    pereosnastka.ru