Инструментальная штамповая сталь. Сталь штамповая


    Штамповые стали

    Для обработки металлов давлением применяют инструменты штампы, пуансоны, ролики, валики и т. д., деформирующие металл. Стали, применяемые для изготовления инструмента такого рода, называют штамповыми сталями (по виду наиболее распространенного инструмента).

    Штамповые стали делятся на две группы: деформирующие металл в холодном состоянии и деформирующие металл в горячем состоянии. Условия работы стали при различных видах штамповки сильно различаются между собой.

    Для штамповки в холодном состоянии сталь, из которой изготавливают штампы, обычно должна обладать высокой твердостью, обеспечивающей устойчивость стали против истирания, хотя и вязкость, особенно для пуансонов, имеет также первостепенное значение. Сталь для "горячих штампов" должна иметь как можно меньшую чувствительность к местным нагревам. В недостаточно вязкой (пластичной) стали, например в плохо отпущенной, местный нагрев может привести к образованию трещин.

    Из углеродистой стали марок У10, У11, У12 изготавливают штампы небольших размеров и простой конфигурации; ввиду неглубокой прокаливаемости их следует применять для относительно легких условий работы (малая степень деформации, невысокая твердость штампуемого материала).

    Для более сложных конфигураций штампов и более тяжелых условий работы применяют легированные закаливаемые в масле (глубоко прокаливающиеся) стали- чаще всего сталь Х (ШХ15).

    При относительно легких условиях работы (легкие удары, малая деформация металла, например ручные клейма, ручные зубила) применяют углеродистую сталь У7, У8. У9. Необходимая твердость (HRC 58) получается путем закалки и отпуска при 250-350°С. Необходимую высокую твердость стали типа XI2 можно получить, закаливая ее от высоких температур (1150°С) в масле и получая, следовательно, большое количество остаточного аустенита, а затем путем обработки холодом и отпуска добиваться разложения остаточного аустенита и получать высокую твердость HRC 60). Переходим теперь к рассмотрению сталей, применяемых для изготовления горячих штампов, деформирующих металл в горячем состоянии. Металл, применяемый для горячих штампов, должен иметь определенный комплекс свойств:

    ЖАРОПРОЧНОСТЬ. Металл горячих штампов должен обладать высоким пределом текучести и высоким сопротивлением износу при высоких температурах, чтобы замедлить процессы истирания и деформирования элементов фигуры штампа, разогревающихся от соприкосновения с горячим металлом.

    КРАСНОСТОЙКОСТЬ. Высокие жаропрочные свойства не должны снижаться под длительным воздействием температуры, металл горячих штампов должен устойчиво сопротивляться отпуску.

    ТЕРМОСТОЙКОСТЬ. Циклический нагрев и охлаждение поверхности штампа во время работы и, следовательно, чередующееся расширение и сжатие поверхностных слоев приводят к появлению так называемых разгарных трещин. Материал штампа должен обладать высокой разгаростойкостью или, как чаще называют, термостойкостью или высоким сопротивлением термической усталости.

    ВЯЗКОСТЬ. Деформирование металла при штамповке сопровождается ударными воздействиями этого металла на штампы, поэтому металл штампов должен обладать известной вязкостью- особенно при штамповке на молотах, когда приходится достигать нужного повышения вязкости даже за счет некоторого снижения жаропрочности.

    ПРОКАЛИВАЕМОСТЬ. Многие штампы имеют весьма большие размеры (например, кубики ковочных штампов имеют размеры 500х500х1000 мм и т. п.). Для получения хороших свойств по всему сечению, в частности достаточной вязкости, сталь штампов должна глубоко прокаливаться.

    ОТПУСКНАЯ ХРУПКОСТЬ. Сталь должна быть минимальна чувствительной к этому пороку.

    СЛИПАЕМОСТЬ. При значительном давлении горячий металл может как бы прилипать к металлу штампа (явление адгезии), и когда штампуемое изделие отдирается от штампа, то оно всякий раз частично разрушает его поверхность. Это явление разрушения будет тем сильнее выражено, чем сильнее адгезионное взаимодействие штампуемого металла и металла штампа. Поэтому подобное взаимодействие штамповой стали с металлом изделия должно быть минимальным.

    Для штампов, работающих в легких условиях, применяют углеродистые стали с содержанием углерода от 0, 6 до 1, 0%, т.е. стали марок У7, У8, У9. Наибольшее применение при изготовлении штампов имеет сталь У7.

    В современных условиях углеродистая сталь мало применима для штампов, так как штамповку проводят с большой интенсивностью, и штампы из углеродистой стали не будут обладать достаточной стойкостью в работе.

    Для более тяжелых условий работы применяют легированные стали. Типичной наиболее распространенной и, пожалуй, наилучшей из указанных является сталь 5ХНМ. Остальные представляют собой стализаменители, в которых никель (или молибден) заменен другими элементами, что несколько ухудшает качество.

    studfiles.net

    Штамповые стали. Сталь инструментальная штамповая. Стали для штампов холодного деформирования. Стали для штампов горячего деформирования.

    Инструмент, применяемый для обработки металлов давлением (штампы, пуансоны, матрицы) изготавливают из штамповых сталей. Различают стали для штампов холодного и горячего деформирования.

    Шарикоподшипниковые стали. Шарикоподшипниковые марки стали.Пружинные стали. Рессорно-пружинные стали. Пружинная сталь свойства. Релаксация напряжений.

    Стали для штампов холодного деформирования

    Стали должны обладать высокой твердостью, износостойкостью, прочностью, вязкостью (чтобы воспринимать ударные нагрузки), сопротивлением пластическим деформациям.

    Для штампов небольших размеров (до 25 мм) используют углеродистые инструментальные стали У10, У11, У12 после закалки и низкого отпуска на твердость 57…59 HRC. Это позволяет получить хорошую износостойкость и ударную вязкость.

    Для более крупных изделий применяют легированные стали Х, Х9, Х6ВФ. Для повышения износостойкости инструмента после термической обработки проводят цианирование или хромирование рабочих поверхностей.

    Для уменьшения брака при закалке необходимо медленное охлаждение в области температур мартенситного превращения (например, закалка из воды в масло для углеродистых сталей, ступенчатая закалка для легированных сталей).

    Если штамповый инструмент испытывает ударные нагрузки, то используют стали, обладающие большей вязкостью (стали 4ХС4, 5ХНМ). Это достигается снижением содержания углерода, введением легирующих элементов и соответствующей термической обработкой. После закалки проводят высокий отпуск при температуре 480…580oС, что обеспечивает твердость 38…45 HRC.

    Стали для штампов горячего деформирования

    Дополнительно к общим требованиям, от сталей этой группы требуется устойчивость против образования трещин при многократном нагреве и охлаждении, окалиностойкость, высокая теплопроводность для отвода теплоты от рабочих поверхностей штампа, высокая прокаливаемость для обеспечения высокой прочности по всему сечению инструмента.

    Для изготовления молотовых штампов применяют хромоникелевые среднеуглеродистые стали 5ХНМ, 5ХНВ, 4ХСМФ. Вольфрам и молибден добавляют для снижения склонности к отпускной хрупкости. После термической обработки, включающей закалку с температуры 760…820oС и отпуск при 460…540oС, сталь имеет структуру – сорбит или троостит и сорбит отпуска. Твердость 40…45 HRC.

    Штампы горячего прессования работают в более тяжелых условиях. Для их изготовления применяются стали повышенной теплостойкости. Сталь 3Х2В8Ф сохраняет теплостойкость до 650oС, но наличие карбидов вольфрама снижает вязкость. Сталь 4Х5В2ФС имеет высокую вязкость. Повышенное содержание хрома и кремния значительно увеличивает окалиностойкость стали.

    www.mtomd.info

    ШТАМПОВЫЕ СТАЛИ

    Для обработки металлов давлением применяют инструменты— штампы, пуансоны, ролики, валики и т. д., деформирующие металл. Стали, применяемые для изготовления инструмента такого рода, называют штамповыми сталями (по виду наиболее распространенного инструмента).Штамповые стали делятся на две группы:

    • деформирующие металл в холодном состоянии
    • деформирующие металл в горячем состоянии.

     

    Условия работы стали при различных видах штамповки сильно различаются между собой.При штамповке в горячем состоянии штампуемый металл под действием сближающихся половинок штампа деформируется и заполняет внутреннюю полость штампа. В работе внутренняя полость штампа («фигура»), которая деформирует металл, соприкасается с нагретым металлом, поэтому штамповал сталь для горячей штамповки должна обладать не только определенными механическими свойствами в холодном состоянии, но и достаточно высокими механическими свойствами в нагретом состоянии. Особенно желательно иметь высокий предел текучести (упругости), чтобы при высоких давлениях штамп не деформировался. Для кузнечных штампов большое значение имеет и вязкость, чтобы штамп не разрушился во время работы при ударах по деформируемому металлу. Устойчивость против износа во всех случаях очень важна, так как она обеспечивает сохранение размеров «фигуры» — долговечность работы штампа.Для прессового инструмента, работающего без ударов, большое значение имеет износостойкость в горячем состоянии и относительно меньшее — вязкость. Поэтому для молотовых штампов и для прессового инструмента применяют стали различных марок.Для штамповки в холодном состоянии сталь, из которой из­готавливают штампы, обычно должна обладать высокой твердостью, обеспечивающей устойчивость стали против истирания, хотя и вязкость, особенно для пуансонов, имеет также первостепенное значение.Сталь для «горячих штампов» должна иметь как можно меньшую чувствительность к местным нагревам. В недостаточно вязкой (пластичной) стали, например в плохо отпущенной, местный нагрев может привести к образованию трещин.Еще в более тяжелых условиях работы находится сталь и штампах (прессформах) для литья под давлением. Нагрев рабочей поверхности формы расплавленным металлом и охлаждение водой внутренних частей формы вызывают значительные тепловые напряжения. Сталь, применяемая для прессформ, должна быть также достаточно износостойкой, иметь высокие механические свойства в нагретом состоянии и хорошо сопротивляться разъеданию поверхности формы расплавленным металлом.

    Стали для штампов холодного деформирования

    Стали этого типа должны обладать высокой твердостью и износостойкостью, высокой прочностью и удовлетворительной вязкостью для работы при ударных нагрузках.

    В зависимости от назначения различают три группы штамповых сталей для деформирования в холодном состоянии.К первой группе относятся стали для вытяжных и вырубных штампов. Основным требованием к этим сталям является высокая твердость и износостойкость. Для изготовления штампов этого типа применяют углеродистые стали марок У10—У12 и низколегированные стали X, ХВГ, ХВСГ. После неполной закалки их отпускают при 150—180 °С на твердость НКС 60. На поверхности образуется твердый износостойкий слой за счет несквозной прокаливаемости — сравнительно вязкая сердцевина, позволяющая работать при умеренных ударных нагрузках.

    Стали с повышенным содержанием хрома {6—32 %) (Х6ВФ, XI2, Х12М, Х12Ф1) имеют более высокую износостойкость и глубокую прокаливаемость. Высокая твердость этих сталей достигается благодаря присутствию в структуре большого количества карбидов хрома Сг7С3. Однако повышенное содержание карбидов хрома приводит к росту карбидной неоднородности. Структура и свойства высокохромистых сталей в значительной мере определяются правильным выбором режима термической обработки, особенно температуры закалки. С ее увеличением возрастает концентрация углерода и хрома в аустените, что приводит к повышению твердости мартенсита. Однако при закалке с чрезмерно высокой температуры в структуре увеличивается содержание остаточного аустенита и твердость стали падает. После закалки обычно проводят низкий отпуск на твердость НКС 61—63.Хорошо зарекомендовали себя стали Х12Ф4М, Х6Ф4М. Молибден и ванадий, дополнительно введенные в состав, способствуют получению мелкозернистой структуры. Износостойкость штампов из стали Х12Ф4М в 1,5—2 раза выше по сравнению со штампами из стали Х12М.

    Вторую группу составляют стали для штампов холодного выдавливания, испытывающие большие удельные давления. Эти стали должны хорошо сопротивляться деформации и иметь высокую прочность. Присутствие в их структуре остаточного аустенита недопустимо. Для этого необходимо проведение высокого отпуска при температуре не менее 500 °С. Поэтому, хотя эти стали и относятся к сталям для штампов холодного деформирования, они должны иметь довольно высокую теплостойкость. Этим требованиям удовлетворяет сталь 6Х4М2ФС.

    К третьей группе относятся стали для высадочных и чеканочных штампов, работающих при высоких ударных нагрузках. Сложность создания таких сталей состоит в том, что для повышения твердости необходимо увеличение содержания углерода, что может приводить к снижению ударной вязкости. Обычно для штампов этого назначения используют сталь 7X3. Более высокую стойкость показала сталь марки 6ХЗФС.

    Стали для штампов горячего деформирования

    В еще более тяжелых условиях работают штамповые инструменты для горячего формообразования. Материал штампов соприкасается с горячим металлом и нагревается, причем нагрев чередуется с охлаждением. Эффективность использования таких прогрессивных методов точного формообразования, как горячая объемная штамповка, прессование и литье под давлением, зависит от стойкости инструмента. С расширением номенклатуры обрабатываемых сплавов, увеличением производительности и мощности оборудования формообразующий инструмент испытывает возрастающие нагрузки. Требования к материалу инструмента непрерывно растут.

    Материал для горячих штампов должен удовлетворять комплексу требований. К ним в первую очередь относятся высокая прочность (не менее 1000 МПа), необходимая для сохранения формы штампа при высоких удельных давлениях во время деформирования, и высокая теплостойкость, позволяющая сохранить высокие твердость и прочностные свойства при длительном температурном воздействии. В рабочих условиях штамп должен деформировать заготовку, а не наоборот — заготовка деформировать штамп. Стали должны иметь достаточную вязкость для предупреждения поломок при ударном нагружении. Они должны обладать высоким сопротивлением термической усталости (разгаростойкости), сохраняя способность выдерживать многократные нагревы и охлаждения без образования сетки трещин. Горячештамповые стали должны иметь хорошую окалиностойкость и высокую прокаливаемость для обеспечения необходимых механических свойств по всему сечению, что особенно важно для массивных штампов.

    В соответствии с указанными требованиями для штампов горячего формообразования применяют легированные стали, содержащие 0,3—0,6 % углерода, подвергаемые закалке и отпуску при 550—680 °С с целью получения трооститной и трооститно-сорбитной структуры.

    Для молотовых штампов применяют сталь 5ХНМ и ее аналоги: 5ХНВ, 5ХНТ, 5ХГМ. После закалки и отпуска при 550 °С сталь 5ХНМ при комнатной температуре имеет следующие механические свойства: ав = 1200^1300 МПа, 6= 10—12%, КСЦ = = 0,4 МДж/м2. При нагреве до 500 °С ав = 850-=-900 МПа, оп,3 = 600-5-650 МПа. При температурах эксплуатации выше 500 °С стойкость инструмента из стали 5ХНМ резко падает.

    Хорошо зарекомендовали себя на автотракторных машиностроительных заводах стали 4ХМФС, 5Х2СФ и 4ХСНМФЦР. Внедрение этих сталей взамен 5ХНМ для штамповки углеродистых и низколегированных сталей позволило повысить стойкость инструмента в 2—3 раза. Для изготовления крупногабаритных прессовых и молотовых штампов применяют сталь 5Х2НМФС, обеспечивающую повышение стойкости более чем в 2 раза.

    Для пресс-форм литья под давлением и прессования цветных металлов и сплавов до последнего времени использовали сталь ЗХ2В8Ф. Ее недостатком является низкая технологичность, что ограничивает возможность ее применения для крупного инструмента. Кроме того, сталь ЗХ2В8Ф чувствительна к ударным нагрузкам и содержит значительные количества дорогого и дефицитного вольфрама.

    Взамен этой стали предложена сталь марки ЗХ2М2Ф, используемая для изготовления пресс-форм литья под давлением медных и алюминиевых сплавов, а также для изготовления пресс-шайб и внутренних втулок контейнеров при прессовании медных сплавов. Применение стали ЗХ2М2Ф позволило повысить стойкость инструмента в 1,5—3 раза.

    Для изготовления крупного прессового инструмента — пресс-штемпелей, втулок контейнеров и матриц на заводах цветной металлургии применяют стали ЗХВ4СФ и 4ХСН2МВФ.

    Прогресс техники требует расширения рабочего температурного диапазона штамповых сталей. Уже сейчас нужны стали с рабочей температурой 700—800 °С. Обычные жаропрочные сплавы нетехнологичны, так как плохо обрабатываются резанием. Разработан принципиально новый класс штамповых сталей для горячего формообразования — сталей с регулируемым аустенитным превращением при эксплуатации. Примером такой стали является 4Х2Н5МЗК5Ф, сочетающая технологические преимущества сталей на ферритной основе с высокой эксплуатационной стойкостью, свойственной жаропрочным аустенитным сталям и сплавам. Внедрение этой стали взамен стали ЗХ2В8Ф при изготовлении матриц для прессования медных сплавов позволило повысить их стойкость в 10 раз.

    Для увеличения твердости при высоких температурах используют химико-термическую обработку: азотирование, диффузионное хромирование, борирование. На поверхность гравюры штампа из газовой фазы проводят осаждение карбидов титана, имеющих особо высокую твердость.

    aliansmetall.ru

    Инструментальная штамповая сталь

    Изобретение относится к металлургии, а именно к разработке инструментальной штамповой стали для штампов холодного деформирования повышенной производительности и технологического оборудования. Предложена инструментальная штамповая сталь, содержащая углерод, хром, вольфрам, молибден, ванадий, кобальт, марганец, кремний, никель, алюминий, серу, железо. Изобретение направлено на повышение твердости, теплостойкости, износостойкости, обрабатываемости резанием и шлифуемости без ухудшения свариваемости, термообрабатываемости. Высокие показатели износостойкости, обрабатываемости резанием и шлифуемости инструментальной штамповой стали обеспечиваются защитными сульфидными пленками, образующимися на рабочих поверхностях изделий (штампов, технологического оборудования) в процессе эксплуатации благодаря комплексному легированию стали серой, молибденом и кобальтом при определенном соотношении компонентов. Высокие значения твердости и теплостойкости стали достигаются за счет дисперсионного упрочнения при легировании кобальтом и молибденом. 10 табл.

     

    Изобретение относится к металлургии, а именно к разработке инструментальной штамповой стали для штампов холодного деформирования повышенной производительности и технологического оборудования.

    Известна инструментальная штамповая сталь Х6ВФ ГОСТ 5950-73. Сортовой прокат. [Марочник сталей и сплавов / Под ред. В.Г.Сорокина // М.: Машиностроение, 1989. С.384] следующего химического состава:

    Углерод1,05-1,15
    Хром5,5-6,5
    Вольфрам1,1-1,5
    Молибден0,01-0,3
    Ванадий0,5-0,8
    Марганец0,15-0,40
    Кремний0,15-0,35
    Никель0,01-0,35
    Фосфор0,001-0,03
    Сера0,001-0,03
    Медь0,001-0,3

    Известна другая инструментальная штамповая сталь Х12Ф1 ГОСТ 5950-73. Сортовой прокат. [Марочник сталей и сплавов / Под ред. В.Г.Сорокина // М.: Машиностроение, 1989. С.388] следующего химического состава:

    Углерод1,25-1,45
    Хром11,0-12,5
    Ванадий0,7-0,9
    Марганец0,15-0,40
    Кремний0,15-0,35
    Никель0,01-0,35
    Фосфор0,001-0,03
    Сера0,001-0,03
    Медь0,001-0,3

    Известные стали после термической обработки: закалка + отпуск имеют высокую прочность и удовлетворительную вязкость и используются для изготовления инструментов холодной обработки давлением [Геллер Ю.А. Инструментальные стали /М.: Металлургия, 1983. С.298], [Материаловедение /Под ред. Б.Н.Арзамасова, Г.Г.Мухина, МГТУ им. Н.Э.Баумана, 2002, с.624-627].

    Однако указанные стали обладают недостаточно высокой износостойкостью. Стали характеризуются низкой теплостойкостью. Известные стали не применяются для сварных конструкций [Марочник сталей и сплавов / Под ред. В.Г.Сорокина // М.: Машиностроение, 1989. С.386, 389].

    Стали имеют недостаточно высокие характеристики шлифуемости из-за наличия аустенита в структуре. Например, шлифуемость стали Х6ВФ ГОСТ 5950-73 при HRC 57-59 - удовлетворительная, при HRC 59-61 - пониженная, а при HRC 63-65 - низкая. Шлифуемость стали Х12Ф1 ГОСТ 5950-73 - удовлетворительная [Марочник сталей и сплавов /Под ред. В.Г.Сорокина // М.: Машиностроение, 1989]. В результате процесс характеризуется низкой производительностью съема стали без перегрева. Возможно образование дефектов: прижогов, сетки трещин.

    Обрабатываемость резанием невысокая: у стали Х6ВФ при НВ 229 Кϑтв.спл=0,9, Kϑб.ст.=0,5, а у стали Х12Ф1 при НВ 217-228: Кϑтв.спл=0,8, Кϑб.ст.=0,3.

    Наиболее близкой к предлагаемой инструментальной штамповой стали является инструментальная сталь [ЕР 1072691, МПК С 22 С 38/22, С 22 С 38/24. Tool steel with excellent workability, machinability and heat treatment characteristics, and die using same / Hitachi Metals], принятая за прототип.

    Сталь имеет следующий химический состав, мас.%:

    Углерод0,55-0,75
    Хром6,8-8,0
    Молибден0,4-0,83
    Вольфрам0,2-0,42
    Ванадий0,01-0,5
    Марганец0,1-1,2
    Кремний1,0-0,6
    Никель0,01-0,4
    Алюминий0,01-0,6
    Кальций0,00001-0,0001
    Сера0,001-0,12
    ЖелезоОстальное

    Сталь отличается хорошей свариваемостью, обрабатываемостью при деформации и термообрабатываемостью без ухудшения механических свойств.

    Однако известная сталь имеет низкую твердость (после термической обработки ≥57 HRC), недостаточно высокую теплостойкость (HRC57 уже при 500°С) и сравнительно низкую износостойкость. Кроме того, желательно дополнительное повышение технологических свойств: обрабатываемости резанием и шлифуемости.

    Технической задачей настоящего изобретения является создание инструментальной штамповой стали с высокой твердостью, теплостойкостью, износостойкостью, обрабатываемостью резанием и шлифуемостью, обеспечивающей высокую надежность изделий, выполняемых из этой стали.

    Для достижения поставленной задачи предложена инструментальная штамповая сталь, содержащая углерод, хром, вольфрам, молибден, ванадий, марганец, кремний, никель, алюминий, серу, железо, в которой согласно изобретению она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:

    Углерод0,75-0,9
    Хром6,8-8,0
    Вольфрам1,1-1,5
    Молибден5,0-6,0
    Ванадий0,01-0,5
    Кобальт5,0-6,0
    Марганец0,1-1,2
    Кремний0,1-0,6
    Никель0,01-0,4
    Алюминий0,01-0,6
    Сера0,15-0,35
    ЖелезоОстальное

    Подобранное соотношение компонентов позволяет получить стабильную мелкодисперсную структуру стали (балл зерна 10-11) с высокими технологическими и эксплуатационными характеристиками.

    Содержание углерода в указанном интервале (0,75-0,9%) обеспечивает высокую вторичную твердость, теплостойкость и износостойкость стали. Сталь при нагреве под закалку получает аустенит, богатый углеродом, что усиливает эффект дисперсионного твердения при отпуске, повышая вторичную твердость и несколько меньше теплостойкость. Износостойкость возрастает в результате повышения твердости отпущенного мартенсита. Содержание углерода ниже указанного предела снижает твердость, теплостойкость и износостойкость. Содержание углерода больше верхнего предела может привести к снижению прочности и вязкости стали (из-за роста размеров карбидных частиц и ухудшения условий их распределения), что дополнительно усиливается влиянием масштабного фактора.

    Содержание хрома (6,8-8,0%) необходимо для обеспечения прокаливаемости стали. Содержание хрома ниже указанного нижнего предела ухудшает технологичность стали при термической обработке. Содержание хрома больше указанного верхнего предела снижает прочность и вязкость стали из-за ухудшения условий распределения карбидов.

    Вольфрам в интервале 1,1-1,5% (на порядок выше, чем у прототипа), как карбидообразующий элемент, обеспечивает высокую твердость, теплостойкость и износостойкость стали. Содержание ниже указанного интервала снижает отмеченные свойства стали. Содержание вольфрама больше указанного верхнего предела неэффективно с точки зрения рационального легирования вольфрамомолибденовых сталей.

    Приведенная концентрация молибдена 5,0-6,0% (на порядок по сравнению с прототипом) и наличие кобальта (5,0-6,0%) необходимы для связывания серы в мелкодисперсные, равномерно распределенные сульфиды глобулярной формы с целью предупреждения химической неоднородности и ликваций. Сульфиды являются "масленками", образуя защитные смазывающие пленки на поверхности контакта изделия с обрабатываемым металлом. Образование сульфидных пленок улучшает шлифуемость стали: повышается чистота поверхности, снижается чувствительность к образованию шлифовочных трещин даже при наличии аустенита в структуре стали. Улучшается обрабатываемость резанием. Появляется возможность дополнительного увеличения режимов обработки шлифованием и резанием. Кроме того, введение кобальта и молибдена в количестве 5,0-6,0% создает дисперсионное упрочнение стали, повышая твердость, теплостойкость и износостойкость. Минимальное содержание молибдена и кобальта определено степенью эффективности воздействия элементов. Содержание кобальта больше указанного верхнего предела снижает прочность и вязкость стали. Ухудшаются технологические свойства: шлифуемость и обрабатываемость резанием. Содержание молибдена выше указанного верхнего предела может вызвать технологические дефекты стали: чувствительность к обезуглероживанию при отжиге и закалке, чувствительность к излишнему росту зерна (разнозернистости в отдельных участках микроструктуры) при нагреве под закалку, что ухудшает механические свойства стали.

    Ванадий (0,01-0,5%) повышает твердость, теплостойкость, износостойкость стали за счет усиления эффекта дисперсионного твердения при отпуске. Превышение указанного верхнего предела нерационально с точки зрения эффективности легирования.

    Марганец (0,1-1,2%) способствует повышению твердости стали. Содержание больше указанного верхнего предела ухудшает свариваемость стали.

    Кремний по нижней границе указанного интервала (0,1-0,6%) необходим как раскислитель для улучшения свариваемости. В указанных пределах повышает литейные свойства. Содержание кремния выше указанного предела ухудшает термообрабатываемость (изменение размеров изделия) вследствие образования цементитной фазы.

    Никель (0,01-0,4%) может вводиться для повышения обрабатываемости стали. При содержании никеля больше указанного верхнего предела возможно ухудшение ударной вязкости и свариваемости.

    Алюминий (0,01-0,6%) может вводиться как раскислитель для улучшения свариваемости стали. Содержание алюминия больше указанного верхнего предела снижает технологические свойства стали.

    Легирование серой в количестве 0,15-0,35%, что в три раза больше по верхнему пределу, чем у прототипа, обеспечивает надежное образование защитных сульфидных пленок на поверхности штампов в процессе эксплуатации. Пленки уменьшают адгезию инструментальной штамповой стали с обрабатываемым металлом, что способствует повышению износостойкости штампа. Нижний предел содержания серы ограничивается эффективностью ее воздействия как пленкообразующего элемента. Содержание серы больше указанного верхнего предела не дает значимого снижения адгезии в зоне контакта штамповой стали с обрабатываемым металлом и снижает прочностные и эксплуатационные характеристики изделия.

    Таким образом, использование предложенной стали позволит изготавливать штампы для холодного деформирования и технологическое оборудование повышенной надежности и производительности за счет повышения их эксплуатационных характеристик: твердости, теплостойкости и износостойкости. Улучшенные характеристики обрабатываемости резанием и шлифуемости стали позволят повысить технологичность и производительность процессов изготовления штампов. Хорошая свариваемость стали расширит технологические возможности изготовления, восстановления и упрочнения штампов и другого технологического оборудования за счет производства сварных конструкций и конструкций с наплавленной рабочей частью.

    Инструментальную штамповую сталь получали в лабораторных условиях электродуговой наплавкой порошковой проволоки в среде аргона на заготовки из стали 30ХГСА ГОСТ 4543-71. Основные параметры режима наплавки: I=180-200 А, U=24-25 В, υ=6-8 м/ч.

    Порошковая проволока представляла собой трубку с оболочкой из холоднокатаной ленты глубокой вытяжки 08Ю ГОСТ 503-81, заполненную порошками легирующих элементов (шихтой) в определенном соотношении компонентов. Состав шихты (наличие и соотношение компонентов) рассчитывался по имеющейся методике исходя из требуемого химического состава получаемой инструментальной штамповой стали. Диаметр порошковой проволоки d=2 мм, kз=0,48-0,50. Порошковые проволоки изготавливались на стане по малотоннажному производству порошковой проволоки в лабораторных условиях. В процессе наплавки при расплавлении порошковой проволоки (оболочки и шихты) и нанесении ее на низколегированную конструкционную сталь получали штамповые стали указанного химического состава (табл.1).

    Закалка инструментальной штамповой стали выполнялась в процессе наплавки. Термическая обработка заключалась в выполнении 3-кратного отпуска по 1 часу при 560°С. Охлаждение с температур расплава при наплавке позволило обеспечить более высокие скорости охлаждения стали по сравнению с прототипом (где закалка выполнялась от 1000-1050°С), а следовательно, получить более высокую твердость, теплостойкость, износостойкость, чем у прототипа [Материаловедение / Под ред. Б.Н.Арзамасова, Г.Г.Мухина, МГТУ им. Н.Э.Баумана, 2002, с.624-627; 614-619].

    Введение кобальта дополнительно повысило твердость инструментальной штамповой стали за счет интерметаллидного упрочнения. Максимальная твердость стали после наплавки (с закалкой) и отпуска составила ≤69 HRC. Теплостойкость стали после термической обработки: HRC 59 при ≤630°С (табл.2).

    Предложенная сталь обладает более высокими технологическими свойствами: обрабатываемостью резанием (табл.3-6) и шлифуемостью (табл.7) по сравнению с прототипом благодаря наличию защитных смазывающих пленок (создаваемых комплексным легированием стали серой, молибденом и кобальтом при указанном соотношении компонентов). Кроме того, благодаря подобранному химическому составу сталь обладает хорошей свариваемостью (табл.8-9) и термообрабатываемостью. Изменение линейных размеров изделия при термической обработке при температуре ≥560°С не превышает 0,1%, а после отпуска при 520°С изменение размеров имеет нулевое значение (табл.10).

    Инструментальная штамповая сталь может выплавляться в электропечах [Технология конструкционных материалов. / Под ред. А.М.Дальского // М.: Машиностроение, 2003. С.41-44].

    Данное изобретение в настоящее время находится на стадии опытно-промышленных испытаний.

    Таблица 1Химический состав сталей, % по массе
    СтальСCrWМоVСоMnSiNiAlSFe
    1Предложенная0,98,01,55,00,35,00,40,40,010,30,3577,84
    20,87,01,25,50,56,01,20,10,010,60,2576,84
    30,756,81,16,00,45,50,80,30,010,40,1577,79
    1 *0,657,252,4<0,01<0,01-0,50,15--0,015ост.
    2 *Прототип0,757,911,050,350,25-0,350,300,004-0,1нет данных
    3 *0,727,37<0,011,250,35-0,290,25--0,135ост.
    1*, 2*, 3* - №10, №12, №24 по прототипу соответственно.
    Таблица 2Твердость, теплостойкость
    СтальТвердость (HRC)Теплостойкость (°С, HRC59)
    1Предложенная68640
    266630
    365620
    1Прототип 57-59 <500
    2
    3
    Таблица 3Обрабатываемость резанием. Условия испытаний
    НаименованиеУсловия испытаний
    прототипнастоящее изобретение
    Инструмент2NKR10 (из быстрорежущей стали)Р6М5К5
    Скорость резания25 м/мин28 м/мин
    Подача0,08 мм/об0,08 мм/об
    Глубина резания0,8×1,5 мм0,8×1,5 мм
    Вид операцииточениеточение
    Охлаждениебез охлаждениябез охлаждения
    Обрабатываемая стальпосле отжига
    Таблица 4Обрабатываемость резанием.
    СтальСтойкость инструмента (до наступления износа 0,3 мм)
    1Предложенная22 м
    222 м
    322 м
    1Прототип18 м
    2-
    3-
    Таблица 5Обрабатываемость резанием. Условия испытаний
    НаименованиеУсловия испытаний
    прототипнастоящее изобретение
    ИнструментHES2100-C (с твердосплавным покрытием)Т15К6
    Скорость резания75 м/мин75 м/мин
    Подача0,05 мм/об0,08 мм/об
    Глубина резания0,2×1,5 мм0,2-1,8 мм/об
    Вид операцииточениеточение
    Охлаждениебез охлаждениябез охлаждения
    Стальпосле отжига
    Таблица 6Обрабатываемость резанием
    СтальСтойкость инструмента (до наступления износа покрытия 0,1 мм)
    1Предложенная19 м
    219 м
    319 м
    1Прототип16 м
    2-
    3-
    Таблица 7Шлифуемость
    СтальТвердость (HRC)
    1Предложеннаяхорошая
    2хорошая
    3хорошая
    1Прототип-
    2-
    3-

    Таблица 9Свариваемость
    СтальТвердость (HRC)Температура предварительного подогрева (°С)Свариваемость (трещины)
    1Предложенная68-нет трещин
    266-нет трещин
    365-нет трещин
    1Прототип---
    260,1350нет трещин
    358,5350нет трещин
    Таблица 10Изменение размеров изделия при термической обработке
    СтальКоэффициент линейного расширения,%
    Т<500°СТ≥500°С
    1Предложенная0<0,1
    2
    3
    1Прототип0<0,1
    2
    3

    Инструментальная штамповая сталь, содержащая углерод, хром, вольфрам, молибден, ванадий, марганец, кремний, никель, алюминий, серу, железо, отличающаяся тем, что она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:

    Углерод0,75-0,9
    Хром6,8-8,0
    Вольфрам1,1-1,5
    Молибден5,0-6,0
    Ванадий0,01-0,5
    Кобальт5,0-6,0
    Марганец0,1-1,2
    Кремний0,1-0,6
    Никель0,01-0,4
    Алюминий0,01-0,6
    Сера0,15-0,35
    ЖелезоОстальное

    www.findpatent.ru

    Материалы для изготовления штампов - Слесарно-инструментальные работы

    Материалы для изготовления штампов

    Категория:

    Слесарно-инструментальные работы

    Материалы для изготовления штампов

    В штампах для холодной штамповки (рис. 1, а) только формообразующие детали, т. е. пуансон и матрицу, изготовляют из инструментальной стали; в штампах для горячей штамповки из инструментальной стали изготовляют или все детали (рис. 1, б), или только вставки (рис. 1, в). В качестве материала для формообразующих деталей штампов применяют инструментальные стали, твердые сплавы, пластмассы и другие материалы.

    Рис. 1. Виды штампов: а — для холодной штамповки: 1 — нижняя плита, 2 — матрица, 3 — направляющая колонка, 4 пуансон, 5 — верхняя плита, 6 — направляющая втулка; б — две половины цельного штампа для горячей штамповки: А —- нижняя, Б — верхняя; 1 — протяжной ручей, 2 — чистовой ручей, 3 — черновой ручей, 4 — гибочный ручей, 5 — хвостовая часть, 6 — подъемное отверстие, 7 — клещевина, 8 — контрольная сторона, 9 — шпоночный паз; в — сборный штамп для горячей штамповки: 1 •— блок с подготовительными ручьями, 2 — вставка чистового ручья, 3 — вставка чернового ручья, 4 — углубления для вставок

    Углеродистые инструментальные стали У7, У8, У9 и У10 пониженной прокаливаемости используют для изготовления матриц и пуансонов штампов для холодной штамповки, имеющих простую форму их рабочего контура (в таких штампах нет резких переходов между элементами; отсутствуют узкие прорези, тонкие перемычки металла между отверстиями и т. п.). Это связано с тем, что стали пониженной прокаливаемости деформируются при закалке, в результате чего образуются трещины.

    Пуансоны и матрицы штампов для холодной штамповки более сложной формы делают из сталей марок X, 9ХС, ХВГ, ХГС и других повышенной прокаливаемости.

    Пуансоны и матрицы штампов для холодной штамповки весьма сложной формы изготовляют из сталей марок Х12Ф, Х12Т, Х12М высокой прокаливаемости. Эти стали, близкие по своим свойствам к быстрорежущим сталям, содержат около 1% углерода, 12% хрома и около 1% ванадия (титана или молибдена), характеризуются высокими прочностью, износостойкостью, теплостойкостью (около 500°С). Важным достоинством сталей высокой прокаливаемости являются малая деформация и, следовательно, сохранение размеров их рабочего контура при закалке. К недостаткам относятся склонность к карбидной неоднородности и плохая обрабатываемость резанием. Сталь марки Х12Ф почти в 2,5 раза дороже, чем углеродистая сталь марки У10.

    Тонкие и длинные пуансоны дыропробивных штампов для холодной штамповки и другие нежесткие детали изготовляют из сталей марок 4ХС, 5ХС, 4ХВ2С, 5ХВ2С и т. п. повышенной вязкости. Снижение хрупкости у этих сталей достигается уменьшением содержания углерода (не более 0,5%), а высокая износостойкость определяется наличием хрома и вольфрама. Теплостойкость сталей этой группы около 300 °С; закаливают их в масле, сквозную закалку получают у образцов диаметром до 50 мм.

    Штампы и вставки для горячей штамповки (молотовые штампы) изготовляют из сталей марок 5ХНВ, 5ХНТ, 5ХНС, 5ХНСВ, 5ХНМ и других повышенной вязкости при нагреве. Молотовые штампы обычно имеют большую массу, работают в условиях ударной нагрузки и деформируют металл, нагретый до температуры 900—1200 °С. Поэтому главными требованиями к сталям этой группы являются высокие вязкость, теплостойкость и сопротивление образованию окалины. Рабочий контур этих штампов обычно имеет сложную форму и значительные размеры, что требует возможно большей прокаливаемости и минимальной деформации при закалке. Эти требования обеспечиваются химическим составом сталей, в котором содержится 0,5% углерода, хром, никель и другие легирующиие элементы. Теплостойкость сталей этой группы достигает 500 °С.

    Наиболее высокие свойства имеет сталь марки 5ХНМ, из которой изготовляют крупные штампы (наименьшая сторона куба более 400 мм), имеющие сложную форму рабочего контура; твердость таких штампов 36—39 HRC3.

    Штампы средних размеров изготовляют из сталей марок 5ХНВ, 5ХНС и 5ХНСВ. Эти стали, легированные вольфрамом или кремнием, по свойствам близким к стали 5ХНМ, но уступают ей по прокаливаемости. Твердость таких штампов 37—42 HRC,.

    Несколько ниже теплостойкость и прокаливаемость у стали марки 5ХНТ, которую применяют для изготовления молотовых штампов малых размеров (наименьшая сторона куба до 300 мм). Твердость таких штампов 41—45 HRQ.

    Рабочие детали штампов для горячей штамповки, обладающие малой массой и подвергающиеся при работе нагреву до высоких температур (матрицы для обрезки облоя, тонкие прошивные пуансоны, ножи для горячей резки т. п.), изготовляют из сталей марок ЗХ2В8, 4Х2В8, 4Х8В8 и других повышенной прочности при нагреве. Эти стали имеют высокие прочность, износостойкость, теплостойкость (до 650 °С).

    Все более широкое применение для изготовления формообразующих деталей штампов получают твердые сплавы ВКЮ, ВК15, ВК20, ВК25 и ВКЗО. Эти сплавы, отличающиеся от сплавов той же группы, применяемых для режущих инструментов, большим содержанием кобальта (10—30%), характеризуются повышенной прочностью и вязкостью, но пониженной твердостью и износостойкостью.

    Твердый сплав применяют для оснащения пуансонов и матриц дыропробивных и вырубных штампов. В электротехнической промышленности такие штампы применяют для листовой штамповки пластин, из которых собирают трансформаторные сердечники, статоры и роторы электродвигателей и другие подобные детали. Выбор марки твердого сплава зависит от прочности листа и его толщины. Чем прочнее материал и толщина листа, тем больше кобальта должен содержать твердый сплав.

    Читать далее:

    Формообразующие детали штампов для холодной штамповки

    Статьи по теме:

    pereosnastka.ru

    Штамповые стали

    Количество просмотров публикации Штамповые стали - 479

    Для обработки металлов давлением применяют инструменты штампы, пуансоны, ролики, валики и т. д., деформирующие металл. Стали, применяемые для изготовления инструмента такого рода, называют штамповыми сталями (по виду наиболее распространенного инструмента).

    Штамповые стали делятся на две группы: деформирующие металл в холодном состоянии и деформирующие металл в горячем состоянии. Условия работы стали при различных видах штамповки сильно различаются между собой.

    Для штамповки в холодном состоянии сталь, из которой изготавливают штампы, обычно должна обладать высокой твердостью, обеспечивающей устойчивость стали против истирания, хотя и вязкость, особенно для пуансонов, имеет также первостепенное значение. Сталь для "горячих штампов" должна иметь как можно меньшую чувствительность к местным нагревам. В недостаточно вязкой (пластичной) стали, к примеру в плохо отпущенной, местный нагрев может привести к образованию трещин.

    Из углеродистой стали марок У10, У11, У12 изготавливают штампы небольших размеров и простой конфигурации; ввиду неглубокой прокаливаемости их следует применять для относительно легких условий работы (малая степень деформации, невысокая твердость штампуемого материала).

    Для более сложных конфигураций штампови более тяжелых условий работы применяют легированные закаливаемые в масле (глубоко прокаливающиеся) стали- чаще всœего сталь Х (ШХ15).

    При относительно легких условиях работы (легкие удары, малая деформация металла, к примеру ручные клейма, ручные зубила) применяют углеродистую сталь У7, У8. У9. Необходимая твердость (HRC 58) получается путем закалки и отпуска при 250-350°С. Необходимую высокую твердость стали типа XI2 можно получить, закаливая ее от высоких температур (1150°С) в масле и получая, следовательно, большое количество остаточного аустенита͵ а затем путем обработки холодом и отпуска добиваться разложения остаточного аустенита и получать высокую твердость HRC 60). Переходим теперь к рассмотрению сталей, применяемых для изготовления горячих штампов, деформирующих металл в горячем состоянии. Металл, применяемый для горячих штампов, должен иметь определœенный комплекс свойств:

    ЖАРОПРОЧНОСТЬ. Металл горячих штампов должен обладать высоким пределом текучести и высоким сопротивлением износу при высоких температурах, чтобы замедлить процессы истирания и деформирования элементов фигуры штампа, разогревающихся от соприкосновения с горячим металлом.

    КРАСНОСТОЙКОСТЬ. Высокие жаропрочные свойства не должны снижаться под длительным воздействием температуры, металл горячих штампов должен устойчиво сопротивляться отпуску.

    ТЕРМОСТОЙКОСТЬ. Циклический нагрев и охлаждение поверхности штампа во время работы и, следовательно, чередующееся расширение и сжатие поверхностных слоев приводят к появлению так называемых разгарных трещин. Материал штампа должен обладать высокой разгаростойкостью или, как чаще называют, термостойкостью или высоким сопротивлением термической усталости.

    ВЯЗКОСТЬ. Деформирование металла при штамповке сопровождается ударными воздействиями этого металла на штампы, в связи с этим металл штампов должен обладать известной вязкостью- особенно при штамповке на молотах, когда приходится достигать нужного повышения вязкости даже за счёт некоторого снижения жаропрочности.

    ПРОКАЛИВАЕМОСТЬ. Многие штампы имеют весьма большие размеры (к примеру, кубики ковочных штампов имеют размеры 500х500х1000 мм и т. п.). Для получения хороших свойств по всœему сечению, в частности достаточной вязкости, сталь штампов должна глубоко прокаливаться.

    ОТПУСКНАЯ ХРУПКОСТЬ. Сталь должна быть минимальна чувствительной к этому пороку.

    СЛИПАЕМОСТЬ. При значительном давлении горячий металл может как бы прилипать к металлу штампа (явление адгезии), и когда штампуемое изделие отдирается от штампа, то оно всякий раз частично разрушает его поверхность. Это явление разрушения будет тем сильнее выражено, чем сильнее адгезионное взаимодействие штампуемого металла и металла штампа. По этой причине подобное взаимодействие штамповой стали с металлом изделия должно быть минимальным.

    Для штампов, работающих в легких условиях, применяют углеродистые стали с содержанием углерода от 0, 6 до 1, 0%, ᴛ.ᴇ. стали марок У7, У8, У9. Наибольшее применение при изготовлении штампов имеет сталь У7.

    В современных условиях углеродистая сталь мало применима для штампов, так как штамповку проводят с большой интенсивностью, и штампы из углеродистой стали не будут обладать достаточной стойкостью в работе.

    Для более тяжелых условий работы применяют легированные стали. Типичной наиболее распространенной и, пожалуй, наилучшей из указанных является сталь 5ХНМ. Остальные представляют из себястализаменители, в которых никель (или молибден) заменен другими элементами, что несколько ухудшает качество.

    referatwork.ru

    Инструментальная штамповая сталь. Марки стали. Применение стали.

    Справочная информация

    Инструментальная штамповая сталь:ст.27Х2Н2М1Ф, ст.2Х6В8М2К8, ст.3Х2В8Ф, ст.3Х2Н2МВФст.40Х5МФ, ст.4Х2В2МФС, ст.4Х3В2М2, ст.4Х3В8М, ст.4Х8В2 (ЭИ160), ст.4ХВ2С,ст.5Х2ГСМФ, ст.5ХВ2С, ст.5ХГМ, ст.5ХГСВФЮ, ст.5ХГСМФ, ст.5ХНС, ст.5ХНСВ,  ст.6Х3ФС, ст.6ХВС, ст.7ХГ2ВМ

    Применение инструментальной штамповой стали:Сталь 27Х2Н2М1Ф * Применяется для ответственных деталей прессового инструмента с повышенными свойствами прочности и повышенной пластичностью после нормализации и отпуска: втулки контейнеров, кольца, пресс-штемпели, иглы и другие детали, работающие при температурах до 500 °С. Сталь 2Х6В8М2К8 * Применяется для производства - иглы, пуансоны для прессования жаропрочных и коррозионно-стойких сталей и сплавов, а также титановых сплавов при температурах до 650-675 °С.С, выполняемых без интенсивного охлаждения Сталь 3Х2В8Ф* Применяется для изготовления тяжелонагруженного прессового инструмента (мелкие вставки окончательного штамповочного ручья, матрицы и пуансоны для выдавливания и т. д.) при горячем деформировании легированных конструкционных сталей и жаропрочных сплавов; пресс-форм литья под давлением медных сплавов. Сталь 3Х2Н2МВФ* Применяется для изготовления ответственных деталей прессового инструмента с высокими свойствами прочности и удовлетворительной пластичностью после нормализации и отпуска: пресс-штемпели, иглы и другие детали, работающие при повышенных температурах до 500 °С. Сталь 40Х5МФ * Применяется для производства ответственных деталей прессового и штампового инструмента с высокими свойствами прочности после нормализации и отпуска: втулки контейнеров, кольца, пресс-штемпели, иглы и другие детали, работающие при температуре до 500 °С. Сталь 4Х3ВМФ (ЗИ2) * Применяется для изготовления мелких молотовых штампов, молотовых и прессовых вставок (толщиной или диаметром от 300 до 400 мм), инструмента горизонтально-ковочных машин при горячем деформировании конструкционных сталей и жаропрочных сталей; инструмента для высокоскоростной машинной штамповки конструкционных сталей. Сталь 4ХВ2С * Применяется для производства пневматического инструмента: зубила, обжимки, вырубные и обрезные штампы сложной формы, работающие с повышенными ударными нагрузками. Сталь 5Х2ГСМФ * Применяется для производства поковок различных деталей общего машиностроения; тяжелонагруженных цельных молотовых штампов массой не более 5 т. Сталь 5ХВ2С * Применяется для изготовления ножей при холодной резке металла; резьбонакатных плашек, пуансонов и обжимных матриц при холодной обработке металлов; штампов сложной формы, работающих с повышенными ударными нагрузками. Сталь 5ХВ2СФ * Применяется для изготовления ножей холодной резки металла; резьбонакатных плашек, пуансонов и обжимных матриц при холодной обработке металла; деревообрабатывающих инструментов для длительной работы. Сталь 5ХГМ * Применяется для изготовления молотовых штампов паровоздушных и пневматических молотов с массой падающих частей до 3 т, ковочные штампы для горячей штамповки, валки крупных, средних и мелкосортных станов для прокатки твердоко металла. Сталь 5ХГСМФ * Применяется для производства поковок различных деталей общего машиностроения; тяжелонагруженных цельных молотовых штампов массой не более 5 т. Сталь 5ХНВ * Применяется для изготовления молотовых штампов паровоздушных и пневматических молотов массой падающих частей до 3 т. Сталь 5ХНВС * Применяется для изготовления молотовых штампов паровоздушных и пневматических молотов массой падающих частей до 3 т. Сталь 7ХГ2ВМФ * Применяется для изготовления штампов холодного объемного деформирования и вырубного инструмента сложной конфигурации, используемых при производстве изделий из цветных сплавов и низкопрочных конструкционных сталей. Сталь Х12 * Применяется для изготовления холодных штампов высокой устойчивости против истирания (преимущественно с рабочей частью округлой формы), не подвергающихся сильным ударам и толчкам; волочильных досок и волок, глазков для калибрования пруткового металла под накатку резьбы; гибочных и формовочных штампов, сложных секций кузовных штампов, которые при закалке не должны подвергаться значительным объемным изменениям и короблению; матриц и пуансонов вырубных и просечных штампов; штамповок активной части электрических машин и электромагнитных систем электрических аппаратов. Сталь Х12ВМ * Применяется для изготовления холодных штампов высокой устойчивости против истирания, не подвергающиеся сильным ударам и толчкам, волочильные доски и волоки, глазки для калибрования пруткового металла под накатку резьбы, гибочные и формовочные штампы, сложные кузовные штампы, матрицы и пуансоны вырубных и просечных штампов, штамповки активной части электрических машин. Сталь Х12ВМФ * Применяется для изготовления холодных штампов высокой устойчивости против истирания, не подвергающиеся сильным ударам и толчкам, волочильные доски и волоки, глазки для калибрования пруткового металла под накатку резьбы, гибочные и формовочные штампы, сложные кузовные штампы, матрицы и пуансоны вырубных и просечных штампов, штамповки активной части электрических машин. Сталь Х12М * Применяется для изготовления накатных роликов, волочильных досок и волок, глазков для калибрования металла; матриц и пуансонов вырубных штампов; пуансонов и матриц холодного выдавливания, эксплуатируемых с рабочими давлениями до 1400-1600 мПа. Сталь Х12МФ * Применяется когда требуется большая вязкость чем у стали марки 12Х - для изготовления холодных штампов высокой устойчивости против истирания (преимущественно с рабочей частью округлой формы), не подвергающихся сильным ударам и толчкам; волочильных досок и волок, глазков для калибрования пруткового металла под накатку резьбы; гибочных и формовочных штампов, сложных секций кузовных штампов, которые при закалке не должны подвергаться значительным объемным изменениям и короблению; матриц и пуансонов вырубных и просечных штампов; штамповок активной части электрических машин и электромагнитных систем электрических аппаратов. Для изготовления профилировочных роликов сложных форм; секций кузовных штампов сложных форм; сложных дыропрошивочных матриц при формовке листового металла, эталонных шестерен, накатных плашек, волок, матриц и пуансонов вырубных, просечных штампов (в том числе совмещенных и последовательных) со сложной конфигурацией рабочих частей; штамповок активной части электрических машин. Сталь Х12Ф1* Применяется когда требуется большая вязкость чем у стали марки 12Х - для изготовления холодных штампов высокой устойчивости против истирания (преимущественно с рабочей частью округлой формы), не подвергающихся сильным ударам и толчкам; волочильных досок и волок, глазков для калибрования пруткового металла под накатку резьбы; гибочных и формовочных штампов, сложных секций кузовных штампов, которые при закалке не должны подвергаться значительным объемным изменениям и короблению; матриц и пуансонов вырубных и просечных штампов; штамповок активной части электрических машин и электромагнитных систем электрических аппаратов. Для изготовления профилировочных роликов сложных форм; секций кузовных штампов сложных форм; сложных дыропрошивочных матриц при формовке листового металла, эталонных шестерен, накатных плашек, волок, матриц и пуансонов вырубных, просечных штампов (в том числе совмещенных и последовательных) со сложной конфигурацией рабочих частей; штамповок активной части электрических машин. Сталь Х6Ф1 * Применяется для изготовления слоя повышенной твердости в горячекатаной двухслойной фасонной полосовой стали для лемехов к корпусам тракторных плугов общего назначения; культиваторных дисков, дисков борон, молоточков молотильных аппаратов комбайнов; деталей горнорудной техники (днищ, накладок). Сталь Х6Ф4М * Применяется для изготовления штампов.

     

    ГП Стальмаш поставляет металлопрокат (более 2000 марко-профиле-размеров металлопродукции) в более чем 250 марках легированных сталей по следующей нормативно-технической документации (стандарты на сталь):

    ГОСТ 4543-71, ГОСТ 19281-89, ГОСТ 1414-75, ГОСТ 1435-99, 

    ГОСТ 20072-74, ГОСТ 14959-79, ГОСТ 801-78, ГОСТ 5950-2000, 

    ГОСТ В 10230-75, ГОСТ 4728-99, ГОСТ 10884-94, ГОСТ 1050-88 

    и другие ГОСТ, ОСТ, ТУ, ТС.

    Из наличия прокат стальной круглый отпускается от 100 - 500 килограмм, в зависимости от марко-профиле-размеров проката.

    ГП Стальмаш производит отгрузку круглой металлопродукции со склада в г.Екатеринбург:

    *на самовывоз,

    *контейнерами (3-х, 5-ти, 20-ти тонные и 40-ка футовые),

    *вагонами,

    *отправка автотранспортными компаниями по всей территории России,

    *отгрузка через желдорэкспедицию

    Оперативная информация о ПОЛНОМ наличии на складе, ценах, условиях отгрузки по телефонам ГУП «Стальмаш»:

    (343) 268-0789,   (343) 269-2099,

    (343) 268-6713,   (343) 269-2102,

    (343) 268-6735,   (343) 269-3066,

    (343) 268-7815,   (343) 269-3106,

     

    ГП Стальмаш поставляет металлопрокат (более 2000 марко-профиле-размеров металлопродукции) в более чем 250 марках легированных сталей по следующей нормативно-технической документации (стандарты на сталь):

    ГОСТ 4543-71, ГОСТ 19281-89, ГОСТ 1414-75, ГОСТ 1435-99, 

    ГОСТ 20072-74, ГОСТ 14959-79, ГОСТ 801-78, ГОСТ 5950-2000, 

    ГОСТ В 10230-75, ГОСТ 4728-99, ГОСТ 10884-94, ГОСТ 1050-88 

    и другие ГОСТ, ОСТ, ТУ, ТС.

     

    Из наличия прокат стальной круглый отпускается от 100 - 500 килограмм, в зависимости от марко-профиле-размеров проката.

     

    ГП Стальмаш производит отгрузку круглой металлопродукции со склада в г.Екатеринбург:

    *на самовывоз,

    *контейнерами (3-х, 5-ти, 20-ти тонные и 40-ка футовые),

    *вагонами,

    *отправка автотранспортными компаниями по всей территории России,

    *отгрузка через желдорэкспедицию

    Оперативная информация о ПОЛНОМ наличии на складе, ценах, условиях отгрузки по телефонам ГУП «Стальмаш»:

    (343) 268-0789,   (343) 269-2099,

    (343) 268-6713,   (343) 269-2102,

    (343) 268-6735,   (343) 269-3066,

    (343) 268-7815,   (343) 269-3106,

     

    yaruse.ru