- Нихромы Х15Н60, Х20Н80
- Ферронихромы Х15Н60
- Нимоник Н77Х20 T2Юl1, ХН77ТЮ, ХН77ТЮР, ХН70БМТ10 Хромель 0Х23Ю5
- Фехраль Х13Ю4, 0Х27Ю5А
Конструкционные легированные стали. Стали конструкционные легированные
Конструкционные легированные стали
Высокая конструктивная прочность стали обеспечивается рациональным содержанием в ней легирующих элементов. Избыточное легирование (за исключением никеля) после достижения необходимой прокаливаемости приводит к снижению вязкости и облегчает хрупкое разрушение стали.Хром оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.Никель - наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Никель заметно повышает предел текучести стали, но делает сталь чувствительной к перегреву. В связи с этим для измельчения зерна одновременно с никелем в сталь вводят карбидообразующие элементы.Кремний является некарбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.Молибден и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2-0,4% и вольфрам в количестве 0,8-1,2% в комплекснолегированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.Ванадий и титан - сильные карбидообразущие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, титана, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных труднорастворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.Бор вводят для увеличения прокаливаемости в очень небольших количествах (0,002-0,005%).Маркировка легированных сталей. Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения (ГОСТ4547-71): хром (X), никель (Н), марганец (Г), кремний (С), молибден (М), вольфрам (В), титан (Т), алюминий (Ю), ванадий (Ф), медь (Д), бор ( Р ) , кобальт ( К ) , ниобий ( Б ) , цирконий (Ц). Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится до 1,5%. В конструкционных качественных легированных сталях две первые цифры марки показывают содержание углерода в сотых долях процента. Кроме того, высококачественные легированные стали имеют в конце марки букву А, а особо высококачественные - Ш. Например, сталь марки 30ХГСН2А: высококачественная легированная сталь содержит 0,30% углерода, до 1% хрома, марганца, кремния и до 2% никеля; сталь марки 95Х18Ш: особо высококачественная, выплавленная методом электрошлакового переплава с вакуумированием, содержит 0,9-1,0% углерода; 17-19% хрома, 0,030% фосфора и 0,015% серы.
Инструментальные легированные стали
Инструментальная легированная сталь
Инструментальная легированная сталь. Эта сталь идет для изготовления различного инструмента: ударно-штампового, измерительного, режущего. Она имеет ряд преимуществ перед инструментальной углеродистой сталью. Штампы из углеродистой стали обладают высокой твердостью и прочностью, но плохо сопротивляются удару. Метчики, развертки и другие длинные и тонкие инструменты из углеродистой стали при закалке получаются хрупкими, они ненадежны в работе и часто ломаются.
Режущий инструмент - резцы, фрезы, сверла из углеродистой стали при незначительном нагреве (около 200°C) теряют свою твердость, поэтому применение их при обработке металла с большой скоростью резания невозможно. При введении определенных легирующих примесей сталь приобретает красностойкость, износоустойчивость, получает глубокую прокаливаемость; она имеет высокую прочность, твердость и хорошо противостоит ударным нагрузкам.
Важнейшие легирующие примеси инструментальной легированной стали: хром, вольфрам, молибден, марганец, кремний. Содержание углерода в этой стали может быть ниже, чем в углеродистой, и колеблется от 0,3 до 2,3%.
В отдельную группу выделяют быстрорежущие стали. Они применяются для изготовления режущего инструмента – резцов, сверл, фрез. Важнейшие свойства этой стали – высокая твердость и красностойкость до 600°C (такой нагрев вызывается высокой скоростью резания). Благодаря применению быстрорежущей стали повышается стойкость инструмента и увеличивается производительность обработки. Важнейшими легирующими элементами являются вольфрам (в количестве не менее 9%), ванадий (1-2%), хром (не менее 4%). Кроме того, в быстрорежущей стали могут находиться молибден, кобальт и в небольшом количестве – никель.
В настоящее время широко применяются стали марок Р18, Р9, Р9Ф5, Р18Ф2, Р9К5, Р9К10, Р10К5Ф5, Р18М, Р9М, Р6М5 и др. Буква Р обозначает быстрорежущую сталь. Цифра, стоящая за буквой Р, показывает среднее содержание вольфрама в процентах.
Коррозионностойкие стали
Поверхностное разрушение металла под воздействием внешней среды называется коррозией. Чистое железо и низколегированные стали неустойчивы против коррозии в атмосфере, в воде и во многих других средах, так как образующаяся пленка окислов недостаточно плотна и не изолирует металл от химического воздействия среды. Некоторые элементы повышают устойчивость стали против коррозии, и таким образом можно создать сталь (сплав), практически не подвергающуюся коррозии в данной среде.
При введении таких элементов в сталь (сплав) происходит не постепенное, а скачкообразное повышение коррозионной стойкости. Не вдаваясь в подробности явлений, связанных с процессами коррозии и коррозионным разрушением, укажем, что введение в сталь более 12 % хрома делает ее коррозионно-стойкой в атмосфере и во многих других промышленных средах. Сплавы, содержащие меньше 12 % хрома, практически в столь же большой степени подвержены коррозии, как и железо. Сплавы, содержащие более 12 ÷ 14 % Cr, ведут себя как благородные металлы: обладая положительным потенциалом, (рис. 1), они не ржавеют и не окисляются на воздухе, в воде, в ряде кислот, солей и щелочей.
Жаропрочные и жаростойкие стали
Жаропрочные стали работают при высоких температурах под нагрузкой в течение заданного промежутка времени. Жаропрочные стали перлитного класса (12Х1МФ, 12Х1М1Ф, 20Х1М1Ф1БРА и др.) применяются для изготовления деталей паровых турбин, котлов. V и Nb измельчают зерно, Cr придает жаростойкость и жаропрочность.
Стали мартенситного и мартенситно-ферритного класса (15Х11МФ, 11Х11Н2В2МФА, 15Х12ВНМФА, 18Х12ВМБФБ и др.) используются при тем- пературах 550 - 600°С. К ним относятся так же хромансилы, сильхромы (10Х12Н8С2А, 40Х9С2, 40Х10С2М и др.).
Аустенитные стали типа 08Х15Н24В4ТР, 09Х14Н19В2БР, 45Х14Н14В2МФ, 40Х15Н7Г7Ф2МС наиболее жаропрочны и жаростойки и упрочняются старением, интерметаллидным упрочнением из-за образования карбидов, интерметаллидов (NiTi, NiAl, Ni (Ti, Al), Ni Nb и др.). Их закаливают, подвергают старению, НТМО. Стали типа (10Х11Н20Т3П, 10Х11Н23Т3МП и др.) легируют Ti, Al, Mo, B, Nb для образования интерметаллидов, измельчения зерна, повышения жаропрочности. Они работают до температур 700°С – 750°С.
Котельные стали используются для изготовления разного типа паровых котлов (12ХМФА, 12Х2МФСП, Х5ВФ, 15Х11МФ, Х12ВНМФ, Х12Б2МФ, 15Х12ВМФА и др.).
Жаропрочные стали применяют для изготовления клапанов двигателей, лопаток газовых и паровых турбин, деталей реактивных двигателей, работающих до 700°С. Они жаростойки, жаропрочны, окалиностойки, пластичны, свариваемы, хорошо обрабатываются всеми видами давления.
Для особоответственных деталей турбин, реактивных двигателей, ракет применяют сплавы на основе никеля, хрома, кобальта, алюминия, титана.
Твердные сплавы
ёрдые сплавы — твёрдые и износостойкие металлокерамические материалы, полученные методами порошковой металлургии, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвёрдых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой или никелевой металлической связкой, при различном содержании компонентов.
Твёрдые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В; титано-тантало-вольфрамовые — ТТ7К12, ТТ11К8Б; безвольфрамовые ТНМ20, ТНМ25, ТНМ30.
По химическому составу твёрдые сплавы классифицируют:
Читайте также:
lektsia.com
ТОП 10: |
В современном машиностроении и приборостроении широкое применение находят стали, в которых помимо железа, углерода и постоянных примесей содержатся специально вводимые добавки других элементов, чаще всего металлов. Эти добавки принято называть легирующими элементами, а стали, соответственно, легированными сталями. В качестве легирующих наиболее часто используют следующие элементы: Cr, Ni, Mn, Si, Mo, W, V, Ti, Co, Nb. Реже используются Al, Cu, B и некоторые другие. В результате легирования изменяются физические, механические и технологические свойства стали. Изменение свойств стали при ее легировании определяется влиянием легирующих элементов, как на свойства фаз, так и на условия протекания фазовых превращений. По влиянию на положение точек полиморфного превращения железа, легирующие элементы можно разделить на две группы: 1)элементы, понижающие температуру А3 и повышающие А4, т. е. расширяющие область существования аустенита (g-фазы) и сужающие область феррита (a-фазы). К числу таких элементов относятся Ni и Mn. На рисунке 4.1, а приведена диаграмма, характерная для сплавов железа с легирующими элементами этой группы. Из диаграммы видно, что если концентрация легирующего элемента превышает концентрацию, соответствующую точке b, то во всей области температур сплавы будут иметь структуру аустенита. Такие сплавы называют аустенитными. Если концентрация легирующего элемента находится между точками а и b, то в сплавах происходит частичное превращение аустенита в феррит. Такие сплавы называют полуаустенитными или ферритно-аустенитными. К числу элементов, расширяющих область существования аустенита, относятся также Сu, C и N. Но в этом случае диаграммы имеют эвтектоидную точку, ниже которой аустенит не существует. а б Рисунок 4. 1. Схемы диаграмм состояний железа с легирующими элементами: а – открытая область g-область; б – закрытая g-область. 2) легирующие элементы, которые повышают точку А3 и снижают А4. Это приводит к замыканию области существования аустенита (g-фазы) как это показано на рисунке 4.1, б. При содержании легирующего элемента выше концентрации, отмеченной точкой а на оси абсцисс, сплавы во всей температурной области правее а имеют кристаллическую решетку феррита (a-фазы). Такие сплавы называются ферритными. При меньшей концентрации легирующего элемента сплавы называются полуферритными или аустенитно-ферритными. К числу легирующих элементов второй группы относятся Cr, W, Mo, V, Si, Al. К этой же группе относятся B, Zr,и Nb, которые способствуют сужению g-области даже при небольших содержаниях этих элементов. Но вследствие малой растворимости в железе ранее, чем полностью замыкается g-область, образуются двухфазные сплавы. При введении в сталь одновременно нескольких легирующих элементов их влияние на существование a- и g-областей не всегда суммируется. Например, хром при введении его одновременно с никелем не сужает, а расширяет g-область. Легирующие элементы обычно повышают предел прочности феррита, не изменяя в заметной степени пластических характеристик. Исключение составляют лишь марганец и кремний, которые при их содержании более 2,5 %, снижают пластичность феррита. Но именно они сильнее всего упрочняют феррит. Введение легирующих элементов, за исключением никеля и хрома, значительно снижает ударную вязкость стали и повышает предел хладноломкости. Легирование никелем до 4 % и хромом до 1,5 % приводит к повышению ударной вязкости и снижению предела хладноломкости. Легирующие элементы повышают прочность аустенита при нормальной и повышенной температурах. Упрочнение аустенитных сталей легко достигается также в результате пластической деформации, т. к. они имеют ГЦК кристаллическую решетку. Легирующие элементы, как и железо, способны образовывать карбиды. По типу взаимодействия с углеродом, растворенные в железе легирующие элементы делятся на графитизирующие – Si, Al, Cu; нейтральные – Co, Ni, которые в стали не образуют карбидов, но и не вызывают графитизации; карбидообразующие – Mn, Cr, Mo, W, Nb, V, Zr, Ti (элементы расположены в порядке устойчивости их карбидов по отношению к карбиду железа). Если в стали имеется несколько легирующих элементов, то сначала образуется наиболее устойчивый карбид. Если таких карбидообразующих элементов, как Mn, Cr, Mo, W в стали мало, то они собственных карбидов не образуют, а растворяются в цементите: (Fe,Mn)3C или (Fe,Cr)3C и т. д. Марганец может заместить в решетке цементита все атомы железа, хром – только 25 % (ат.), молибден лишь около 3 % (ат.), а вольфрам всего 0,8…1,0 % (ат.). Если содержание Cr, Mo и W в стали выше этих концентраций, то при наличии в стали углерода эти элементы образуют специальные карбиды типа (Cr,Fe)7C3, (Cr,Fe)23C6, Fe3Mo3C, Fe2Mo2C, Mo6C и т. д. Такие элементы, как Ti, V, Nb и Zr, в цементите практически не растворяются, а образуют свои специальные карбиды. По структуре, формирующейся в условиях равновесия, легированные стали делят на 6 классов: перлитный, аустенитный, ферритный, полуферритный (аустенитно-ферритный), полуаустенитный (ферритно-аустенитный) и ледебуритный. В перлитный класс объединяются стали, содержащие перлит. Это как доэвтектоидные, так эвтектоидные и заэвтектоидные стали. В отличие от обычных, среди легированных сталей выделяют ледебуритные стали, которые в литом состоянии содержат эвтектику, одной из составляющих которой являются карбиды с объемной долей до 30…35 %. По структуре ледебурита стали следовало бы рассматривать как белые чугуны. Но, так как эти сплавы содержат меньше 2 % С и могут коваться, то их относят к сталям. Легированные стали ферритного класса образуются при относительно низком содержании углерода и больших содержаниях легирующих элементов, таких как Cr, W, Mo, V, Si. При всех температурах структура таких сталей состоит из легированного феррита, иногда с небольшим содержанием карбидов. Аустенитные стали получают при при высоком содержании таких легирующих элементов, как Ni и Mn. Однако часто структура сталей, содержащих эти элементы, состоит из смеси феррита и аустенита. Стали, имеющие такую структуру, относят к ферритно-аустенитным, или к аустенитно-ферритным, в зависимости от того, какая фаза преобладает. По назначению легированные стали делятся на конструкционные, подшипниковые, инструментальные, коррозионностойкие (нержавеющие), и специального назначения. Легированные стали всегда выпускают качественными и высококачественными. Поэтому в маркировке имеются, как правило, двухзначные цифры, стоящие первыми и обозначающие содержание углерода в сотых долях процента. Для высокоуглеродистых марок инструментальных сталей используют однозначные цифры, указывающие содержание углерода в десятых долях процента (более 0,7 % С). Легирующие элементы обозначают буквами: А – азот; Б – ниобий; В – вольфрам; Г – марганец: Д – медь; Е – селен; К – кобальт; Л – бериллий; М – молибден; Н – никель; П – празеодим; Р – бор; С – кремний; Т – титан; У – углерод; Ф – ванадий; Х – хром; Ц – цирконий; Ч – редкоземельные элементы; Ш – магний; Ю – алюминий. Цифры, стоящие после букв, обозначают примерное содержание легирующего элемента в целых процентах. Если же цифра в маркировке отсутствует, то это означает, что содержание элемента может достигать 1…1,5 %. Для элементов, сильно действующих на свойства (N, B, V), их присутствие в стали указывают в маркировке, даже если их содержание составляет сотые или тысячные доли процента. Марки высококачественных сталей имеют в конце букву А, а особовысококачественные – две буквы А. В инструментальных легированных сталях и сплавах с особыми физическими свойствами, которые всегда высококачественные или особовысококачественные, буква А не указывается. Буква Ш в конце марки означает, что сталь получена методом электрошлакового переплава и относится к категории особовысококачественных. Примеры маркировки: 12Х2МФА, 15Х2НМФАА, 30ХГС-Ш, 12Х2МВ8ФБ, 12Х25Н16Г7АР, 15Х6СЮ. Некоторые конструкционные и инструментальные стали имеют в начале марки букву, характеризующую область применения: А – автоматные стали; Ш – шарикоподшипниковые стали; Р – быстрорежущие стали; Е – стали для постоянных магнитов. У сталей, применяемых для литья, в конце марки указывается буква Л.
|
infopedia.su
Конструкционные легированные стали.
Конструкционные стали должны обладать высокой конструкционной прочностью и обеспечивать длительную и надежную работу в условиях эксплуатации. Поэтому особенность требований к конструкционнымматериалам состоит в необходимости обеспечения комплекса механическихи эксплуатационных свойств, а не одной какой-либо характеристики.
Материалы для изготовления деталей машин и механизмов должны наряду с высокой прочностью и пластичностью хорошо сопротивляться ударным нагрузкам и обладать запасом вязкости. При воздействии знакопеременных нагрузок материалы должны обладать высоким сопротивлением усталости. В условии работы при трении материалы должны хорошо сопротивляться износу.
Помимо надежности конструкционные материалы должны также иметь высокие технологические свойства.
Перечисленными свойствами в достаточной мере обладают легированные стали. Основными преимуществами легированных сталей перед углеродистыми являются более высокая прочность и повышенная ударная вязкость за счет введения легирующих элементов.
Легированные конструкционные стали используются в различных рабочих условиях и обладают очень широким диапазоном свойств. Поэтому их принято подразделять еще на несколько подгрупп.
Низколегированные строительные стали содержат малое количество углерода: 0,1 – 0,25%. Также содержат небольшое количество легирующих элементов: 1 -3%.
Эти стали используются в строительстве, мостостроении, вагоностроении, сельхозмашинах, корпусов судов в судостроении, для изготовления нефте- и газопроводов.
Детали строительных конструкций обычно соединяют сваркой. Поэтому основным требованием является хорошая свариваемость.
Стали хорощо свариваются при содержании углерода не более 0,25%.
Цементуемые стали содержат не более 0,2% углерода и невысокое содержание легирующих элементов: 1 – 5%. Эти стали используются для изготовления деталей, которые работают под действием динамических нагрузок в условиях поверхностного износа. Такие условия работы требуют от материала высокой прочности поверхностного слоя. При этом сердцевина может оставаться непрочной.
Чтобы повысить твердость и прочность поверхностного слоя, поверхность металла дополнительно насыщают элементом внедрения – углеродом. Такая обработка называется цементация. Поверхностный слой насыщается углеродом, что приводит к повышению твердости и прочности. Эти стали легируют хромом, никелем, марганцем.
Улучшаемые конструкционные стали содержат 0,3 – 0,5% углерода и легирующие элементы в количестве не более 5%. Эти стали используются только после термической обработки – улучшения (см. лекцию по термообработке).
После термической обработки улучшаемые стали имеют высокую прочность, вязкость, устойчивость против ударных нагрузок. Улучшаемые стали широко используются для изготовления деталей, работающих в условиях воздействия статических, динамических и знакопеременных нагрузок. Для этих сталей характерно сочетание высокой твердости, прочности и одновременно хорошей пластичности и вязкости. При этом они обладают хорошими технологическими свойствами.
Пружинные стали содержат 0,5 – 0,7% . Основные легирующие элементы – марганец и кремний.
Основные требования, предъявляемые к этим сталям, высокий предел выносливости и упругие свойства. Из этих сталей изготавливают пружины и рессоры, в которых пластическая деформация недопустима, поэтому высокие значения пластичности и вязкости не требуются. Пружинные стали применяются после термической обработки.
Шарикоподшипниковые стали содержат высокое содержание углерода: около 1%. Из них изготавливают подшипники качения, которые испытывают высокие знакопеременные нагрузки. Стали для подшипников должны обладать высокой твердостью и износостойкостью в сочетании с высоким пределом усталости.
Основными легирующими элементами являются хром, марганец, кремний. Шарикоподшипниковые стали применяются после термической обработки.
Высокопрочные стали характеризуются очень высокими значениями прочности в сочетании с высокой вязкостью и пластичностью. Такое сочетание свойств достигается легированием никелем, молибденом, титаном, кобальтом, а также термической обработкой, обеспечивающей специальные механизмы упрочнения.
infopedia.su