- Заборов и ворот, которые получаются не только невероятно красивыми, но и прочными.
- Элементов лестничных конструкций.
- Сувенирной продукции и скульптурных композиций.
- Декоративных осветительных приборов: бра и люстр.
- Предметов для оформления интерьера.
Медные сплавы (стр. 1 из 2). Сплав меди с цинком оловом
Как называется сплав олова и меди?
На протяжении многих тысячелетий человек экспериментировал с различными металлами и получал из них всё более высокопрочные сплавы. Для этого использовались самые различные химические элементы. Бронзовый век – эпоха, во время которой стал популярным сплав олова и меди (CuSn6). Что это за материал и почему он был столь популярен?
История возникновения бронзы
Благодаря улучшению качества обработки таких металлов, как медь и олово, в 3000 году до н.э. начался Бронзовый век. Он характеризуется активной выработкой такого сплава, как бронза, которая использовалась для изготовления орудий труда и украшений.
В современной металлургической промышленности, кроме меди и олова, используют также такие материалы, как алюминий, фосфор, свинец, цинк. Само название происходит от персидского слова «berenj», которое переводится «медь».
Известно, что первая бронза была изготовлена из Cu и мышьяка и называлась мышьяковистой. Однако из-за своей токсичности она очень быстро сменилась оловянной. Не удивительно, что кузнецов очень часто рисовали некрасивыми и изуродованными. На самом деле так и было. Длительный контакт с мышьяком очень плохо влиял на их организм. По этой причине сплав меди с оловом называется бронзой, так как именно эти компоненты присутствуют в ней чаще всего.
Характеристика бронзы
Все мы знаем, что такой металл, как медь, очень мягкий, пластичный и абсолютно непрочный. В то же время он обладает очень высокой электро- и теплопроводностью. Сплав олова и меди – материал, который значительно превосходит характеристики этих химический элементов по отдельности. Другими словами, бронза обладает высокой твердостью, прочностью, но в то же время она довольно легкоплавка.
Открытие этого сплава сыграло большую роль в металлургической промышленности. Несмотря на то что позже было изобретено множество других материалов, даже сегодня он пользуется большой популярностью за счет своих хороших механических свойств.
Способность бронзы сопротивляться коррозии
Одним из самых важных свойств сплава является его коррозионная устойчивость. Особенно это касается тех составов, в которых присутствует значительное содержание марганца и кремния (более 2%).
Было установлено, что высокая коррозионная устойчивость проявляется при контакте бронзы с водой (морской и пресной), концентрированными щелочами и кислотами, сульфатами и хлоридами легких металлов, а также при контакте с сухими газами (безоловянные бронзы).
Конечно же, в целом коррозионные свойства сплава зависят от легирующих элементов. Так, высокое содержание свинца уменьшает способность сопротивляться коррозии, а никель повышает это свойство.
Виды бронзы
Легирующие элементы, которые могут быть в составе этого сплава, способны значительно менять его свойства, от них зависит и вид бронзы. К тому же и олово может быть заменено другими элементами. Например, БрАМЦ-7-1 можно расшифровать так: 92% меди, 7% алюминия, 1% марганца. Данная марка бронзы не содержит в себе олова и благодаря этому обладает высоким сопротивлением к знакопеременной нагрузке. Её используют для изготовления болтов, винтов, гаек и деталей для гидравлических установок.
Другой пример – оловянная литейная бронза марки БрО10С10. В ней содержится до 83% меди, 9% олова, 8% свинца и до 0,1% железа, кремния, фосфора и алюминия. Она предназначена для деталей, которые работают в условиях высоких удельных давлений, например, для подшипников скольжения.
Несмотря на то что бронза является сплавом олова и меди, в некоторых случаях такой химический элемент, как Sn, не используется. Еще один пример безоловянной бронзы – жаропрочная. Для её изготовления применяют только медь 98-99% и кадмий 1-2%. Примером может послужить марка БрКд1. Это жаропрочная кадмиевая бронза, обладающая высокой жаропрочностью и электропроводностью. Она может быть применена для изготовления деталей машин контактной сварки, коллекторов электродвигателей и других деталей, работающих в условиях высоких температур и требующих хорошей электропроводности.
Еще один вид сплава, используемый для изготовления прокладок в подшипниках и втулках автомобилей – обрабатываемая давлением оловянная бронза. Сплав меди и олова содержит такие легирующие элементы как свинец (4%), цинк (4%), алюминий (0,002%), железо (0,005%). Марка стали называется БрОЦС4-4-4. Именно благодаря процентному соотношению данных химических элементов этот сплав можно обрабатывать давлением и резанием. Цвет бронзы также зависит от примесей. Так, чем меньше меди содержит сплав, тем менее выраженный цвет: более 90% - красный, до 80% – желтый, менее 35% - серо-стальной.
Обработка бронзы
Как уже было сказано ранее, сплав олова и меди – это достаточно прочный материал. Он плохо поддается заточке, резанию и обработке давлением. В целом это литейный материал, обладающий малой усадкой - около одного процента. И даже несмотря на невысокую текучесть и склонность к ликвации, бронзу применяют для изготовления сложных по конфигурации отливок. Не исключение и художественное литьё.
Легирующие элементы, которые добавляются в сплав олова и меди, улучшают его свойства и уменьшают цену. Так, например, легирование свинцом и фосфором позволяет улучшить обработку бронзы, а цинк увеличивает её коррозионную стойкость. Для определенных целей изготавливают деформированные сплавы. Они легко изменяют свой вид при использовании холодной ковки.
Область применения
Конечно же, использование бронзы не теряет своей популярности и в наше время. Сувенирная продукция, декоративные предметы интерьера, украшения на ворота и калитки... Кроме того, сплав применяют для изготовления фурнитуры (ручки, петли, замки) и сантехники (краны, фитинги, прокладки, смесители). В промышленных сферах бронза также имеет обширные области использования. Так, литейный сплав используют для изготовления подшипников, уплотнительных колец, втулок.
На широкое применение бронзы особенно влияют её коррозионные свойства. По этой причине её используют для изготовления деталей механизмов, работающих при постоянном контакте с водой. Высокая упругость сплава позволяет изготавливать из него пружины и части контрольно-измерительной аппаратуры.
Переплавка бронзы
Конечно, каждый сплав имеет как свои плюсы, так и минусы. Бронза – сплав, который состоит из меди и олова, и поэтому он отлично переносит любые переплавки. Его можно использовать несколько раз в совершенно разных целях. С другой стороны, если бронза содержит большое количество примесей, таких как магний, кремний, алюминий, то при переплавке механические свойства могут уменьшиться.
Это обусловлено тем, что легирующие элементы, улучшающие характеристики бронзы, при плавке окисляются и образуют тугоплавкие оксиды, которые располагаются по границам кристаллической решетки. Они нарушают связь между зернами, что делает бронзу более хрупкой.
Как отличить бронзу от латуни и меди
Один из самых распространенных вопросов - это отличие этого сплава от других, похожих на него внешне. Конечно, в пределах промышленности и при помощи специальных реагентов сделать это довольно просто. Но как же быть, если определить материал необходимо в домашних условиях?
Начнем с того, что сплав состоит из олова и меди. Массы этих веществ в процентном содержании могут быть разными. Чем больше меди, тем более ярким будет цвет, а вот за счет содержания в сплаве олова, он будет на порядок тяжелее, чем, например, чистый Cu.
Если же сравнивать бронзу с латунью, то последняя имеет более желтоватый оттенок. Сама по себе медь очень пластична, а вот сплавы на её основе достаточно упругие и твердые. Определить, какой материал перед вами, можно также путем нагрева. Так, у латуни под воздействием высокой температуры выделяется оксид цинка и изделие приобретает пепельный «налет». А вот бронза при нагревании не будет изменять своих свойств.
Произведения искусства
Довольно часто можно встретить различные бронзовые статуэтки и фигурки. Многие произведения искусства были созданы еще в античные времена и в Средние века.
Сплавы, содержащие медь и олово, применяются для изготовления:
Для того чтобы отлить необходимую композицию, создают специальную модель из дерева, гипса или полимерных материалов – так называемая формовка. Полости данной фигуры заполняют глиной и после отливки извлекают. После изготовления поверхность может быть покрыта позолотой, слоем никеля, хрома или же серебром.
Очень важно отметить, что, как правило, для изготовления произведений искусства используется сплав олова и меди без легирующих элементов. Это обуславливается тем, что чем больше таких составляющих присутствует в бронзе, тем больше её усадка, что негативно сказывается на качестве и форме изделия.
fb.ru
никель олово сплавы меди с цинком
В практических условиях большее значение имеет взаимодействие компонентов при совместном разряде ионов металлов, образующих сплавы типа твердых растворов или химических соединений. В данном случае облегчение процесса, обусловленное уменьшением парциальной мольной энергии образования (ДФ) компонентов, сохраняется в течение всего процесса электролиза. Примером является электроосаждение сплавов олово — никель, олово — сурьма, медь — цинк, медь — олово и др. [c.434] Если величина аФ больше для компонента с более отрицательным потенциалом, потенциалы выделения металлов на катоде сближаются. Примером взаимодействия компонентов при образовании сплава являются олово — никель, олово — сурьма медь — цинк и медь — олово. Учитывая смещение равновесного потенциала в сторону положительных значений при образовании сплава типа твердого раствора или химического соединения и изменение перенапряжения при восстановлении ионов на поверхности осаждающегося сплава, уравнение (8) можно написать, в следующем виде [c.255]В промышленности нашли широкое применение гальванические покрытия цинком, кадмием, оловом, свинцом, никелем, медью, хромом, золотом, серебром, а также сплавами медь—цинк, медь—олово и др. [c.339]
Разность равновесных потенциалов цинка и кадмия как в кислых, так и в цианистых растворах при одинаковой концентрации цинка и кадмия составляет около 0,3 в (константы нестойкости цианистых кадмиевых и цинковых ионов близки между собой),, между тем сплав цинк—кадмий в цианистом растворе осаждается, а в кислом не осаждается (при плотности тока ниже предельной). Соосаждение кадмия и цинка в цианистом растворе обусловлено более высокой поляризацией кадмия, чем цинка. Возможность осаждения сплавов медь—никель [168] и медь—цинк, из пирофосфатных растворов [149], сплава олово—цинк из станнатного раствора [158] также обусловлена высокой поляризацией при разряде из комплексного иона более благородного компонента. Поэтому при выборе комплексообразователей для осаждения сплава необходимо принимать во внимание не только константу нестойкости, но и значение поляризации при выделении из данных комплексных ионов, т. е. предварительно строить поляризационные кривые. [c.41]
Латунями называются сплавы медь — цинк, к которым могут быть добавлены и другие элементы. В обозначении марок латуней первая буква Л обозначает латунь . Наличие в сплаве других элементов, кроме меди и цинка, обозначается следующими буквами А — алюминий, Ж — железо, Мц — марганец, К—кремний, С—свинец. О—олово, Н—никель. Стоящие за буквами цифры обозначают среднее содержание элементов, причем первое двузначное число показывает процент меди, последующая цифра — содержание в процентах других элементов в порядке расположения цифр. Остальное до 100% — цинк. Буква Л в конце обозначения марки после цифр указывает, что латунь литейная,, т. е. предназначена для изготовления отливок и не может быть [c.34]
Гальванические покрытия получают путем осаждения при помощи тока на поверхности деталей слоя металла из электролитов, содержащих ионы данного металла. Широко применяются гальванические покрытия цинком, медью, никелем, хромом, оловом, кадмием, свинцом, серебром, а также сплавами медь— цинк, медь—олово, свинец—олово, олово—никель и т. п. [c.4]
Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]
Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]
Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]
При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
Изобретенный в начале столетия способ металлизации обрызгиванием жидким металлом и сегодня успешно применяют для металлизации пластмасс и тканей. Алюминий, цинк, свинец, медь, никель, олово, а также различные их сплавы расплавляют в пламени газовой горелки, в электрической дуге или в потоке плазмы и сжатым воздухом или га-3014 разбрызгивают на покрываемую поверхность. Частицы жидкого металла величиной около 60 мкм по пути к поверхности охлаждаются до 200—800 °С и вследствие кратковременности действия н дальнейшего быстрого охлаждения лишь оплавляют поверхность, прилипая к ней. При металлизации обрызгиванием обычно получают шероховатые и относительно толстые покрытия — 10—1000 мкм. Конечно, такие покрытия не во всех случаях пригодны. Этим способом удобно металлизировать большие плоские [c.13]
Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]
Помимо специально приготовленных катодов из чистых металлов, хорошие результаты дали также сплавы. Сетки или пластинки можно получить из монель-металла и фосфористой бронзы [25, 26]. Амальгамированный никель 127] и амальгамированный цинк 28] одного из типов готовили, оставляя металлы в растворах хлорной ртути. Для приготовления амальгамированного свинца было применено два метода, а именно втирание ртути в пластинку свинца [29] и выдерживание свинцовой пластинки в растворе хлорной ртути 130]. Сплавы, так же как и чистые металлы, приготовляли, кроме того, электроосаждением. Медную сетку лудили [31], толщина полуды в работе не указана. Олово можно электролитически осадить на меди из раствора сульфата двухвалентного олова [32]. Цинковую амальгаму можно приготовить электроосаждением цинка на ртутном катоде из раствора сульфата цинка до получения твердой амальгамы [33]. [c.321]
Электролиз при регулируемом потенциале считается также лучшим методом удаления мешающих элементов из образцов перед анализом их методами спектрофотометрии, полярографии и др. Описанные выше электрогравиметрический и кулонометрический методы как раз и могут быть использованы для этих целей. В таких случаях сначала проводят электролиз для разделения элементов, а затем в оставшемся растворе определяют нужный металл. Приведем пример. Лингейн анализировал методом электролиза при регулируемом потенциале различные сплавы меди, применяя ртутный катод. Из солянокислых растворов медь выделялась вместе с сурьмой и висмутом. В оставшемся растворе автор полярографически определял свинец и олово, после чего осаждал эти элементы электролизом при более отрицательном значении потенциала. Наконец, после этого вторичного электролиза в оставшемся растворе были определены никель и цинк. Лингейн з приводит также и другие примеры избирательного осаждения с использованием ртутного катода. [c.355]
В бронзе, других сплавах и рудах иодометрическому определению могут мешать некоторые сопутствующие меди элементы. Медные сплавы содержат цинк, свинец и олово, а также малые количества железа и никеля, в то же время в медьсодержащих рудах часто встречаются железо, мышьяк и сурьма. [c.342]
Жидкий фтор является одним из наиболее реакционноспособных химических элементов. Медленно реагируют с фтором или совсем не реагируют инертные газы, фториды металлов, фторопласты и металлы висмут, золото, платина, олово и цинк. Медь, хром, марганец, никель, легированная сталь и алюминий в отсутствие воды практически стойки при контакте с фтором в результате образования на их поверхности заш итной пленки фторидов. При повышенных температурах удовлетворительной стойкостью обладают никель, го сплавы и легированные стали. Жидкий фтор хранят в резервуарах из алюминия или легированных сталей. Еще более энергично, чем азотная кислота, фтор разрушает большинство неметаллических материалов. Пластмассы в контакте с фтором воспламеняются. Жидкий и газообразный фтор не оказывает коррозионного воздействия на некоторые керамические материалы. [c.234]
Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V). [c.253]
В морских атмосферах обнаружили исключительно высокую противокоррозионную стойкость алюминиевая бронза (Р), морская латунь (А/) и сплавы медь — никель — цинк (Р) и медь — никель -— олово (высокой стойкостью в морской воде. [c.296]
МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст [c.780]
Значительное количество цинка идет на цинкование железа и сплавов на его основе в целях предохранения их от коррозии. Цинк используется для получения сплавов с медью (латуни), с медью и оловом (бронзы), с никелем (мельхиор), с медью и никелем (нейзильбер), а также для изготовления подшипниковых сплавов (типа ЦАМ). [c.131]
Главнейшие цветные металлы—это медь, цинк, алюминий, никель, олово, свинец. Цветные металлы в большинстве случаев применяют в виде сплавов. Это объясняется тем, что сплавам, изменяя качество и количество составных частей, можно придать такие свойства, которыми не обладает чистый металл. Наиболее широко применяют сплавы меди, алюминия, магния, никеля и др [c.320]
ЭКОНОМИЧНЫМ и совершенным, позволяюш,им наносить более равномерные по толш ине и более высокой химической чистоты покрытия любым металлом, чем при других перечисленных способах. В промышленности нашли широкое применение гальванопокрытия цинком, кадмием, оловом, свинцом, никелем, медью, хромом, серебром, золотом, а также сплавами медь-цинк, медь-олово и др. [c.171]
Как известно, например, из наблюдений Смита [501], Блейзи [502] и, в частности, Фрёлиха [466], на меди при легировании ее такими менее благородными элементами, как кремний, висмут, мышьяк, марганец, никель, олово, титан и цинк, под самой окалиной образуется обогащенный медью слой (содержащий кислород в растворе), в котором распределены маленькие частицы окислов легирующих элементов. Смит [501] назвал такой слой нодокаЛИНОЙ , а само зто явление известно под названием внутреннего окисления . Райне [503] обстоятельно исследовал процесс образования подокалины на меди, легированной различными элементами, в интервале а-твердого раствора при температурах 600° С (192 ч) и 1000° С (2 ч). Он показал, что все сплавы, содержащие электроотрицательные по сравнению с медью элементы, в той или иной мере подвержены внутреннему окислению. Томас [459] исследовал внутреннее окисление меди в ее сплавах с пал- [c.193]
Из др>п[. покрытий сплавами меди известны составы э-тектролитов для осаждения покрытий медь — свинец, медь — кадмий, медь — никель, медь — никель — цинк, медь — олово— цннк, применяемые как для защитно-декоративной отделки, так н для специальных целей. [c.103]
Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]
Наиболее агрессивнЕлми из атмосфер по отношению к медным сплавам оказались промышленные, в них коррозия выше, чем в морской и сельской. Алюминиевьк бронзы (Р), сплавы медь — никель — цинк (Р), а также медь — никель—олово (0, обладающие обычно высокой противокоррозионной стойкостью в морской воде, обнаружили также незначительную коррозию и в промышленно-морской атмосфере. [c.296]
Примечание. Цинк, свинец, никель, олово и марганец в тех копи-нествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор аскорбиновой кислоты, которая восстанавливает ионы Ре + до Fe ", образующих с эриохромцианином бесцветный комплекс влияние ионов меди устраняют добавлением тиосульфата натрия, образзгаощего бесцветный тиосульфатный комплекс. Анализ выполняется за 12—15 мин с ошибкой, не превышающей 3 отн. %. [c.94]
Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]
К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2, [c.29]
И Спекулум [11]), олово — никель [27], олово—свинец [68], олово — цинк и олово — кадмий [69] и тройные сплавы олово — медь-цинк и олово— медь — кадмий [69а. [c.708]
chem21.info
цинк олово сплавы железа с никелем сплавы меди
МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст [c.780] Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]
Латунями называются сплавы медь — цинк, к которым могут быть добавлены и другие элементы. В обозначении марок латуней первая буква Л обозначает латунь . Наличие в сплаве других элементов, кроме меди и цинка, обозначается следующими буквами А — алюминий, Ж — железо, Мц — марганец, К—кремний, С—свинец. О—олово, Н—никель. Стоящие за буквами цифры обозначают среднее содержание элементов, причем первое двузначное число показывает процент меди, последующая цифра — содержание в процентах других элементов в порядке расположения цифр. Остальное до 100% — цинк. Буква Л в конце обозначения марки после цифр указывает, что латунь литейная,, т. е. предназначена для изготовления отливок и не может быть [c.34]
Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]
Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]
Для исследования состава алюминиевых сплавов применяют часто еще следующий способ разложения и анализа. 0,1—0,2 г алюминиевых стружек или опилок помещают в коническую колбу и прибавляют небольшими порциями 25%-ный раствор едкого натра. Ввиду того что реакция растворения протекает очень бурно, следует иметь наготове сосуд с холодной водой для охлаждения содержимого колбы с целью замедлить реакцию. После прекращения реакции дают раствору постоять 3—5 мин., затем разбавляют вдвое водой и кипятят. Осадок, содержащий соединения меди, железа, никеля, марганца, магния и кальция, отфильтровывают от раствора, в котором находятся алюминий, цинк, олово и большая часть кремневой кислоты. Затем в осадке и растворе определяют вышеперечисленные элементы. [c.132]
Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V). [c.253]
Значительное количество цинка идет на цинкование железа и сплавов на его основе в целях предохранения их от коррозии. Цинк используется для получения сплавов с медью (латуни), с медью и оловом (бронзы), с никелем (мельхиор), с медью и никелем (нейзильбер), а также для изготовления подшипниковых сплавов (типа ЦАМ). [c.131]
Связь между образованием химических соединений (или твердых растворов) и смачиванием подтверждают данные о взаимодействии различных твердых металлов (железо, никель, медь, золото, серебро) с жидкими металлами (серебро, сурьма, теллур, цинк, свинец, кадмий, висмут, олово, алюминий) в атмосфере водорода [125]. При полной несмешиваемости в жидком и твердом состояниях смачивание отсутствует (например, при контакте жидкого висмута с железом, жидкого кадмия с алюминием), тогда как в системах с образованием растворов, эвтектических сплавов, химических соединений имеет место хорошее смачивание [130]. [c.91]
Восстановление солей никеля протекает лишь на металлах, катализирующих этот процесс (железо, никель, кобальт, алюминий, палладий). Выделение никеля на меди и ее сплавах возможно только при контакте их с электроотрицательными металлами алюминием, цинком и другими, или же после кратковременной обработки покрываемой поверхности раствором хлорида олова (сенсибилизация) и в разбавленном растворе хлорида палладия (активирование). На таких металлах, как свинец, кадмий, цинк, олово, сурьма, процесс вообще не идет. [c.173]
В состав продуктов коррозии, переходящих в рабочую среду основного цикла ТЭС, входят все компоненты сплавов, которые применяются для изготовления котлов, турбин, конденсаторов, подогревателей и другого оборудования. Стали обогащают воду и пар продуктами коррозии, содержащими в своем составе железо, хром, молибден, никель, ванадий и другие легирующие добавки. Латуни посылают в воду продукты коррозии, содержащие медь и цинк, а также олово, алюминий и никель. [c.113]
За последние годы все более широкое применение находят сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово — цинк, кадмий — цинк, олово — кадмий и др.), антифрикционных свойств (олово — свинец, свинец—цинк, серебро — кадмий, олово — свинец —сурьма и др.), высоких декоративных свойств (медь — золото, золото — серебро, никель — олово, медь — олово и др.), магнитных свойств (никель— кобальт, вольфрам — кобальт, никель — железо и др.). специальных свойств, например сцепление с резиной (медь — цинк), как подслой под окраску (железо —цинк), для пайки (олово — свинец) и т. п. [c.194]
К первой группе медных сплавов относится сама медь и ее сплавы, содержащие в основном следующие элементы цинк, олово, свинец, фосфор, сурьму, железо, никель, марганец. [c.291]
Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]
Примечание. В марках сплавов цветных металлов приняты следующие обозначения Бр — бронза, А — алюминий, Ж — железо, Н — никель, М — медь, Мц — марганец, О — олово, Ц — цинк, С — свинец, Л — латунь (медноцинковын сплав), К — кремний, X — хром. [c.168]
Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]
Из всех известных в настоящее время металлов больще половины можно О саждать на другие металлы электролитическим способом. Практически осуществляют гальваиичеекие покрытия не менее чем 10— 15 металлами, в том числе больше всего цинком, никелем, медью, хромом, оловом, кадмием, свинцом, серебром и железом. Менее распространены покрытия платиной, родием, палладием, кобальтом, марганцем , мышьяком, индием, ртутью. Покрытия такими металлами, как галлий, нио бий, вольфрам, молибден и рений, в гальванической практике широкого применения не имеют. За последнее время были о саждены электролитически такие виды металлов, как уран, плутоний, актиний, полоний, цезий, торий, а также германий. Получили значительное практическое применение различные тюирытия сплавами, в том числе сплавами олово-цинк, олово-никель, олово-свинец, никель-кобальт, золото-медь и другими. Почти все применяемые виды покрытий можно разбить по их назначению на следующие группы защитные, защитно-декоративные к специальные покрытия. [c.11]
В связи с широким развитием техники требуются покрытия с новыми специфическими свойствами, которылш зачастую электроосажденные слои отдельных металлов не обладают. За последние годы находят все более широкое применение сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово-цинк, олово-свинец, кад5лий-цинк, олово-кадмий и др.), антифрикционных свойств (сплавы олово-свинец, свинец-цинк, серебро-кадмий, олово-свинец-сурьма, и др.), высоких декоративных свойств (сплавы медь-золото, золото-серебро, никель-олово, медь-олово и др.), магнитных свойств (сплавы никель-кобальт, вольфрам-кобальт, никель-железо и др.), специальных [c.208]
Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]
За исключением золота и платиновой группы все металлы подвержены действию влажного озонированного кислорода. Медь, никель и олово сопротивляются действию озона довольно хорошо алюминий, цинк и свинец — сильно корродируют в озоне. Железо, сплавленное с хромом, если оно не содержит углерода, не подвержено действию озона на этом основано применение сплава железа с 25% хрома для химической аппаратуры, используемой для работы с окислами авота и озоцом. [c.504]
При решении вопроса о допустимости контакта между металлами можно также руководствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — цинк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоникелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]
chem21.info
Сплав медь — олово (бронза)
Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446] Пушечные бронзы представляют собой сплавы меди, олова и цинка (со свинцом или без свинца), используемые для литья. Наиболее широко распостранены сплавы 105п—22п и 55п—52п—5РЬ. [c.92]Цель работы — ознакомление с процессом электроосаждения сплавов медь — цинк (латунь) и медь — олово (бронза) выяснение условий совместного осаждения металлов и влияния отдельных факторов на состав и свойства сплавов. [c.60]
Бронзы — сплавы меди (кроме латуней и медно-никелевых оплавов) с оловом (оловянные бронзы) и сплавы меди с алюминием, бериллием, кремнием, марганцем и другими компонентами, которые являются главными и в соответствии с которыми бронзы получают название. Как и латуни, бронзы подразделяются на литейные и деформируемые. Обозначение бронз начинается с букв Бр. [c.237]
Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]
Благодаря хорошим противокоррозионным свойствам, важную роль начинают играть оловянные сплавы [12]. Испытания показали, что они могут служить хорошей заменой никелевых покрытий. Составы электролитов и свойства сплавов, которые могут применяться также для декоративных покрытий, достаточно известны. Подробно описаны следующие сплавы медь — олово (бронзы [69] [c.707]
СПЛАВ МЕДЬ —ОЛОВО (БРОНЗА) [c.216]
Оловянистые бронзы представляют собой сплавы медь—олово, отличающиеся высокой прочностью. Сплавы, содержащие более 5 % 5п, особо устойчивы к ударной коррозии. По сравнению с медью сплавы медь—кремний, содержащие 1,5—4 % 51, имеют лучшие физические свойства и идентичны по стойкости к общей коррозии. При содержании 1 % 51 стойкость сплавов к КРН недостаточна, но у сплава с 4 % 51 она становится вполне удовлетворительной [2]. Проведенные в Панаме испытания в морской воде показали, что наиболее стойкими из всех медных сплавов является сплав А1—Си с 5 % А1. Потеря массы этого сплава при испытаниях в течение 16 лет составила 20 % от соответствующей потери меди [15]. [c.330]
Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]
Порошки легкоплавких металлов, оксидов и сплавов свинца, меди, олова, бронзы и пр. [c.159]
Медь Си (0,0055% массы) — один из первых металлов, известных человеку. С доисторических времен ее сплав с оловом — бронза — применялся для изготовления оружия и [c.219]
Бронзы подразделяются на простые (сплавы меди и олова) и специальные. Специальные бронзы бывают оловянистые (сплавы меди, олова и других элементов) и безоловянистые (сплавы меди с другими элементами, кроме олова и цинка). [c.61]
В древнем Египте, Китае, Индии, Греции и Риме уже широко применяли красители, дубители, изделия из меди, олова, бронзы (сплава олова и меди), серебра, свинца, железа. [c.18]
Медь. Известна с глубокой древности в чистом виде и как сплав с оловом — бронза. Бронзовый век — эпоха в развитии человечества, характеризующаяся применением бронзы для изготовления домашней утвари, орудий труда и оружия. По-видимому, в доисторическое время человеку случайно удалось получить этот сплав (прокаливанием меди с минералами олова), более легкоплавкий и лучше поддающийся обработке, чем сама медь. [c.22]
Медь и ее сплавы с цинком (латунь, желтая и зеленая медь), оловом (бронза), свинцом и сурьмою, в штыках, лому, порошке, стружка.х, а также в продуктах переделки руд в металл, с пуда два рубля восемьдесят копеек 2.80 1 8 1 35% [c.309]
Несмотря на то что оловянистая бронза успешно наносится в качестве подслоя для 18. покрытия хромом из-за дефицитности никеля [41, 42], основное ее назначение — декоративная отделка, поскольку это покрытие имитирует по цвету красное зо- 19. лото. Однако, как и для латуни, покрытие сплавами медь — олово должно быть защищено бесцветным лаком от потускнения. 20. [c.434]
Широко распространены такие сплавы меди, как бронза и латунь. Бронза содержит олово и цинк и применяется при изготовлении отливок, так как она не подвержена коррозии и механически прочна. Латунь состоит из меди и цинка она не так прочна и ковка, как медь, но легко отливается и обрабатывается латунь не подвержена коррозии. Латунь, содержаш ая около 30% цинка, применяется для изготовления патронных гильз и радиаторов. Латунь, в состав которой входит около 40% цинка и небольшое количество олова, применяется в судостроении она очень устойчива по отношению к морской воде и хорошо полируется. Другим важным сплавом меди является так называемое никелевое серебро, содержаш,ее 20% цинка и 15% никеля. Этот сплав выглядит как серебро и используется для изготовления столового серебра и ключей. [c.192]
Задолго до возникновения современной химии и химической технологии люди уже владели многими химическими реакциями. Горение древесины — первая химическая реакция, использованная человеком. Возможность обогреться у костра в холодную погоду, приготовить на огне пищу сыграла огромную роль в развитии человеческой культуры. Огонь дал возможность возникновения первых ремесел, керамического и металлургического. Вылепленные из глины изделия обжигались при высокой температуре, в пламени костров плавились самородные металлы, а позднее и восстанавливались металлы из окисленных руд углеродом топлива. Человек овладел искусством изготовления прозрачных стекол. У древних египтян, китайцев, индийцев, у греков и римлян существовали уже разнообразные химические ремесла, применялись неорганические и природные органические красители, дубители, изделия из железа, меди, олова, бронзы (сплава олова и меди), серебра, свинца. [c.10]
Первыми используемыми металлами были, вероятно, золото и серебро, поскольку их можно было найти в природ в свободном состоянии. Применяли их в основном в декоративных изделия . Медь начали использовать около 8000 лет до нашей эры для изготовления орудий труда, оружия, кухонной утвари и украшений. Около 3800 лет до нашей эры была изобретена бронза — сплав меди и олова. В результате человечество перешло из каменного в бронзовый век. Затем был найден способ выплавки железа, и начался железный век. По мере того как люди накапливали свой химический опыт, расширялся и круг полезных материалов, которые человек научился получать путем переработки самых разнообразных руд. [c.150]
Сплавы цветных металлов. К сплавам цветных металлов относятся сплавы меди (латуни, бронзы), олова и свинца (баббит), а также сплавы олова, сурьмы и свинц (типографские сплавы). [c.90]
Здесь следует остановиться на одном очень важном обстоятельстве. Всякая теория играет в науке важную роль постольку, и только постольку, поскольку она обеспечивает более ясное понимание свойств реального мира. Описание бронзы как сплава замещения олова и меди лучше, чем ее описание как слияние Юпитера и Венеры, согласно алхимической терминологии, поскольку теория,- рассматривающая сплав олова с медью, предполагает постановку экспериментов, которые позволят объяснить свойства бронзы, предсказать их и даже улучшить, тогда как теория небесного су- [c.280]
Оловянистые бронзы. Оловянистыми бронзами на-з-ывг ют сплавы меди с содержанием олова не свыше 20%. Си- [c.249]
Бронза представляет собой сплав меди с оловом. Олово обеспечивает повышенную прочность и твердость сплава, но резко снижает его пластичность. [c.32]
Особый тип химической связи наблюдается в металлах. Металлические кристаллы характеризуются большим числом весьма полезных свойств, которые сделали их незаменимым материалом для человечества. К ним относятся высокая отражательная способность, высокая пластичность (способность вытягиваться в проволоку), ковкость, высокие теплопроводность и электропроводность. Эти свойства обусловлены особенностями металлического типа химической связи. Одна из них, как уже упоминалось, обязана высокой подвижности электронов, которая, по-видимому, приводит к тому, что кристаллические решетки металлов не являются такими жесткими, как у типичных ионных или ковалентных кристаллов. Отметим также важную особенность металлов — их способность образовывать сплавы, т. е. давать однородные твердые растворы, отличающиеся новыми, полезными свойствами. Например, сталь — главный конструкционный материал современной техники — представляет собой в основном твердый раствор углерода в железе. Огромную роль на начальных этапах истории человечества сыграли плавящиеся при относительно низкой температуре сплавы меди и олова, т. е. бронза (бронзовый век). [c.163]
Сплав меди с оловом, содержащий 10% 5п, характеризуется прочностью, твердостью, ковкостью, способностью легко поддаваться штамповке. Количество олова в сплаве с медью можно варьировать в довольно широких пределах. При этом получают колокольную бронзу или орудийную бронзу. [c.398]
Сплав медь—олово (бронза). Покрытие сплавом медь—олово, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистьш сплавом (10—20% олова) золотисто-желтого цвета используют также в качестве подслоя взамен медного и никелевого покрытий перед хромированием. Высоко-оловянистый сплав (40—45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си—5п значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, в то время, как у серебра, возрастает в десятки раз. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты. [c.60]
Иногда, обладая защитными свойствами, продукты могут иметь плохие противокоррозионные свойства, т. е. могут быть коррозионно агрессивными. Так, составы на основе синтетических жирных кислот, кубовых остатков синтетических жирных кислот, продуктов их взаимодействия с триэтаноламином (например, смазка ЖКБ), ингибиторы коррозии типа МСДА-1 — соли синтетических жирных кислот и дицнклогексиламина, защищая в тонкой пленке черные металлы от коррозии, вызывают или усиливают химическую коррозию цветных металлов и сплавов (свинца, меди, олова, бронзы), особенно при высоких температурах. Возможны и противоположные действия, когда присадки или продукты, обладая хорошими противокоррозионными свойствами, не обладают защитными свойствами или даже усиливают электрохимическую коррозию. Так, многие серо- и серофосфорсодержащие противокоррозионные присадки, улучшающие противокоррозионные свойства нефтепродуктов, не улучшают или ухудшают их защитные свойства [20]. Некоторые маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов (жирные кислоты, амины, алке-нилсукцинимиды и др.), ухудшают их противокоррозионные свойства по отношению к цветным металлам [15—20]. [c.34]
Медь была известна еще в древние времена о ней упоминается и в Илиаде и старинных персидских рукописях. В Египте, Ассирии, Финикии и на Американском материке были найдены изделия из меди, возраст которых превышает 6000 лет. Самые древние предметы были изготовлены из почти чистой медп, а неско.лько позднее появляются изделия из бронзы (сплав медь — олово) — наступает бронзовый век, из которого до наших дней дошли многие изделия из этого металла. [c.681]
Медь — олово. Покрытие сплавом медь — олово, или бронзирование, применяется как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловяни-стым сплавом (10—20% Sn) золотисто-желтого цвета применяют также в качестве подслоя -взамен медного и никелевого покрытий перед хромированием. Высокооловянистый сплав (40—45% Sn), так называемая белая бронза, может служить заменой серебра. [c.440]
Сплав медь — олово (бропза). Покрытия желтой бронзой содержат 40% Sn. Покрытия желтой бронзой применяют в основном для защиты стальных изделий от коррозии в среде холодной и кипящей водопроводной воды. При толщине покрытия > 20 мкм даже после 30 суток непрерывного испыта- [c.130]
Бронзы, употреблявшиеся в Древней Руси, были подобны византийским и корсунским они содержали 8—10% олова. Позднее бронзовые отливки в Древней Руси производились из так называемой спруды (сплава меди, олова и цинка). Этот сплав был распространен в XII—XIV вв. Впоследствии (в XV—ХУП вв.) на Руси применялись отливки из красной меди, а с ХУП1 в. начали окончательно внедряться сплавы латуни (медь с Цинком) (65). [c.127]
Цинк, олово, никель, алюминий добавляются в медь обычно в качестве легирующих присадок при этом получаются основные сплавы меди медпоникелевые, бронза, латунь. Присутствуя в меди в небольших количествах, эти элементы обычно полностью растворяются в ней, не ухудшая при этом ее механических свойств. [c.176]
Свойства электроосажденных сплавов медь—олово в значительной степени определяются их структурой, которая зависит, в первую очередь, от состава электролита. Наиболее распространенным электролитом является цианистый электролит [1, 2]. Для получения гальванических осадков бронзы использовались пиро- [c.18]
Показано, что при осаждении сплавов медь—олово из различных электролитов образуются сильно пересыщенные твердые растворы. По данным Д. И. Лайнера [10, 11], при осаждении из цианистого электролита однофазный твердый раствор на основе меди сохраняется до 14% Зп. При получении сплавов медь—олово из хлорно- и сернокислых электролитов однофазный твердый а-раствор сохранялся до 22% 5п и период элементарной ячейки был равен 3,75 А. По данным Рузалеппа [14], максимальное значение периода решетки а-раствора было равно 3,72 А. Ю. Е. Ге-ренрот и др. [15] при изучении фазового состава осадков бронзы, полученных из сернокислых электролитов с добавками, установили, что максимальная величина периода элементарной ячейки а-раствора равна 3,6825 А. При содержании олова 16—20% была обнаружена новая фаза б. Во многих работах отмечается появление известных фаз в неравновесных условиях. [c.19]
Бронза является другим наиболее распространенным сплавом меди. Оловянистыми бронзами называются сплавы меди с оловом, в них содержится до 20% Sn, однако большей частью применяются бронзы, в которых имеется не более 10% Sn. Широко применяются алюминиевые бронзы (5—10% А1). Часто в эти бронзы вводят в небольшом количестве марганец, никель, свинец, железо и т. д. Кроме этих наиболее распространенных бронз, существует много других, напимер кремнистая бронза (4% Si и 1% Мп), бериллиевые бронзы (до 3% Ве) и т. д. [c.81]
Из цвегнь1х сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 56 и 57. Для определения олова обычно [c.447]
Применение. Около 50% добываемой меди идет на изготовление проводоз (другим материалом для проводов является алюминий, однако его электропроводность меньше, чем у меди, он менее прочен и трудно паяется). Широко используют различные сплавы меди/ Наиболее применяемы латуни (сплавы, содержащие кроме меди 20—507о Zn, а также другие металлы), бронзы [сплавы меди с оловом (10—20%), бериллием, алюминием и другими металлами] и медноникелевые сплавы. [c.589]
Бронзы. Бронзами пазьгваются литейные сплавы меди с оловом, алюминием, марганцем и другими элементами. Наиболее широко известны оловянистые бронзы. [c.249]
Применение оловянистой бронзы ограничивается изготовлени ем деталей для отдельных узлов оборудования. В настоящее время оловянистые бронзы заменяются более экономичными и прочными алюминиевыми бронзами — сплавами меди с алюминием. Промышленность выпускает также специальные бронзы, в которых не содержится олово, но имеются добавки алюминия, марганца, кремния и др. [c.32]
Бронзовый век начался 6 тыс. лет тому назад и его протяженность во времени составляет 3 тыс. лет. Бронзовый век характерен тем, что оружие, домашняя утварь, предметы искусства изготовлялись из металла, главным образом пз бронзы. Выбор бронзы определялся условиями выплавления этого сплава пз руды так как сплавы на основе меди п олова, как правило, нпзкоплавки, они могут быть получены прокаливанием соответствующих руд с углем при температуре горения дерева. Еслп в кострах древних людей случайно среди камней попадались минералы меди, олова, цинка и др., под действием раскаленного угля происходило восстановление руды до металла. При этом образовывалась быстро застывающая при охлажденпи капля. Разогретый металл легко ковался, пз него можно было приготовить изделия различной формы и назначения. [c.251]
chem21.info
Олово сплав медью - сплав меди с химическими элементами металлами олово, алюминий, бериллий, свинец, кадмий, хром
Наиболее распространены алюминиевые бронз с 5—12% алюминия и добавками железа, марганца и никеля. БРОНЗА — (франц. Сплав меди, олова и цинка, похожий, по внешнему виду, на золото.
Оловянная бронза — сплавмеди с оловом (медь преобладает), один из первых освоенных человеком сплавов металлов. Она обладает значительно большей, по сравнению с чистой медью (освоенной ранее бронзы), твёрдостью, достаточной прочностью и более легкоплавка. Открытие бронзы сыграло огромную роль в освоении металлов человеком. Бронза майкопских курганов в основном представлена сплавом меди с мышьяком.
Смотреть что такое «Бронза (сплав меди)» в других словарях:
Здесь, после перехода к оловянно-медному сплаву, бронза обрела положение одного из важнейших декоративных материалов. В настоящее время существует ряд марок бронз, не содержащих олова. Это двойные или чаще многокомпонентные сплавы меди с алюминием, марганцем, железом, свинцом, никелем, бериллием и кремнием.
Оловянная бронза (кроме марок с низким содержанием олова — т. н. деформируемой бронзы) с трудом поддаётся обработке давлением (ковка, штамповка, прокатка и пр.), резанию и заточке. Благодаря этому бронза в целом — литейный металл, и по литейным качествам не уступает любому другому металлу. Оловянные бронзы могут быть дополнительно легированны цинком, никелем, фосфором, свинцом, мышьяком и другими металлами.
В древности иногда использовался сплав меди с мышьяком — мышьяковистая бронза, в некоторых культурах использование мышьяковистой бронзы даже предшествовало выплавке оловянной. По некоторым свойствам безоловянные бронзы превосходят оловянные. Прочность алюминиевой и бериллиевой бронзы может быть увеличена при помощи термической обработки.
Однако они являются товаром на мировом рынке и предназначаются в качестве лигатуры при изготовлении многих марок фосфористых бронз, а также и для раскисления сплавов на медной основе. Б. не называют сплавы меди с цинком (см. Латунь) и никелем (см. Медноникелевые сплавы).
См. также Медные сплавы. Лит.: Смирягин А. П., Промышленные цветные металлы и сплавы, 2 изд., М., 1956: Новиков И, И., Захаров М. В., Термическая обработка металлов и сплавов, М., 1962. И. И. Новиков. Удельныйвес бронзы обыкновенно больше, чем среднее из удельного веса составных частей, и меняется от проковки и более или менее быстрого охлаждения.
Бронза, сплав меди с разными химическими элементами
90—91 ч. меди и 9—10 ч. олова (содержит также иногда небольшие количества цинка и свинца). Сплавы с таким составом весьма склонны к ликвации. 78% меди и 22% олова; уд. вес 8,368. Содержание серебра в некоторых колоколах составляет случайную или излишнюю примесь: ошибочно думают, что серебро увеличивает звучность колоколов. Сплав меди с оловом указанного состава обладает всеми теми свойствами, которые можно требовать от хорошего колокола, т. е. звучностью, достаточной твердостью и прочностью (противодействием разрыву).
Алюминиевые сплавы.
Сплавы, идущие на изготовление музыкальных ударных инструментов и для китайских там-там или гонг-гонг, имеют состав, подобный колокольному металлу.
Магниевые сплавы.
Эти неудобства могут быть устранены известным изменением состава бронзы, а потому в настоящее время при отливке статуй часть олова в бронзе заменяют цинком. Большее содержание олова делает бронзу слишком хрупкой, а от излишней прибавки цинка она теряет свой цвет и покрывается некрасивым темным налетом металлических соединений.
По Д’Арсе, наиболее пригодна для отливки статуй бронза, состоящая из 82% меди, 18% цинка, 3% олова и 1,5% свинца. Примесь кремния меняет цвет и свойства алюминиевой бронзы. Как материал для изготовления различных частей машин, она вытесняет на бумажных фабриках и пороховых заводах фосфорную бронзу («Jahresber. Вейлеровская кремневая бронза (для телефонных проволок) содержит, по анализу Гампе, 97,12% меди, 1,62% цинка, 1,14% олова и 0,05 кремния.
Соответственно, Б. называется оловянной, алюминиевой, бериллиевой и т.п. Типовой состав техн. Б. медь с оловом; для удешевления и придания специальных свойств к Б. прибавляют цинк, свинец, марганец, кремний, фосфор, алюминий, железо и другие металлы.
Бронза применялась в древности для производства оружия и орудий труда (наконечников стрел, кинжалов, топоров), украшений, монет и зеркал. В средние века большое количество бронзы шло на отливку колоколов. Разнообразная бронза играют важную роль в современном машиностроении, авиации и ракетной технике, судостроении и др. отраслях промышленности.
Свинцовые сплавы.
Деформируемые бронзы (ГОСТ 5017-74) поставляются в виде полуфабрикатов (прутки, проволоки, ленты, полосы) в нагартованном (твердом) и отожженном (мягком) состояниях. Эти бронзы применяют для вкладышей подшипников, втулок деталей приборов и т. п. Литейные оловянные бронзы содержат большее количество олова (до 15%), цинка (4-10%), свинца (3-6%), фосфора (0,4-1,0%).
А знаете ли вы? *
Высокая стоимость и дефицитность олова — основной недостаток оловянных бронз.Безоловянные бронзы содержат алюминий, железо, марганец, бериллий, кремний, свинец или различное сочетание этих элементов.
Алюминиевые бронзы имеют высокую коррозионную стойкость, хорошие механические и технологические свойства. Эти бронзы хорошо обрабатываются давлением в горячем состоянии, а при содержании алюминия до 8% — и в холодном состоянии. Из бериллиевых бронз изготовляют детали особо ответственного назначения.Кремнистые бронзы (БрКН1-3, БрКМцЗ-1) применяют как заменители дорогостоящих бериллиевых бронз.Сплавы меди с никелем.
Уважаемый посетитель, Вы прочитали статью «Медь и медные сплавы», которая опубликована в категории «Материаловедение». СПЛАВЫ, материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов, из которых хотя бы один является металлом.
Самый распространенный способ получения сплавов – затвердевание однородной смеси их расплавленных компонентов. В принципе, четкую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других элементов.
Оловянная бронза — древнейший сплав, выплавленный человеком. Например, сплав меди с 2% бериллия после термической обработки приобретает большую прочность, чем многие стали, и очень высокий предел текучести — 1280 Мн/м2 (128 кгс/мм2). Бронза — (химич.). Чугуном называется сплав железа с 2–4% углерода. Бронза представляет из себя сплав меди и олова с небольшими добавками других металлов.
alterguona.ru
Олово сплав медью - Справочник химика 21
Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446] Бронзы — сплавы меди (кроме латуней и медно-никелевых оплавов) с оловом (оловянные бронзы) и сплавы меди с алюминием, бериллием, кремнием, марганцем и другими компонентами, которые являются главными и в соответствии с которыми бронзы получают название. Как и латуни, бронзы подразделяются на литейные и деформируемые. Обозначение бронз начинается с букв Бр. [c.237]Цель работы — ознакомление с процессом электроосаждения сплавов медь — цинк (латунь) и медь — олово (бронза) выяснение условий совместного осаждения металлов и влияния отдельных факторов на состав и свойства сплавов. [c.60]
В практических условиях большее значение имеет взаимодействие компонентов при совместном разряде ионов металлов, образующих сплавы типа твердых растворов или химических соединений. В данном случае облегчение процесса, обусловленное уменьшением парциальной мольной энергии образования (ДФ) компонентов, сохраняется в течение всего процесса электролиза. Примером является электроосаждение сплавов олово — никель, олово — сурьма, медь — цинк, медь — олово и др. [c.434]
Латуни. Латунями называют сплавы меди с цинком, содержащие от 10 до 50% 2п, иногда дополнительно легированные рядом других элементов (алюминием, оловом, кремнием, никелем и др.). В первом случае это так называемые простые латуни, во втором — специальные латуни. [c.252]
Первыми используемыми металлами были, вероятно, золото и серебро, поскольку их можно было найти в природ в свободном состоянии. Применяли их в основном в декоративных изделия . Медь начали использовать около 8000 лет до нашей эры для изготовления орудий труда, оружия, кухонной утвари и украшений. Около 3800 лет до нашей эры была изобретена бронза — сплав меди и олова. В результате человечество перешло из каменного в бронзовый век. Затем был найден способ выплавки железа, и начался железный век. По мере того как люди накапливали свой химический опыт, расширялся и круг полезных материалов, которые человек научился получать путем переработки самых разнообразных руд. [c.150]
Здесь следует остановиться на одном очень важном обстоятельстве. Всякая теория играет в науке важную роль постольку, и только постольку, поскольку она обеспечивает более ясное понимание свойств реального мира. Описание бронзы как сплава замещения олова и меди лучше, чем ее описание как слияние Юпитера и Венеры, согласно алхимической терминологии, поскольку теория,- рассматривающая сплав олова с медью, предполагает постановку экспериментов, которые позволят объяснить свойства бронзы, предсказать их и даже улучшить, тогда как теория небесного су- [c.280]
Оловянистые бронзы. Оловянистыми бронзами на-з-ывг ют сплавы меди с содержанием олова не свыше 20%. Си- [c.249]
Бронза— сплав меди с другими элементами, в основном с металлами. В зависимости от состава различают оловянную бронзу (состоит из меди и олова), алюминиевую бронзу (содержит до 5—11 % алюминия), свинцовую (до 33% свинца), кремниевую (до 4 % кремния) и др. Применяется для изготовления частей машин и для художественных отливок. [c.156]
Оловянистые бронзы представляют собой сплавы медь—олово, отличающиеся высокой прочностью. Сплавы, содержащие более 5 % 5п, особо устойчивы к ударной коррозии. По сравнению с медью сплавы медь—кремний, содержащие 1,5—4 % 51, имеют лучшие физические свойства и идентичны по стойкости к общей коррозии. При содержании 1 % 51 стойкость сплавов к КРН недостаточна, но у сплава с 4 % 51 она становится вполне удовлетворительной [2]. Проведенные в Панаме испытания в морской воде показали, что наиболее стойкими из всех медных сплавов является сплав А1—Си с 5 % А1. Потеря массы этого сплава при испытаниях в течение 16 лет составила 20 % от соответствующей потери меди [15]. [c.330]
ОЛОВА СПЛАВЫ — сплавы на основе олова. Для олова весьма характерно образование химических соединений с другими металлами. Наибольшее значение в технике имеют сплавы олова со свинцом, медью (бронзы), сурьмой, применяемые в качестве антифрикционных сплавов — баббитов, оловянно-свинцо-вых припоев, сплавов для литья художественных изделий, посуды, деталей приборов, фольги и др. [c.181]
Бронза представляет собой сплав меди с оловом. Олово обеспечивает повышенную прочность и твердость сплава, но резко снижает его пластичность. [c.32]
Обычная толщина стенки труб равна 1,245 мм. При применении пресной воды обычно используют сплавы меди, такие, как морская латунь (70% меди, 29% цинка и 1% олова). Трубы конденсаторов, охлаждаемых морской водой, обычно делают из никелевых сплавов, таких, как монель-металл. В некоторых случаях выбор материала бывает обусловлен необходимостью минимального загрязнения конденсата [61. [c.250]
Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]
В раствор навески баббита (сплав, состоящий из олова, сурьмы, меди, свинца, кальция и натрия) погрузили металлическое железо (железную пластину). Пользуясь рядом напряжений (см. [2, табл. 79]), укажите, какие компоненты этого сплава можно удалить таким способом из раствора. [c.193]
Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]
Для определения фосфора сплав меди растворяют в азотной кислоте и из полученного раствора осаждают фосфат-ион молибденовой жидкостью. В случае присутствия олова при растворении сплава в азотной кислоте образуется оловянная кислота, адсорбирующая из раствора фосфорную кислоту (см. 43). Тогда азотнокислый раствор сплава предварительно выпаривают несколько раз досуха, добавляя каждый раз соляную кислоту для удаления большей части олова в виде летучего хлорного олова, после чего осаждают фосфат-ион обычным способом. [c.456]
Сплавы олова с сурьмой и медью применяются для изготовления подшипников. Эти сплавы (оловянные баббиты) обладают высокими антифрикционными свойствами. Сплавы олова со свинцом — припои — широко применяются для пайки. В качестве легирующего компонента олово входит в некоторые сплавы меди. [c.422]
ПРИПОЙ — металл или сплав, применяемый при пайке для заполнения зазора между отдельными соединяемыми частями (деталями) с целью получения монолитного соединения. Применяют сплавы на основе свинца, олова, кадмия, меди, никеля или серебра. [c.203]
Олово и свинец применяют с глубокой древности. Особую роль в истории материальной культуры сыграла бронза — сплав олова с медью. В современной технике олово в основном используют для лужения, т. е. для покрытия им других металлов. Листовое железо, покрытое оловом, называется белой жестью. Олово по сравнению с железом более коррозионно стойко, и оловянное покрытие на жести является катодным (см. Курс химии, ч. I. Общетеоретическая, гл. IX, 13). В силу этого белая жесть сохраняет устойчивость к химическому воздействию воздуха и воды только при условии целостности покрытия обнажившееся железо становится анодом гальванической пары железо — олово и подвергается коррозии более интенсивно,чем совсем не защищенное. [c.207]
Олово — металл с доисторических времен известный человечеству. На заре своей деятельности люди использовали сплав олова с медью (бронза) для изготовления орудий труда. В средние века олово широко использовалось для изготовления посуды и различной домашней утвари. Это объясняется, по-видимому, тем, что олово легко получается из природного своего соединения ЗпОг нагреванием последнего с углем. [c.192]
Особый тип химической связи наблюдается в металлах. Металлические кристаллы характеризуются большим числом весьма полезных свойств, которые сделали их незаменимым материалом для человечества. К ним относятся высокая отражательная способность, высокая пластичность (способность вытягиваться в проволоку), ковкость, высокие теплопроводность и электропроводность. Эти свойства обусловлены особенностями металлического типа химической связи. Одна из них, как уже упоминалось, обязана высокой подвижности электронов, которая, по-видимому, приводит к тому, что кристаллические решетки металлов не являются такими жесткими, как у типичных ионных или ковалентных кристаллов. Отметим также важную особенность металлов — их способность образовывать сплавы, т. е. давать однородные твердые растворы, отличающиеся новыми, полезными свойствами. Например, сталь — главный конструкционный материал современной техники — представляет собой в основном твердый раствор углерода в железе. Огромную роль на начальных этапах истории человечества сыграли плавящиеся при относительно низкой температуре сплавы меди и олова, т. е. бронза (бронзовый век). [c.163]
Для покрытия сплавом медь — олово предложено большое число электролитов. Как и для латуни, электролиты в основном комплексные, наиболее исследованный из них — цианидный. Для замены цианидных электролитов предолжены фенолсуль-фоновые, триполифосфатные, дифосфатные и фторборатные. Во всех случаях наибольшее влияние на состав покрытия оказывает изменение соотношения ионов металлов в электролите и плотность тока. Для дифосфатного электролита, который является малотоксичным, существенным фактором является температура электролита. [c.60]
Сплав меди с оловом, содержащий 10% 5п, характеризуется прочностью, твердостью, ковкостью, способностью легко поддаваться штамповке. Количество олова в сплаве с медью можно варьировать в довольно широких пределах. При этом получают колокольную бронзу или орудийную бронзу. [c.398]
Латунь и томпак — сплавы меди с цинком с незначительными добавками свинца, железа, олова. Они обрабатываются легче бронзы, мягче ее и стоят дешевле, способны плющиться, поддаются прокатке, вытягиваются в проволоку. Сплав меди с цинком, содержащий 38—45% цинка, носит название монетного сплава. [c.398]
Фазы сплавов меди с алюминием, цинком и оловом имеют несколько иные структуры и соответственно изменяются и постоянные Юм-Розери, например [c.296]
Олово не реагирует с кислородом воздуха, но реагирует с кислотами. Олово получают восстановлением его оксидных руд. Его применяют главным образом для нанесения защитных покрытий на листовое железо, чтобы предохранить поверхность железа от ржавления. Покрытое оловом листовое железо используется, например, для изготовления консервных банок. Такое тонкое листовое железо, покрытое оловом, называется белая жесть. Одним из важнейших сплавов олова является бронза-сплав олова и меди. [c.424]
Сплавы олова с медью — бронзы — известны человечеству с глубокой древности. На определенном этапе развития человеческого общества их применение обеспечивало прогресс культуры (бронзовый век). Не потеряли своего значения оловянные сплавы и в настоящее время. Так, оловянные бронзы являются материалом для изготовления деталей машин. В качестве антифрикционных материалов используются сплавы на основе олова (или свинца) с сурьмой и медью. Широко употребляется эвтектический сплав 5п и РЬ в качестве легкоплавкого припоя (третник — 1 олова и /3 свинца по массе). Само олово применяется для создания антикоррозионных покрытий на железе (луженая жесть). [c.232]
Сплав меди с оловом массой 20 г (массовая доля олова в сплаве равна 11,9%) поместили в соляную кислоту. Рассчитайте объем водорода, измеренный при нормальных условиях, который выделится прн этом. [c.109]
Реальные химические и металлургические реакции совершаются с участием растворов. Расплавленные чугун, сталь, медь, другие цветные металлы представляют собой жидкие растворы различных элементов, преимущественно неметаллов (углерод, кислород, сера и др.) в основном металле. Расплавленные шлаки доменных и сталеплавильных печей являются растворами оксидов. Промежуточный продукт при выплавке меди (штейн) есть раствор сульфидов меди и железа. Подавляющее большинство промышленных сплавов содержит в своем составе твердые растворы. Сталь — твердый раствор углерода в железе. Предшественница железа в истории техники — бронза есть раствор олова и меди. Водные растворы солей, кислот и оснований широко используются в гидрометаллургии при извлечении цветных металлов из руд. Значение водных растворов выходит за рамки техники вследствие их исключительной роли во всех биологических процессах. [c.96]
Медь известна с древнейших времен. Еще тогда ее использовали вместе с оловом для получения бронзы. Такие смеси двух различных металлов называются сплавы. Сплавы меди получают и в настоящее время в качестве примеров укажем бронзу и латунь. [c.428]
Сплав меди, известный с древнейших времен,— бронза содержит олово (массовая доля 4—30%). Бронза по твердости намного превосходит отдельно взятые медь и олово. Она более легкоплавка, чем медь. [c.251]
Применение. Около 50% добываемой меди идет на изготовление проводоз (другим материалом для проводов является алюминий, однако его электропроводность меньше, чем у меди, он менее прочен и трудно паяется). Широко используют различные сплавы меди/ Наиболее применяемы латуни (сплавы, содержащие кроме меди 20—507о Zn, а также другие металлы), бронзы [сплавы меди с оловом (10—20%), бериллием, алюминием и другими металлами] и медноникелевые сплавы. [c.589]
Лойдопский и стокгольмский папирусы (III в.) содержат более 2. )0 рецептов изготовлепия (сплав меди, олова, мышьяка и серебра) сереброподоб-пых и золотоподобшлх предметов, поддельных драгоценных камней, способов окраски тканей. [c.9]
При решении вопроса о допустимости контакта между металлами можно также рукоиодствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,и1гк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоиикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]
Бронзы. Бронзами пазьгваются литейные сплавы меди с оловом, алюминием, марганцем и другими элементами. Наиболее широко известны оловянистые бронзы. [c.249]
Защитно- дек оратнв- ное Никелевое с последую щи хромированием или хромовое. или покрытие сплавом олово — никель Медь и ее сплавь 9 0,3 9 9 Детали, требующие декоративной отделки Средняя расчетная толщина [c.934]
Применение оловянистой бронзы ограничивается изготовлени ем деталей для отдельных узлов оборудования. В настоящее время оловянистые бронзы заменяются более экономичными и прочными алюминиевыми бронзами — сплавами меди с алюминием. Промышленность выпускает также специальные бронзы, в которых не содержится олово, но имеются добавки алюминия, марганца, кремния и др. [c.32]
Медь — олово. Покрытие сплавом медь — олово, или бронзирование, применяется как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловяни-стым сплавом (10—20% Sn) золотисто-желтого цвета применяют также в качестве подслоя -взамен медного и никелевого покрытий перед хромированием. Высокооловянистый сплав (40—45% Sn), так называемая белая бронза, может служить заменой серебра. [c.440]
А. Классен. Электроанализ. ОНТИ, 1934, (356 стр.), перевод с немецкого. 5 втор в течение ряда лет занимался разработкой этого метода и поэтому книга в значительной степени представляет собой сводку собственных экспериментальных исследовани11 автора. Монография содержит главы об определении и разделении свыше 60 элементов путем электролиза, а также о применении этого метода при анализе технически) материалов руд, сплавов меди, цинка, олова, свинца, никеля и др. [c.489]
Сплав медь—олово (бронза). Покрытие сплавом медь—олово, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистьш сплавом (10—20% олова) золотисто-желтого цвета используют также в качестве подслоя взамен медного и никелевого покрытий перед хромированием. Высоко-оловянистый сплав (40—45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си—5п значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, в то время, как у серебра, возрастает в десятки раз. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты. [c.60]
Большинство химических элементов являются металлами (см. рис. 53). Многие из них в силу своей химической активности находятся в природе в связанном состоянии, и поэтому до XVIII в. были известны лишь металлы, встречающиеся в самородном состоянии или легко выплавляемые из руд, такие, как золото, серебро, медь, ртуть, свинец, олово, железо и висмут (причем висмут долгое время принимали за разновидность свинца, олова или сурьмы). Использование сплава меди с оловом сыграло важную роль в развитии производительных сил общества и открыло бронзовый век . Совершенствование плавильных печей позволило производить чугун и другие сплавы железа, появление которых явилось новой вехой в создании человеком материальных ценностей. Алюминий, никель, хром, марганец, магний и другие хорошо известные теперь металлы стали получать лишь в конце XIX — начале XX в., а титан — только в середине XX в. [c.390]
Применение меди, серебра, золота и их соединений. Больше других металлов этой додгруппы, как наиболее доступный металл, используется медь. Электролитически рафинированная медь с содержанием 99,90—99,95% меди используется для изготовления кабелей, проводов, контактов и пр. Сплавы меди с добавками цинка (латунь), никеля (мельхиор, нейзильбер), олово (бронза), бериллия, алюминия и др. находят самое разнообразное применение в судо-, авто-, авиа-и аппаратостроении, для изготовления литых изделий, посуды и пр. [c.357]
Пиппард (1953 г.) измерил глубину проникновения для ряда разбавленных сплавов меди в олове и нашел, что уменьшение средней длины I свободного пробега электрона в металле сопровождается заметным возрастанием величины (0). Такая зависимость (0) от длины I несовместима с лондоновской моделью, поскольку ни один из параметров в уравнении (462а) явно не зависит от /. [c.262]
Латунь — сплав меди с цинком, а бронза — сплав меди с основным компонентом — оловом. Получите у лаборанта кусочек сплава. На чистую поверхность нанесите 2 капли концентрированной азотной кислоты, через 2. мин капилля- [c.165]
chem21.info
Медные сплавы
Медные сплавы
Для деталей машин используют сплавы меди с цинком , оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30-40 кгс/мм^2 у сплавов и 25-29 кгс/мм^2 у технически чистой меди (табл. 35-39).
Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм^2 ниже , чем у стали).
Основное преимущество медных сплавов - низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.
Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов , a следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных.
Марки медных сплавов.
Марки обозначаются следующим образом.
Первые буквы в марке означают: Л - латунь и Бр. - бронза.
Буквы, следующие за буквой Л в латуни или Бр. В бронзе, означают:
А - алюминий, Б - бериллий, Ж - железо, К - кремний, Мц - марганец,
Н - никель, О - олово, С - свинец, Ц - цинк, Ф. - фосфор.
Цифры, помещенные после буквы, указывают среднее процентное содержание элементов. Порядок расположения цифр, принятый для латуней, отличается от порядка, принятого для бронз.
В марках латуни первые две цифры (после буквы) указывают содержание основного компонента - меди. Остальные цифры, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов.
Эти цифры расположены в том же порядке, как и буквы, указывающие присутствие в сплаве того или иного элемента. Таким образом содержание цинка в наименовании марки латуни не указывается и определяется по разности. Например, Л86 означает латунь с 68% Cu (в среднем) и не имеющую других легирующих элементов, кроме цинка; его содержание составляет (по разности) 32%. ЛАЖ 60-1-1 означает латунь с 60% Cu , легированную алюминием (А) в количестве 1% , с железом (Ж) в количестве 3% и марганцем (Мц) в количестве 1%. Содержание цинка (в среднем) определяется вычетом из 100% суммы процентов содержания меди, алюминия, железа и марганца.
В марках бронзы (как и в сталях) содержание основного компонента - меди - не указывается, а определяется по разности. Цифры после букв, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов; цифры расположенные в том же порядке, как и буквы, указывающие на легирование бронзы тем или иным компонентом.
Например, Бр.ОЦ10-2 означает бронзу с содержанием олова (О) ~ 4% и цинка (Ц) ~ 3%.Содержание меди определяется по разности (из 100%). Бр.АЖНЮ-4-4 означает бронзу с 10% Al , 4% Fe и 4% Ni (и 82% Cu). Бр. КМц3-1 означает бронзу с 3% Si , и 1% Mn (и 96% Cu).
- Медно-цинковые сплавы. Латуни
По химическому составу различают латуни простые и сложные, а по структуре - однофазные и двухфазные. Простые латуни легируются одним компонентом: цинком.
Однофазные простые латуни имеют высокую пластичность; она наибольшая у латуней с 30-32% цинка (латуни Л70 , Л67). Латуни с более низким содержанием цинка (томпаки и полутомпаки) уступают латуням Л68 и Л70 в пластичности, но превосходят их в электро- и теплопроводности. Они поставляются в прокате и поковках.
Двухфазные простые латуни имеют хорошие ковкость (но главным образом при нагреве) и повышенные литейные свойства и используются не только в виде проката, но и в отливках. Пластичность их ниже чем у однофазных латуней, а прочность и износостойкость выше за счет влияния более твердых частиц второй фазы.
Прочность простых латуней 30-35 кгс/мм^2 при однофазной структуре и 40-45 кгс/мм^2 при двухфазной. Прочность однофазной латуни может быть значительно повышена холодной пластической деформацией. Эти латуни имеют достаточную стойкость в атмосфере воды и пара (при условии снятия напряжений, создаваемых холодной деформацией).
2. Оловянные бронзы
Однофазные и двухфазные бронзы превосходят латуни в прочности и сопротивлении коррозии (особенно в морской воде).
Однофазные бронзы в катаном состоянии, особенно после значительной холодной пластической деформации, имеют повышенные прочностные и упругие свойства (δ>= 40 кгс/мм^2).
Для двухфазных бронз характерна более высокая износостойкость.
Важное преимущество двухфазных оловянистых бронз - высокие литейные свойства; они получают при литье наиболее низкий коэффициент усадки по сравнению с другими металлами, в том числе чугунами. Оловянные бронзы применяют для литых деталей сложной формы. Однако для арматуры котлов и подобных деталей они используются лишь в случае небольших давлений пара. Недостаток отливок из оловянных бронз - их значительная микропористость. Поэтому для работы при повышенных давлениях пара они все больше
заменяются алюминиевыми бронзами.
Из-за высокой стоимости олова чаще используют бронзы, в которых часть олова заменена цинком (или свинцом).
3. Алюминиевые бронзы
Эти бронзы (однофазные и двухфазные) все более широко заменяют латуни и оловянные бронзы.
Однофазные бронзы в группе медных сплавов имеют наибольшую пластичность (δ до 60%). Их используют для листов (в том числе небольшой толщины) и штамповки со значительной деформацией. После сильной холодной пластической деформации достигаются повышенные прочность и упругость. Двухфазные бронзы подвергают горячей деформации или применяют в виде отливок. У алюминиевых бронз литейные свойства (жидкотекучесть) ниже, чем у оловянных; коэффициент усадки больше, но они не образуют
пористости, что обеспечивает получение более плотных отливок. Литейные свойства улучшаются введением в указанные бронзы небольших количеств фосфора. Бронзы в отливках используют, в частности, для котельной арматуры сравнительно простой формы, но работающей при повышенных напряжениях.
Кроме того, алюминиевые двухфазные бронзы, имеют более высокие прочностные свойства, чем латуни и оловянные бронзы. У сложных алюминиевых бронз, содержащих никель и железо, прочность составляет 55-60 кгс/мм^2.
Все алюминиевые бронзы, как и оловянные, хорошо устойчивы против коррозии в морской воде и во влажной тропической атмосфере.
Алюминиевые бронзы используют в судостроении, авиации, и т.д..В виде лент, листов, проволоки их применяют для упругих элементов, в частности для токоведущих пружин.
4. Кремнистые бронзы
Применение кремнистых бронз ограниченное. Используются однофазные бронзы как более пластичные. Они превосходят алюминиевые бронзы и латуни в прочности и стойкости в щелочных (в том числе сточных) средах.
Эти бронзы применяют для арматуры и труб, работающих в указанных средах.
Кремнистые бронзы, дополнительно легированные марганцем, в результате сильной холодной деформации приобретают повышенные прочность и упругость и в виде ленты или проволоки используются для различных упругих злементов.
5. Бериллиевые бронзы.
Бериллиевые бронзы сочетают очень высокую прочность (σ до 120 кгс/мм ^2) и коррозионную стойкость с повышенной электропроводностью.
Однако эти бронзы из-за высокой стоимости бериллия используют лишь для особо ответственных в изделиях небольшого сечения в виде лент, проволоки для пружин, мембран, сильфонов и контактах в электрических машинах, аппаратах и приборах.
Указанные свойства бериллиевые бронзы после закалки и старения, т.к. растворимость бериллия в меди уменьшается с понижением температуры.
Выделение при старении частиц химического соединения CuBe повышает прочность и уменьшает концентрацию бериллия в растворе меди.
Медные сплавы. Оловянные бронзы .
Кремнистые бронзы (по ГОСТ 18175–72)
Бериллиевые бронзы (по ГОСТ 18175–72)
mirznanii.com