Энциклопедия по машиностроению XXL. Аустенитные стали что это


    Нестабильные аустенитные стали

    В области умеренных температур целесообразным оказывается применение аустенитных сталей на основе нестабильной γ-фазы, которая в процессе холодной пластической деформации испытывает фазовые превращения типа γ→α или γ→ε. В таких сталях (склонных к образованию мартенсита деформации) в результате термомеханической обработки достигается высокопрочное состояние. В результате усиливается релаксационная стойкость вследствие повышения сопротивления сдвиговому механизму.

    Из числа нестабильных аустенитных сталей наиболее широкое распространение в качестве коррозионностойких материалов получили хромоникелевые стали типа 18-8. Типичными представителями этой группы являются стали 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т и др. [26]. К основным достоинствам указанных сталей следует отнести коррозионную стойкость, повышенную пластичность в закаленном состоянии и склонность к заметному упрочнению в процессе пластической деформации. Они отличаются также хорошей релаксационной стойкостью при температурах до 250..300 ºС [34].

    Важной особенностью изменения структурного состояния в процессе деформации сталей с нестабильным аустенитом является образование мартенсита. В сталях типа 18-8 мартенситное превращение при деформации протекает путем возникновения ферритной α-фазы. Появление ε-мартенсита возможно лишь при малых степенях обжатия, а также при относительно низких температурах. Объемная доля его очень невелика, а при дальнейшем деформировании он превращается в α-мартенсит. При больших обжатиях образование α-мартенсита происходит непосредственно из аустенита, минуя промежуточную стадию формирования ε-фазы. Таким образом, в сильнодеформированных аустенитных сталях типа 18-8 ε-мартенсит фактически не наблюдается.

    Повышение степени обжатия и снижение температуры деформации увеличивают полноту мартенситного превращения. Однако даже после очень сильного обжатия часть аустенита остается непревращённой. Объёмная доля мартенсита может быть получена путем уменьшения скорости волочения и снижения величины единичного обжатия. В этом случае наблюдается меньший разогрев проволоки в процессе волочения, и, следовательно, достигается усиление полноты γ→α-превращения.

    При изготовлении высокопрочной проволоки из сталей 12Х18Н9Т, 12Х18Н10Т оптимальной считается деформация 90-92 % [27], поскольку при этом обеспечивается наилучшее сочетание прочностных и пластических свойств. Так, проволока диаметром 1,0 мм после такого обжатия имеет sв = 1850..2050 МПа и число гибов не менее 5.

    Прочностные свойства сталей типа 18-8 дополнительно можно повысить в результате последеформационного отпуска. Обычно такую обработку деформированных сталей выполняют при 420..450º С, длительность изотермической выдержки, как правило, ограничивают 0,5..1,0 ч. Старение приводит к относительно умеренному возрастанию sв (15..20 %), но к более сильному повышению предела упругости (до 40..50 %). При этом наблюдается снижение пластических свойств.

    Стали типа 18-8 имеют ряд недостатков. В частности, их отличает пониженное сопротивление релаксации напряжений при температурах выше 300 ºС. В некоторых особо жестких условиях нагружения недостаточными оказываются показатели прочностных свойств. В ряде случаев возникает необходимость в усилении их коррозионной стойкости. Поэтому существует потребность в разработке новых сталей того же структурного класса, выгодно отличающихся большей прочностью, лучшей теплостойкостью и сопротивлением коррозии.

    В решении этой проблемы связаны исследования, выполненные В.Р. Баразом, А.Н. Богомоловым, С.В. Грачевым и др. [32, 34-38] и направленные на изыскание составов нестабильных аустенитных сталей путем добавочного легирования хромоникелевой композиции 18-8 такими элементами, как марганец, кремний, молибден, ванадий, медь (12Х17Н8Г2С2, 12Х17Н8Г2С2МФ). Подобное легирование позволило обеспечить существенное повышение физико-механических свойств (прочностных характеристик и сопротивления релаксации напряжений), а также избежать заметного удорожания по сравнению с существующими сталями данного типа. Разработанные стали предназначены для изготовления тяжелонагруженных и теплостойких пружин и других упругих элементов. Для данных сталей приемлемой является температура нагрева под закалку – 1080..1100º С. При этом нагреве значительная часть углерода и карбидообразующих элементов (хрома, молибдена и ванадия) переходит в γ-фазу, что при последующем ускоренном охлаждении приводит к получению пересыщенного твердого раствора. Механические свойства сталей имели близкие показатели: σв = 790 МПа; δ = 65 %; ψ = 40 %. После деформации происходит интенсивное упрочнение. При максимальном обжатии (85 %) σв в сталях 12Х17Н8Г2С2 и 12Х17Н8Г2С2МФ возрастает почти в три раза и составляет 2250-2300 МПа. Кроме того, указанные стали по уровню прочности существенно превосходят известные стали 12Х18Н10Т и 17Х18Н9 и сохраняют достаточно хорошую пластичность. Все стали в закаленном состоянии имели аустенитную структуру. В процессе последующей деформации в них развивалось фазовое γ→α превращение. Интенсивность образования мартенсита определяется степенью легированности γ-твердого раствора. Усложнение химического состава приводит к закономерному уменьшению в структуре объемной доли мартенсита. Последеформационный нагрев сталей 12Х17Н8Г2С2 и 12Х17Н8Г2С2МФ до 450..500º С вызывает заметное повышение величины σв, в результате выделения карбидов Me23C6 и VC: σв = 2600 МПа.

    В работе [39] выполнены исследования по изысканию составов высокопрочных и коррозионностойких сталей, которые могли быть эффективной заменой высококобальтовых сплавов типа 40КХНМ. Исследования проводили на сталях 12Х14Н6Г4 и 12Х14Н6Г4ДМТ. Структура сталей почти полностью состояла из аустенита (мартенсита охлаждения не более 3..5 %). В закаленном состоянии стали имели свойства, типичные для аустенитных сплавов: σв = 700..800 МПа и δ = 40..50 %. Проведение пластической деформации приводит к образованию мартенсита: в стали 12Х14Н6Г4 после обжатия на 80 % объемная доля мартенсита деформации составляла около 80 %, а в стали 12Х14Н6Г4ДМТ – 30 %. При этом обе стали после максимального обжатия имели относительно близкие показатели прочности. Авторы работы [39] считают, что дополнительное повышение прочностных свойств достигается в процессе последеформационного нагрева и связано с образованием частиц гексагональной карбидной фазы типа (Fe, Cr)7C3. Однако в данных сталях после высокотемпературного старения (при 600º С) наблюдается склонность к коррозионному разрушению, когда происходит активный распад матричных твёрдых растворов и выделение карбидной фазы, богатой хромом.

     

    

    infopedia.su

    Стабильные аустенитные стали

    При высоких температурах эксплуатации, когда заметно возрастает роль структурного фактора, предпочтительным становится использование сталей со структурой стабильного аустенита. Это может содействовать повышению теплостойкости при сохранении достаточно высокого уровня прочностных свойств, а также позволяет получить немагнитные материалы.

    Аустенитные стали парамагнитны, однако имеют низкие значения предела текучести (150…350 МПа), что затрудняет их использование в качестве материала высоконагруженных деталей и конструкций. Повышенные прочностные свойства достигаются на сталях аустенитного класса холодной или теплой пластической деформацией, упрочнением в результате дисперсионного твердения, упрочнением посредством фазового наклепа при последовательном проведении прямого и обратного мартенситных γ→α→γ превращений [6,17,18, 19].

    Так, аустенитная сталь 50Г18Х4, из которой изготавливают бандажные кольца роторов электрогенераторов, применяется в состоянии после холодного или теплого наклепа. В наклепанном состоянии предел текучести этой стали повышается до 1100 МПа при сохранении высокого уровня пластических свойств (δ = 30 %, ψ = 50 %). Примерно такой же комплекс механических свойств достигается на стали 50Г18Х4, легированной ванадием, в результате выделения дисперсных карбидов VC в процессе старения при температуре 650 °С [6,20]. В работах [21,22] исследована аустенитная сталь 40Х4Г18Ф, содержащая 1,4 вес. % V, где установлено, что двухступенчатое старение оказывает существенное влияние на структуру и обеспечивает лучший комплекс механических свойств и благоприятное соотношение прочности и пластичности, тем самым является более эффективной упрочняющей обработкой, чем одинарное старение.

    Один из путей повышения прочности немагнитных сталей состоит в использовании парамагнитного ε-мартенсита, образующегося в низкоуглеродистых сталях с 16-22 % Mn. Двухфазные (γ+ε) стали типа 05Г20 имеют после закалки более высокие прочностные свойства по сравнению с однофазными аустенитными сталями и могут найти применение в качестве конструкционного немагнитного материала [6]. Повышение прочностных свойств немагнитных сталей с ε-мартенситом может быть дополнено дисперсионным твердением за счет выделения избыточных фаз различного типа (карбидов, интерметаллидов) из пересыщенного γ-твердого раствора [20,23-25].

    Среди стабильных аустенитных сталей хорошо известны сплавы на Fe-Cr-Ni основе (36НХТЮ, 36НХТЮМ, 03Х17Н40МТЮБР и др.) [26,27]. Эти стали имеют устойчивую γ-фазу и в них даже после сильной деформации или глубокого охлаждения не образуется мартенсит.

    Для улучшения свойств сплава 36НХТЮ широко применяется термомеханическая обработка, заключающаяся в пластической деформации закаленного сплава с последующим старением, а также её различные варианты [27]. Как показано в работе [28], прочностные свойства сплава 36НХТЮ при комнатной и повышенных температурах могут быть увеличены за счет дополнительного легирования молибденом в количестве 5-8 % (36НХТЮМ5, 36НХТЮМ8).

    Общим недостатком всех сплавов со стабильным аустенитом является их высокая стоимость и высокое содержание дефицитного никеля. Эти обстоятельства заставляют исследователей разрабатывать новые композиции сплавов для упругих элементов, обладающих высокими механическими свойствами, но содержащих меньшее количество дефицитных и дорогостоящих элементов.

    Исследования, связанные с созданием стабильных аустенитных сталей, имеющих пониженную концентрацию никеля (не выше 10 %), выполнены В.Р. Баразом, С.В. Грачёвым и др. [29-32]. Результатом этих исследований явилась разработка деформационно-стареющей стали 13Х18Н10Г3С2М2, предназначенной для изготовления теплостойких и немагнитных упругих элементов из проволоки и ленты, а также производства ряда специальных медицинских инструментов (иглы для рефлексотерапии, спицы скелетного вытяжения и т.д.) [33]. Разработанная сталь превосходит сталь 12Х18Н10Т по сопротивлению усталостному разрушению примерно в 1,5 раза, а по величине предела выносливости – в два раза. Кроме того, сталь 13Х18Н10Г3С2М2 является устойчивой в хлоридсодержащих средах, характеризуется повышенным сопротивлением коррозии под напряжением [16].

     

    

    infopedia.su

    Аустенитные стали, содержащие азот

    Прогнозы показывают, что, несмотря на тенденцию к сокращению доли сплавов на основе железа среди других конструкционных материалов в обозримом будущем объем мирового производства стали сохранится на уровне более 750 млн. т в год [43]. При этом будут значительно возрастать требования к качеству сталей всех структурных классов. Повысится роль легированных сталей и в связи с этим обострится проблема рационального использования легирующих элементов [44].

    Среди легирующих элементов, прежде всего, следует отметить азот, получаемый практически в неограниченных количествах из воздуха. Азот, как легирующий элемент, является привлекательным с позиций экологии. При расширении производства азотосодержащих сталей нет необходимости в увеличении объема добычи руд, нарушающей состояние земных недр [44].

    Азот является элементом, стабилизирующим γ-железо, и в результате этого возможна экономия не только элементов γ-стабилизаторов, таких как никель и марганец, но и из-за особенностей воздействия азота на энергию дефектов упаковки также дорогих и дефицитных молибдена или вольфрама.

    В высоколегированных коррозионностойких сталях с аустенитной или аустенитно-ферритной структурой азот нашел широкое применение, так как он позволяет улучшить коррозионные свойства и благоприятно влияет на механические свойства [44]. Так, по данным работы [45], легирование азотом в количестве до 0,3 % после обработки на пересыщенный твердый раствор повышает временное сопротивление в 1,5 раза, а предел упругости – почти в два раза. При этом пластичность и коррозионная стойкость сохраняются практически неизменными. Легирование азотом ведет к созданию аустенита с высокой концентрацией дефектов упаковки, сильно деформированной решеткой, низкой стоимостью и возможности создания структуры с высокой плотностью дислокаций после деформации, что позволило создать ряд высокоазотистых сталей аустенитного класса с высокими характеристиками прочности и пластичности [46].

    В.Г. Гаврилюк провел сравнительный анализ характера влияния углерода и азота на эффективность деформационного упрочнения аустенита. Установлено, что в аустените, легированном никелем и марганцем, распределение углерода оказывается неоднородным и не устраняется даже при высокотемпературном нагреве. Распределение азота является более равномерным и обусловлено эффективным взаимодействием атомов азота с атомами железа. Пластическая деформация азотистого аустенита сопровождается интенсивным двойникованием, что наряду с высокой плотностью дислокаций способствует заметному деформационному наклёпу [16].

    При содержании хрома 21 % и азота более 1 % сплавы могут иметь стабильную аустенитную структуру. При меньшем содержании азота, вплоть до 0,5 %, формируется структура метастабильного аустенита [46].

    К настоящему времени накоплен достаточный опыт создания и практического применения аустенитных сталей с азотом. Среди таких материалов получила промышленное использование сталь 18Х15Н5АМ3 (ВНС-9) [26]. Максимальное содержание азота в этой стали обычно ограничивается 0,1 %. Сталь относится к группе сплавов с нестабильной γ-фазой и в процессе холодной пластической деформации в ней происходит заметное образование мартенсита. После закалки сталь находится в аустенитном состоянии. По технологии, предложенной в работе [47], обработка на высокую прочность осуществляется применением комбинированных режимов волочения, включающих использование тёплой и холодной деформации. Исходную горячекатаную заготовку сначала подвергают промежуточному теплому волочению при температурах выше 200ºС, исключающему возможность γ→α-перехода. Окончательная обработка – холодная деформация закаленной передельной проволочной заготовки с обжатием на 94..96 % и последующее старение при 450 ºС. В результате тонкая проволока конечного диаметра 0,15 мм имеет высокие механические свойства: σв = 4200 МПа, Рузл = 55 %. Проволочные изделия из этой стали используют для производства композиционных материалов.

    Известны модификации стали 18Х15Н5АМ3, отличающиеся от базовой композиции, в частности, добавками редкоземельных металлов. На проволоке диаметром 0,10..0,15 мм, полученной волочением при 450 ºС с обжатием на 90..96 %, может быть достигнуто значение σв, превышающее 3000 МПа.

    Деформационно-стареющие немагнитные стали с азотом на основе системы Fe-Mn-Cr рассмотрены в работе [48]. За основу были взяты хромомарганцевые стали типа 13-17 с 0,04..0,37 % С и содержащие добавки азота (0,15..0,34 %), кремния (~ 2 %), ванадия (~ 1 %), кобальта (до 15 %). Все изученные стали характеризуются достаточно сильным деформационным наклепом. Кроме усиления дефектности структуры (интенсивного накопления дислокаций, роста количества деформационных микродвойников) и изменения фазового состава (образования α- и ε-фаз) упрочнение при пластической деформации дополнительно возрастает вследствие частичного распада γ-твёрдого раствора. Отмечено, что легирование кремнием способствует активизации распада аустенита в процессе пластической деформации.

    Следует заметить, что хотя изученная композиция типа Х13Г17АФ характеризуется достаточно активным термомеханическим упрочнением, это сопровождается заметным снижением пластичности. С целью сохранения требуемого сочетания прочностных и пластических свойств рекомендуется ограничивать деформацию прокаткой обжатием не более 70 %.

    Эксперименты по разработке безникелевой азотсодержащей аустенитной стали Х17АГ14С2 описаны в работе [48]. После закалки от 1050..1100 ºС в структуре, кроме основной фазы – аустенита, присутствовало некоторое количество α-фазы. Деформационное упрочнение в процессе волочения протекает главным образом за счет наклепа аустенита. Низкая энергия д. у. (12 кДж/м2) стимулирует активное микродвойникование в аустените, формирование мощных дислокационных скоплений и образование новых порций α-фазы (свыше 50 % после обжатия на 90 %). Наилучшее сочетание прочностных и пластических характеристик достигается применением относительно умеренного суммарного обжатия (не более 60..70 %). Максимальный прирост пределов упругости и прочности в ходе заключительного старения достигается при 400..500 ºС. В результате релаксационных испытаний проволочных образцов стали Х17АГ14С2 при 200-300 ºС не обнаружено влияние различной степени деформации (30..90 %), но показано, что данная сталь имеет теплостойкость выше, чем сталь 12Х18Н10Т.

    Исследование высокоазотистых сплавов с метастабильной и стабильной аустенитной структурой в качестве высокопрочного коррозионностойкого материала для изделий медицинской техники также представляет несомненный интерес.

    Недостатком высокоазотистых аустенитных сталей, ограничивающим их практическое использование, является так называемый «прерывистый распад» аустенита, который пересыщен азотом [44]. Пересыщенный азотом γ-твердый раствор при тепловых выдержках в достаточно широком температурном интервале приходит в равновесное состояние, т. е. идет реакция образования γ-твердого раствора с равновесным содержанием азота и нитрида хрома. При этом образуется перлитоподобная структура сплава, что вызывает снижение пластичности и вязкости.

    Аустенитно-ферритные стали

    Преимущество сталей этой группы - повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонности к росту зерна при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость, меньшая склонность к МКК.

    Повышенное сопротивление МКК объясняют более мелкозернистой структурой двухфазных сталей, что приводит к меньшей концентрации карбидных фаз по границам (выделением карбидов типа Me23С6 на границе d-g фаз). Поскольку условия проявления МКК в этих фазах разные, то концентрация хрома в приграничных участках не опускается ниже допустимого уровня. Так как концентрация углерода в аустените выше, чем в феррите, карбиды выделяются по границам, не образуя непрерывной сетки.

    Принципиальное отличие сталей аустенитно-ферритного класса в том, что благодаря более высокому содержанию в них хрома аустенит становится более устойчивым по отношению к мартенситному превращению, хотя полностью исключить возможность образования мартенсита в этих сталях не всегда удаётся.

    Аустенитно-ферритные стали весьма сложны по химическому составу, могут иметь в структуре различное соотношение аустенитной и ферритной фаз. В них могут происходить следующие основные фазовые превращения:

    1. Изменение количества аустенита и феррита в зависимости от температуры нагрева.

    2. Распад d-феррита с образованием σ-фазы и вторичного аустенита.

    3. Выделение карбидных, нитридных и интерметаллидных фаз, которое может происходить как из аустенита, так и из феррита.

    4. Мартенситные g-aм - превращения при охлаждении или при деформации.

    5. Процессы охрупчивания ферритной фазы, связанные с явлением упорядочения и расслоения (хрупкость 475°С).

    Возможность протекания в аустенитно-ферритных сталях сложных фазовых превращений в различных интервалах температур накладывает существенные ограничения на режимы их технологии производства и области применения.

    Постановка задачи

    Цель данной работы сводилась к трём задачам:

    1. Изучение влияния незначительного колебания химического состава в пределах марочного разработанной ранее метастабильной аустенитной стали 03Х14Н11К5М2ЮТ (129) на физико-механические и технологические свойства;

    2. исследование сталей той же композиции, но с пониженным содержанием кобальта;

    3. влияние изменения содержания алюминия от 0,5 до 2,0 % в сталях практически той же композиции на структуру.

     

     

    

    infopedia.su

    Аустенит - это... Что такое Аустенит?

            одна из структурных составляющих железоуглеродистых сплавов, твёрдый раствор углерода (до 2%)и легирующих элементов в железе (см. Железо). А. получил название по имени английского учёного У. Робертса-Остена (W. Roberts-Austen, 1843—1902). Кристаллическая решётка — куб с центрированными гранями. А. немагнитен, плотность его больше, чем других структурных составляющих стали. В углеродистых сталях и чугунах А. устойчив выше 723°C. В процессе охлаждения стали А. превращается в другие структурные составляющие. В железоуглеродистых сплавах, содержащих никель, марганец, хром в значительных количествах, А. может полностью сохраниться после охлаждения до комнатной температуры (например, нержавеющие хромоникелевые стали). В зависимости от состава стали и условий охлаждения А. может сохраниться частично в углеродистых или легированных сталях (т. н. остаточный А.).          Учение о превращениях А. берёт начало с открытий Д. К. Чернова (1868), впервые указавшего на их связь с критическими точками стали. При охлаждении ниже этих точек образуются фазы с иным взаимным расположением атомов в кристаллической решётке и, в некоторых случаях, с измененным химическим составом. Различают три области превращений А. В верхнем районе температур (723—550°С) А. распадается с образованием Перлита — эвтектоидной смеси, состоящей из перемежающихся пластин Феррита (массовая концентрация углерода 0,02%) и Цементита (концентрация углерода 6,7%). Перлитное превращение начинается после некоторой выдержки и при достаточном времени завершается полным распадом А. Ниже определенной температуры (Мн), зависящей от содержания углерода (для стали с 0,8% углерода около 240°C), происходит мартенситное превращение А. (см. Мартенсит). Оно состоит в закономерной перестройке кристаллической решётки, при которой атомы не обмениваются местами. В интервале температур 550°С — Мн происходит промежуточное (бейнитное) превращение А. Это превращение, как и перлитное, начинается после инкубационного периода и может быть подавлено быстрым охлаждением; оно, как и мартенситное, прекращается при постоянной температуре (некоторая часть А. сохраняется непревращённой) и сопровождается образованием характерного рельефа на поверхности шлифа. При промежуточном превращении упорядоченные перемещения металлических атомов сочетаются с диффузионным перераспределением атомов углерода в А. В результате образуется феррито-цементитная смесь, а часто и остаточный А. с измененным по сравнению со средним содержанием углерода. Цементит при промежуточном превращении может выделяться как из А. непосредственно, так и из пересыщенного углеродом феррита (см. Бейнит).          Превращение А. в сплавах с содержанием углерода св. 2%, в связи с наличием первичных образований цементита или графита, вызывает своеобразие получающихся структур (см. Чугун). Представление о кинетике превращений А. дают диаграммы, указывающие долю превратившегося А. в координатах температура — время. На диаграмме превращений легиров. А. четко разделены области перлитного (640—520°C) и промежуточного (480—300°C) превращений и имеется температурная зона высокой устойчивости А. (рис.). При перлитном превращении легированного А. во многих случаях образуется смесь феррита и специальных карбидов.

             Легирующие элементы, за исключением кобальта, увеличивают продолжительность инкубационного периода перлитного превращения.

             Закономерности превращений А. используют при разработке легированных сталей различного назначения процессов термической и термомехалической обработки. Диаграммы превращений А. позволяют устанавливать режимы отжига сталей, охлаждения изделий, изотермической закалки и т. д.

             Лит.: Курдюмов Г. В., Явления закалки и отпуска стали, М., 1960; Энтин Р. И., Превращения аустенита в стали, М., 1960.

             Р. И. Энтин.

            

            Диаграмма изотермического превращения аустенита стали, содержащей 0,4% углерода, 2% марганца и 0,1% ванадия.

    dic.academic.ru

    Аустенитные стали - Обрабатываемость - Энциклопедия по машиностроению XXL

    Аустенитная сталь — Обрабатываемость — Зависимость от влияющих факторов 167, 169—172, 175  [c.478]

    Существенным для оценки обрабатываемости резанием являются такие физические свойства металлов, как теплопроводность и удлинение их в результате нагрева в процессе резания. Аустенитные стали сравнительно с конструкционными обладают втрое меньшей теплопроводностью (0,03—  [c.326]

    При обработке аустенитных сталей применяют режущий инструмент с положительными передними углами у 10 15° и значительными задними углами а= 10- 15°. В этом случае при сравнительно малом угле заострения 3 60- 70° облегчается получение острого лезвия с малым радиусом скругления див результате снижаются силы резания, наклеп и вибрации в процессе резания. Для упрочнения затачивается небольшой, но положительный угол наклона режущей кромки X = 5-н15°), а при прерывистой работе — упрочняющая фаска на передней поверхности вдоль режущей кромки с углом yf = 0-=-(—5°). Углы в плане ф выбираются с учетом жесткости системы СПИД. Они должны быть достаточно большими, чтобы, уменьшая радиальные силы Ру, способствовать спокойной работе. Для этого рекомендуется в процессе резания регулировать поджим задним центром обрабатываемой детали, поскольку имеет место значительное удлинение ее с нагревом в процессе резания. Самый резец должен быть жестким, т. е. с возможно большим поперечным сечением с коротким вылетом и прочно закреплен. Суппорт тщательно регулируется, чтобы избежать при малых подачах его неравномерного движения.  [c.332]

    Хромоникелевая аустенитная клапанная сталь обладает более высокой прочностью при температурах 600 — 900° С, более высокой пластичностью и не закаливается на воздухе. Недостатком её является низкая твёрдость (160 — 200 Ид), которая не может быть повышена термообработкой, а также свойственная аустенитной стали недостаточно хорошая обрабатываемость резанием.  [c.496]

    Термически обрабатываемая сталь перлитного класса сваривается удовлетворительно, если содержание углерода в ней не превосходит 0,3—0,35% подогревом до 150—250° С предупреждаются закалочные трещины в зоне шва, Мар-тенситная сталь относится к плохо сваривающимся. Сварка этой стали может быть осуществлена при подогреве до 400—500° С. Аустенитная сталь при низком содержании углерода хорошо сваривается. Карбидная инструментальная сталь допускает сварку только в малых объемах, но достаточно хорошо наплавляется.  [c.202]

    Преимущества сварки под флюсом перед ручной дуговой сваркой общеизвестны. Однако в применении к аустенитным сталям и сплавам, по новому проявляются некоторые особенности сварки под флюсом, не имеющие большого значения при сварке обычных сталей. Речь идет, например, о возможности сварки без разделки кромок [24]. Это обстоятельство имеет большое значение ввиду плохой обрабатываемости аустенитных сталей и сплавов. Немаловажное значение имеет и возможность сварки с одной установки, без перерывов, шва практически любой протяженности. Избавление от множества кратеров, неизбежного при ручной сварке, обусловливает уменьшение опасности поражения швов трещинами.  [c.311]

    Обрабатываемость нержавеющих хромистых, хромоникелевых и хромомарганцовистых сталей отличается от обрабатываемости углеродистых сталей и зависит от комплекса свойств, характеризующих твердое тело химического состава, структуры, механических и теплофизических свойств. По сравнению с обрабатываемостью бессемеровской стали (принято за 100%), обрабатываемость нержавеющих сталей характеризуется от 80—50% (хромистые) до 30—25% (хромоникелевые аустенитные стали).  [c.746]

    Аустенитные хромоникелевые стали и хромомарганцевоникелевые стали обладают очень низкой обрабатываемостью, составляющей 30—45%. Эти стали очень вязкие, обладают большой склонностью к наклепу, т. е. к упрочнению при холодной деформации, и требуют больших усилий при отделении стружки. Поэтому обработку аустенитных сталей следует производить на более жестких и мощных станках.  [c.747]

    Обрабатываемость указанных сталей улучшается в результате отжига и отпуска, которые приводят к снижению действительного предела прочности при максимальном вьщелении из твердого раствора и максимальной коагуляции карбидов. При закалке стали в случае увеличения действительного предела прочности ее обрабатываемость ухудшается, несмотря на то, что, например, у аустенитной стали после такой термической обработки во многих случаях твердость снижается.  [c.262]

    Особенно плохой обрабатываемостью отличаются аустенитные стали, которые кроме высокой пластичности и вязкости имеют пониженную теплопроводность. Выделяющаяся при их обработке теплота концентрируется в зоне резания, снижая стойкость инструмента.  [c.283]

    При обработке металлов резанием, когда стружка подвергается пластической деформации со значительной скоростью, сопротивление резанию, очевидно, тем больше, чем выше вязкость обрабатываемого металла и чем более он способен к наклепу. Так, у пластичной маломагнитной (аустенитной) стали, очень склонной к наклепу, улпределом прочности и большой пластичностью, она при деформировании упрочняется сравнительно слабо и потому сила резания не достигает значительной величины. Также сравнительно невелики силы резания при обработке чугуна и других хрупких металлов, так как здесь срезаемый слой пластически почти не деформируется. Последнее способствует сокращению площади контакта между стружкой и резцом и уменьшению сил трения стружки по передней поверхности инструмента.  [c.112]

    Обрабатываемость аустенитных сталей может быть облегчена добавками серы, фосфора и особенно селена. Селен вместе с серой, присаженные в небольшом количестве, образует с расплавленным металлом весьма тугоплавкие селениды, обладающие невысокой твердостью и лишенные абразивных свойств. Они снижают трение J68  [c.168]

    Практика показывает, что при использовании смазочно-охлаж-дающих жидкостей значительно повышается стойкость инструмента или допускаемая им скорость резания. Особенно это заметно при обработке вязких труднообрабатываемых аустенитных сталей здесь в результате малой теплопроводности обрабатываемого металла при большой нагрузке имеет место высокая температура резания, и, следовательно, охлаждение будет весьма эффективным.  [c.189]

    Установка для нанесения покрытий натиранием содержит источник постоянного тока, отрицательный полюс которого соединяют с обрабатываемой поверхностью, а положительный — с электродом. Электрод изготовляют из металла покрытия, свинца, аустенитной стали или графита. Наконечник электрода изолирован пористым материалом — поролоном или тканью. В электрической  [c.702]

    Таким образом, если при обработке точением титановые материалы по обрабатываемости близки к нержавеющей аустенитной стали, а при обработке шлифованием их обрабатываемость ниже стали во много раз 123], то при чистовой обработке давлением они довольно близки к стали 45, их обрабатываемость в сравнении со сталью 45 по НО составляет (Кно) соответственно 0,96  [c.35]

    Выбор температуры охлаждения, продолжительность выдержки в холодильной камере зависят от температуры окончания аустенитно-мартенситного превращения обрабатываемой стали, производительности холодильной камеры, размеров, конфигурации и условий нагрева детали в процессе шлифования и других факторов. Эти режимы обычно определяют опытным путем.  [c.93]

    Трудно обрабатываемые особые металлы — модифицированные перлитные чугуны, жаропрочные сплавы, аустенитные стали, обладающие значительной вязкостью и одновременно большой прочностью.  [c.68]

    Для определения обрабатываемости жаропрочной стали следует принимать во внимание характеристики, которые отражают свойства, приобретаемые сталью при значительной пластической деформации, в условиях преобладания сжимающих напряжений, а следовательно, и удельную работу деформации в граничном слое стружки, а также характеристику, которая позволяет учитывать пониженную обрабатываемость аустенитных сталей.  [c.55]

    Увеличение крутящего момента при возрастании скорости резания связано, по-видимому, с усилением схватывания поверхностей метчика с обрабатываемым металлом вследствие увеличения температуры контактных слоев и низкой теплопроводности аустенитной стали.  [c.318]

    Для улучшения обрабатываемости иногда в аустенитные стали вводят серу и селен. Одиако это улучшение обрабатываемости до-стш-ается, к сожалению, в результате уменьшения коррозионной стойкости.  [c.123]

    Аустенитные стали - Обрабатываемость 174  [c.832]

    Содержание углерода в жаростойких аустенитных хромоникелевых сталях должно быть низким и редко превышает 0,57в-Малоуглеродистые стали более ковки и вязки и более коррозионно стойки, чем высокоуглеродистые сплавы. Для специальных целей к этим сталям добавляют и другие элементы. Например, марганец, присутствующий во всех аустенитных сталях, улучшает их обрабатываемость в горячем состоянии.  [c.670]

    Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью. хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше.  [c.20]

    В настоящее время большинство исследований посвящено изучению обрабатываемости резанием высокопрочных сталей и сплавов, все чаще применяемых в специальном машиностроении (турбо-ракето-реакторо-строении и др.). В основном это жаропрочные, жаростойкие и износостойкие аустенитные стали и сплавы, отличающиеся не только специальными физическими свойствами, но и высокими прочностными параметрами.  [c.325]

    Специфические свойства высокопрочных аустенитных сталей и сплавов особенно заметно проявляются при фрезеровании. При встречном фрезеровании, когда снимается стружка переменной толщины от а = О до значительный интерес представляет самый процесс врезания зуба в обрабатываемый материал. Первоначально зуб фрезы скользит по поверхности резания, сдавливая снимаемый слой металла, а затем врезается. Отношение пути резания /р к обидему пути перемещения зуба включающему и путь скольжения 4л (назовем его коэффициентом С),  [c.337]

    Очевидно, попутное фрезерование, когда зуб фрезы врезается в обрабатываемый материал с максимальной толщиной среза, обеспечит более благоприятные условия фрезерования аустенитной стали и тем самым повышенную производительность. Любопытно отметить, что преимущество попутной подачи при фрезеровании высокопрочного сплава нимо-ник А резко проявляется при нормальной подаче на зуб (s = 0,2 мм1зуб) и малых скоростях резания (рис. 7, б) и значительно меньше при тонком срезе с Sj = 0,08 мм1зуб (рис. 7, а).  [c.338]

    Надо полагать, что подобная установка детали не даст положительного результата при фрезеровании заготовки с твердой коркой или закаленной на большую твердость, когда происходит значительный удар нри врезании. То же получится и при наличии нежесткой системы СПИД. В последнем случае переменные по величине и направлению силы подачи могут вызвать вибрации, достаточно легко возбудимые при резании аустенитной стали в условиях малой жесткости системы (в частности, при наличии люфта между ходовым винтом и маточной гайкой станка). Здесь может оказаться более выгодным обратное смещение обрабатываемой заготовки, при котором будет превалировать встречное фрезерование (рис. 8, в).  [c.340]

    Необходимо постоянное внимание при изготовлении и последующей эксплуатации подогреваемых натрием парогенераторов. Должны быть тщательно разработаны методы обнаружения течей в начальной стадии, прекращения их или изоляции дефектных труб до того, как парогенератор начнет работать. Это особенно важно для аустенитных сталей, так как скорость, с которой происходит образование трещин в результате коррозии под напряжением, может привести к их распространению через ненапряженные участки. Условия изготовления и контроль используемых материалов определяют возможность получения оптимальных свойств. Трубы для.теплообменников натрий—вода должны быть изготовлены из высококачественных сталей, полученных или методом ва-лмеханическую обработку, причем полученную трубную заготовку желательно снова механически обработать. Холодная прокатка имеет преимущества перед волочением, так как позволяет получить большее увеличениенжлины между отжигами, однако в некоторых случаях абсолкртная чистота и хорошее качество обрабатываемых материалов позволяют избежать складок или включений на поверхности. Трубы должны быть полностью обезжирены перед отжигом, а отжиг должен проводиться в контролируемой атмосфере, чтобы избежать науглероживания или обезуглероживания. Кроме того, все трубы должны пройти неразрушающий - контроль. Методы сварки должны исключать возможность появления трещин и ще--лей.  [c.190]

    Обрабатываемость резанием приведенных в Марочнике сталей и сплавов определена для условий получистового точения без охлаждения по чистому металлу резцами, оснащенными твердыми сплавами Т5К10, ВК8 (для аустенитных сталей и  [c.17]

    Из сопоставления приведенных данных можно видеть, что при работе быстрорежущим инструментом в условиях прерьшистого резания с высокими скоростями резания, так же, как и при непрерывном резании, способность обрабатываемых металлов изнашивать инструмент в основном определяется способностью создавать высокие температуры резания и заторможенную зону, защищающую режущие элементы от износа. В отличие от быстрорежущих инструментов при работе инструментов, оснащенных твердыми сплавами, в условиях прерывистого резания способность обрабатываемых металлов изнашивать инструмент в значительной мере зависит от силы адгезии и пластичности обрабатываемого металла. Так, например, при обработке чугуна с пластинчатым графитом, обладающего низкой способностью к адгезии и низкой пластичностью, скорости резания при непрерывном и прерывистом резании инструментами, оснащенными твердыми сплавами, отличаются сравнительно мало (подробно обрабатываемость чугунов резанием изложена в главе 7 настоящего справочника). В то же время при обработке пластичной аустенитной стали, обладающей высокой способностью к адгезии, скорости резания твердосплавными инструментами в условиях прерывистого резания с резким выходом режущих кромок из металла в 4-7 раз ниже, чем скорости резаьшя в условиях непрерьшного резания. Аналогичное, хотя и не столь резкое различие, наблюдается при обработке стали в литом состоянии, имеющей пониженную пластичность, и стали, которая прошла горячую обработку давлением и имеет значительно более высокую пластичность. Указанное влияние на обрабатываемость при прерывистом резании способности к адгезии и пластичности обрабатываемого металла связано в основном с механизмом циклического адгезионного износа твердосплавных инструментов при низких скоростях резания в условиях выхода режущих кромок из металла.  [c.264]

    Снижение никеля до 2—6%, добавление меди, титана, алюминия приводят к появлению мартенситной структуры и дисперсионному повышению прочности стали добавление серы или селена улучшает обрабатываемость стали. Увеличение хрома и снижение никеля приводят к созданию фер-рито-аустенитных сталей.  [c.178]

    Мартенситностареющие стали. Такого типа стали обладают благоприятной особенностью высокими технологической пластичностью после закалки, прочностью и достаточной пластичностью после искусственного старения. В связи с этим режимы обычных ТО и ТЦО делят на два вида смягчающие (предварительные) и упрочняющие (окончательные). Известно из практики ТЦО аустенитных сталей, что термоциклирование стабилизирует аустенит. Следовательно, вызывая это явление в мартенситностареющих сталях, можно добиться увеличения В их структуре количества аустенита, что сделает сталь еще более пластичной — лучше обрабатываемой давлением и резанием. В этом суть смягчающих ТЦО. С другой стороны, ТЦО, измельчая зерна в стали и делая остаточный аустенит более стабильным (более отпускоустойчивым), приводит к тому,  [c.109]

    В настоящее время подтверждена зависимость шероховатости от химического и фазового состава, структуры обрабатываемого материала [33, 127, 225]. Микрорельеф поверхности при ЭХО сталей различных марок изменяется в широком диапазоне. Уменьшение шероховатости железоуглеродистых сплавов наблюдается при наличии в них N1, Сг, Т1 и Мо [141 ]. Согласно исследованиям с увеличением содержания С в углеродистых сталях щероховатость поверхности возрастает, достигая максимума при ЭХО эвтектоидных сталей. Термическая обработка сталей может изменить щероховатость поверхности после ЭХО наименьшая щероховатость достигается при обработке мартенситных сталей (углеродистых и хромистых) со структурой троостита и сорбита, а при обработке аустенитных сталей —со структурой аустенита. Для отожженных углеродистых сталей минимальной шероховатости соответствует структура феррита, максимальной — перлита вторичный цементит в заэвтектоидной стали уменьшает щероховатость. Наименьшая шероховатость поверхности после ЭХО ряда марок легированной стали отмечена на мартенситных структурах по сравнению со структурами отжига. Крупнозернистые структуры способствуют увеличению шероховатости поверхности при ЭХО. Обнаружена зависимость микрорельефа от субмикроструктуры пластически деформированной стали [127].  [c.46]

    Немагнитная сталь и чугун. В качестве заменителей бронзы, латуни и других цветных сплавов в электромашиностроении применяют немагнитную сталь и чугун, имеющие аустенитную структуру. Такая структура получается за счет высокого содержания марганца и никеля, расширяющих 7-область на диаграммах состояния сплавов этих сталей с железом. Например, никелевая немагнитная сталь Н25, содержащая 22—25% N4, получает аустенитную структуру после закалки в масле при 920—940°. Она удовлетЕорг-тельно обрабатывается режущим инструментом, хорошо сопротивляется коррозии, но стоимость ее высока вследствие большого содержания никеля. Немагнитная никелемарганцовистая сталь Н9Г9 содержит меньше никеля — 8,0—9,5% марганца в ней 8,0—10%. Эта сталь наиболее распространена, однако обрабатываемость ее несколько хуже, чем немагнитной никелевой стали. Марганцовистая аустенитная сталь очень плохо поддается обработке режущим инструментом, что препятствует ее применению.  [c.371]

    Кривая 3 суммарного износа представится алгебраической суммой кривых 1 и 2. Кривая 4 стойкости по характеру будет зеркальным изображением кривой 3 интенсивности износа. На основании такого представления изменение стойкости инструмента, с увеличением температуры контакта, происходит по кривой, имеющей максимум стойкости. Наличие этого максимума обусловлено изменением хар актер а износа. Темпер атуру контакта, соответствующую максимуму стойкости, назовем рациональной температурой контакта. Приведенная схема износа относится к частному случаю, когда кривые интенсивности адгезионного и диффузионного износа монотонны. В дей-ствательности, в зависимости от свойств обрабатываемого и инструментального материала эти кривые могут иметь перегибы и несколько максимумов, тогда соответственно кривая стойкости будет иметь также несколько максимумов. Например, у высокомарганцовистой аустенитной стали в области 600° происходит мартенситное превращение и возникает пик твердости, соответственно увеличиваются силы, действующие на режущей кромке резца, и интенсивность износа.  [c.335]

    При обработке мягких вязких аустенитных сталей появляются чешуйки, покрывающие рябью протянутую поверхность. Это — следы оставшихся частей нароста. Для того чтобы избежать ряби, обрабатываемый металл необходимо нормализовать и применять надлежащую смазку (многомасляную активную эмульсию). Эти меры поднимают чистоту поверхности на два-три класса.  [c.464]

    В опытах многократно подтверждалось, что метчик имеет высокую стойкость лишь тогда, когда на передней поверхности его зубьев стружка не налипает, а полностью удаляется. Однако одно только хорошее охлаждение не обеспечивает большой стойкости метчика. Из-за высокой упрочняемоети аустенитных сталей интенсивность истирания несмазанных поверхностей увеличивается, поэтому весьма важна также хорошая смазка трущихся поверхностей метчика и обрабатываемой заготовки. Смазывающая жидкость, попадая на заднюю и боковые поверхности зуба метчика, способствует уменьшению силы трения и увеличению стойкости метчика. В опытах автора по нарезанию резьбы в стали ЭЯ1Т были испытаны смазывающе-охлаждающие жидкости следующих составов (в процентах).  [c.327]

    Марганцовистая аустенитная сталь ПЗ в качестве немагнитной применяется весьма ограниченно ввиду ее плохой обрабатываемости резаннем. Это объясняется сильной склонностью высокоуглеродистого и высокомарганцевого аустенита к наклепу. Сталь с 0,4—0,45% С и 13—14% Мп и дополнительно легированная алюминием (3,0—3,5% AI) 1 лучше обрабатывается резанием. Влияние алюминия сказывается в уменьшении твердости и в особенности склонности к наклепу (фиг. 184 и 185) на последней фигуре твердость показана внутри отпечатка. Однако при содержании алюминия больше 3,5% в структуре появляется а фаза, которая повышает и твердость, и особенно магнитную проницаемость ц, что недопустимо (фпг. 186). Для повышения прочности к подобной марганцевоалюминиевой стали рекомендуется добавлять медь или хром в количестве 2,5% (см. состав № 9 в табл. 1).  [c.780]

    Для улучшения обрабатываемости иногда в аустенитные стали вводят серу и селен. Однако это улучшение обрабатываемости достигается, к сожалению, за счет уменьшения коррозионной стойкости. Обрабатываемость стали Х18Н10Т можно улучшить, подвергнув ее отжигу при 700—750° С. Это вызывает выделение карбидов, вследствие чего стружка делается более хрупкой, легче удаляется и уменьшается износ инструмента. Однако такие деталя после механической обработки склонны к межкристаллитной коррозии и имеют повышенную общую коррозию. Чтобы обеспечить такому металлу максимальную коррозионную стойкость, следует его вновь подвергать закалке при 1050—1080° С и охлаждению в воде.  [c.108]

    mash-xxl.info

    Аустенит — Википедия (с комментариями)

    Материал из Википедии — свободной энциклопедии

    Аустенит (γ-фаза) — высокотемпературная гранецентрированная модификация железа и его сплавов.

    Фаза названа в честь сэра Уильяма Чандлера Робертс-Остина (англ. William Chandler Roberts-Austen, 1843—1902).

    В углеродистых сталях аустенит — это твёрдый раствор внедрения, в котором атомы углерода входят внутрь элементарной ячейки γ-железа во время конечной термообработки. В сталях, содержащих другие металлы (кроме железа, легированные стали), атомы металлов замещают атомы железа в кристаллической решетке и возникает твердый раствор замещения. В чистом железе существует в интервале температур 910—1401 °C; в углеродистых сталях аустенит существует при температурах не ниже 723 °C.

    В легированных сталях аустенит может существовать и при гораздо более низких температурах. Такие элементы, как никель стабилизируют аустенитную фазу. Нержавеющие стали, такие как 08Х18Н10Т или AISI 304, AISI 316 и т. д. относятся к аустенитному классу. Присутствие никеля в количестве 8—10 % приводит к тому, что аустенитная фаза сохраняется и при комнатной температуре. Мартенситно-стареющие нержавеющие стали типа 08Х15Н2ДТ или Ph 17-4 могут содержать некоторое количество остаточного аустенита. Оптическая металлография во многих случаях не позволяет выявить присутствие аустенита, расположенного, как правило, по границам мартенситных пакетов. Основными способами определения количества остаточного аустенита являются рентгеноструктурный анализ и просвечивающая электронная микроскопия.

    Напишите отзыв о статье "Аустенит"

    Литература

    • А. П. Гуляев. Металловедение.
    • Я. М. Потак. Высокопрочные стали.
    • Б. Г. Лившиц. Металлография.

    См. также

    Ссылки

    Отрывок, характеризующий Аустенит

    «Имел поучительный и длинный разговор наедине с братом В., который советовал мне держаться брата А. Многое, хотя и недостойному, мне было открыто. Адонаи есть имя сотворившего мир. Элоим есть имя правящего всем. Третье имя, имя поизрекаемое, имеющее значение Всего . Беседы с братом В. подкрепляют, освежают и утверждают меня на пути добродетели. При нем нет места сомнению. Мне ясно различие бедного учения наук общественных с нашим святым, всё обнимающим учением. Науки человеческие всё подразделяют – чтобы понять, всё убивают – чтобы рассмотреть. В святой науке Ордена всё едино, всё познается в своей совокупности и жизни. Троица – три начала вещей – сера, меркурий и соль. Сера елейного и огненного свойства; она в соединении с солью, огненностью своей возбуждает в ней алкание, посредством которого притягивает меркурий, схватывает его, удерживает и совокупно производит отдельные тела. Меркурий есть жидкая и летучая духовная сущность – Христос, Дух Святой, Он». «3 го декабря. «Проснулся поздно, читал Св. Писание, но был бесчувствен. После вышел и ходил по зале. Хотел размышлять, но вместо того воображение представило одно происшествие, бывшее четыре года тому назад. Господин Долохов, после моей дуэли встретясь со мной в Москве, сказал мне, что он надеется, что я пользуюсь теперь полным душевным спокойствием, несмотря на отсутствие моей супруги. Я тогда ничего не отвечал. Теперь я припомнил все подробности этого свидания и в душе своей говорил ему самые злобные слова и колкие ответы. Опомнился и бросил эту мысль только тогда, когда увидал себя в распалении гнева; но недостаточно раскаялся в этом. После пришел Борис Друбецкой и стал рассказывать разные приключения; я же с самого его прихода сделался недоволен его посещением и сказал ему что то противное. Он возразил. Я вспыхнул и наговорил ему множество неприятного и даже грубого. Он замолчал и я спохватился только тогда, когда было уже поздно. Боже мой, я совсем не умею с ним обходиться. Этому причиной мое самолюбие. Я ставлю себя выше его и потому делаюсь гораздо его хуже, ибо он снисходителен к моим грубостям, а я напротив того питаю к нему презрение. Боже мой, даруй мне в присутствии его видеть больше мою мерзость и поступать так, чтобы и ему это было полезно. После обеда заснул и в то время как засыпал, услыхал явственно голос, сказавший мне в левое ухо: – „Твой день“.

    wiki-org.ru