Сварка конструкционных низколегированных сталей. Свариваемость низколегированных сталей


    Сварка низколегированных сталей. Сварка

    Сварка низколегированных сталей

    Низколегированные стали содержат углерода до 0,25 % и легирующих примесей до 3 %. Они относятся к категории удовлетворительно свариваемых сталей. Стали этих групп относятся к хорошо сваривающимся практически всеми видами сварки сталям.

    Основные требования при их сварке – обеспечение равнопрочности сварного соединения основному металлу, отсутствие дефектов, требуемая форма сварного шва, производительность и экономичность. Следует учитывать, что при содержании в стали углерода более 0,25 % возможно образование закалочных структур и даже трещин в зоне сварного шва. Кроме того, выгорание углерода вызывает образование пор в металле шва.

    Сталь марки 15ХСНД сваривают вручную электродами типа Э50А или Э55А. Наилучшие результаты дают электрод типа УОНИИ–13/55 и электрод ДСК–50.

    Сварку электродами типа ДСК–50 можно выполнять переменным током, но лучшие результаты дает сварка постоянным током обратной полярности. Многослойную сварку следует производить каскадным методом.

    Чтобы предупредить перегрев стали, следует выполнять сварку при токах 40–50 А на 1 мм диаметра электрода. Рекомендуется применять электроды диаметром 4–5 мм. Автоматическую сварку сталей 15ХСНД, 15ГС и 14Г2 производят проволокой типа Св–08ГА или Св–08ГА под флюсом АН–348–А или ОСЦ–45 при высоких скоростях, но при малой погонной энергии. В зимних условиях сварку конструкций из стали марки 15ХСНД можно производить при температурах не ниже –10 °C. При более низких температурах применяют предварительный подогрев зоны сварки на ширине до 120 мм по обе стороны шва до температуры 100–150 °C. При температуре –25 °C сварка не допускается.

    Стали марок 09Г2С и 10Г2С1 относятся к группе незакаливающихся, не склонных к перегреву и стойких против образования трещин. Ручная сварка электродами типов Э50А и Э55А выполняется на режимах, предусмотренных для сварки низкоуглеродистой стали. Механические свойства сварного шва не уступают показателям основного металла.

    Автоматическая и полуавтоматическая сварки выполняются электродной проволокой типа Св–08ГА, Св–10ГА или Св–10Г2 под флюсом АН–348–А или ОСЦ–45. Сварку листов толщиной до 40 мм производят без разделки кромок. При этом равнопрочность сваренного шва обеспечивается за счет перехода легирующих элементов из электродной проволоки в металл шва.

    Стали хромокремниемарганцовистые типа «хромансиль» относятся к низколегированным (марки 20ХГСА, 25ХГСА, 30ХГСА и 35ХГСА). Они дают закалочные структуры и склонны к образованию трещин. При этом чем меньше толщина кромок, тем больше опасность закалки металла и образования трещин, особенно в околошовной зоне. Для сварки могут применяться электроды НИАТ—ЗМ типов Э70, Э85. Для ответственных сварных швов рекомендуются электроды со стальными стержнями из проволоки типа Св–18ХГС или Св–18ХМА с покрытием следующих типов: ЦЛ–18–63, ЦК–18Мо, УОНИИ–13/65, УОНИИ–13/85, УОНИИ–13/НЖ.

    При сварке рекомендуется следующие режимы:

    При сварке более толстых металлов применяется многослойная сварка с малыми интервалами времени между наложением последующих слоев. При сварке кромок разной толщины сварочный ток выбирается по кромке большей толщины и на нее направляется большая часть зоны дуги. Для устранения закалки и повышенной твердости металла шва и околошовной зоны рекомендуется после сварки нагреть изделие до температуры 650–680 °C, выдержать при этой температуре определенное время в зависимости от толщины металла (1 ч на каждые 25 мм) и охладить на воздухе или в горячей воде. Сварку низколегированных сталей в защитном газе производят при плотностях тока более 80 А/мм2.

    Сварка в углекислом газе выполняется при постоянном токе обратной полярности. Рекомендуется электродная проволока диаметром 1,2–2,0 мм марки Св–08Г2С или Св–10Г2, а для сталей, содержащих хром и никель, Св–08ХГ2С, Св–08ГСМТ.

    Эффективной является сварка в углекислом газе с применением порошковой проволоки.

    Электрошлаковая сварка сталей любой толщины успешно производится электродной проволокой марки Св–10Г2 или Св–18ХМА под флюсом АН–8 при любой температуре окружающего воздуха.

    Газовая сварка отличается значительным разогревом свариваемых кромок, снижением коррозионной стойкости и более интенсивным выгоранием легирующих примесей. Поэтому качество полученных сварных соединений ниже, чем при других способах сварки.

    При газовой сварке пользуются только нормальным пламенем при удельной мощности 75–100 л/(ч?мм) при левом способе, а при правом – 100–130 л/(ч?мм). Присадочным материалом служит проволока марок Св–08, Св–08А, Св–10Г2, а для ответственных швов – Св–18ХГС и Св–18ХМА. Проковка шва при температуре 800–850 °C с последующей нормализацией повышает механические качества шва.

    Поделитесь на страничке

    Следующая глава >

    info.wikireading.ru

    11.5 Технология сварки низколегированных перлитных сталей

    Низкоуглеродистые и низколегированные стали перлитного класса применяются в различных конструкциях взамен углеродистых, обеспечивая снижение металлоемкости на 20…50 %. Они широко используются в строительстве трубопроводов, конструкций газо-нефтехимических производств, судов, мостов и других сооружений, эксплуатируемых в температурном интервале от -70 до +475 oС в зависимости от химического состава и структурного состояния, обеспеченного термообработкой.

    Состав сталей. Одним из наиболее эффективных средств повышения качества низкоуглеродистых сталей является их упрочнение за счет легирования такими элементами, как Si, Мn, и повышения дисперсности структуры посредством термической или термомеханической обработки. Содержание С в низколегированных сталях не превышает 0,23 %. В зависимости от легирующих элементов, суммарное содержание которых в составе стали не превышает 5 %, различают марганцовистые, кремне марганцовистые, хромокремнемарганцовистые и другие стали. По содержанию S и P эти стали можно отнести к качественным сталям. В последние годы расширяется производство и применение рафинированных посредством электрошлакового, вакуумного переплава сталей, обработанных в ковше синтетическими шлаками с целью снижения содержания серы в их составе для повышения сопротивляемости образованию слоистых (ламинарных) трещин.

    Механические свойства сталей. Введение в состав низкоуглеродистых сталей легирующих элементов (до 2% каждого и до 5 % суммарно) способствует повышению прочности и сопротивления хрупкому разрушению, не ухудшая их свариваемости.

    Свариваемость сталей. Легирующие элементы оказывают существенное влияние на показатели свариваемости сталей. Увеличение содержания элементов, повышающих закаливаемость, сопровождается снижением сопротивления сварных соединений образованию холодных трещин.

    Элементы, упрочняющие твердый раствор, способствуют, как правило, снижению ударной вязкости металла в околошовном участке ЗТВ сварных соединений.

    Наиболее распространенные в металлургической практике легирующие элементы Мn, Сr, Мо снижают диффузионную подвижность С и, как следствие, увеличивают уровень значений характеристических длительностей ф,п,б, понижают температурный интервал  -  - превращения. Поэтому при общепринятых режимах сварки в околошовном участке возрастает вероятность образования мартенсита и понижается сопротивляемость сварных соединений образованию холодных трещин.

    Выбор тепловых режимов сварки. Одним из технологических средств, снижающих вероятность появления холодных трещин, является предварительный и сопутствующий подогрев. Для определения температуры подогрева стали с целью предотвращения образования холодных трещин в зависимости от содержания в ней химических элементов и толщины проката можно воспользоваться графиками, приведенными в справочниках по сварке.

    Значения Сэкв, отложенные по оси абсцисс, определяют

    Сэкв = С + Мn/6 + Si/5 + Сr/6 + Ni/12 + Мо/4 + V/5 + Сu/7 +Р/2

    Здесь символы обозначают содержание соответствующих химических элементов в процентах. Предельное их содержание не должно превышать 0,5% С; 1,6% Мn; 1% Сr; 3,5% Ni; 0,6% Мо; 1% С. Необходимая температура подогрева возрастает с увеличением степени легирования стали и толщины свариваемого проката.

    Технология сварки и свойства сварных соединений. Технология сварки низколегированных сталей должна проектироваться с учетом того обстоятельства, что при уменьшении погонной энергии и увеличении интенсивности охлаждения в металле шва и зоны термического влияния возрастает вероятность распада аустенита с образованием закалочных структур. При этом будет отмечаться снижение сопротивляемости сварных соединений образованию холодных трещин и хрупкому разрушению.

    При повышенных погонных энергиях наблюдается рост зерна аустенита и образуется грубозернистая ферритно-перлитная структура видманшентного типа с пониженной ударной вязкостью.

    Ручная дуговая сварка. Технология ручной дуговой сварки низколегированных сталей практически не отличается от технологии сварки низкоуглеродистых сталей.

    Сварку низколегированных сталей осуществляют электродами типа Э46А и Э50А с фтористо-кальциевым покрытием, которые позволяют достигать более высокую стойкость против образования кристаллизационных трещин и повышенную пластичность по сравнению с электродами других типов.

    Для сталей марок 09Г2, 09Г2С, 16ГС, 17ГС, 10Г2, 10Г2С1 рекомендуют применять электроды УОНИ 13/55, К-5А, АНО-11 (тип Э50А). Для сварки кольцевых швов трубопроводов, работающих при температурах до - 70 oС, например, из стали 09Г2С, применяют электроды ВСН-3 (тип Э50АФ) с фтористо-кальциевым покрытием.

    Сварка под флюсом. Технология сварки под флюсом низколегированных сталей практически такая же, как и для низкоуглеродистых сталей. В качестве флюсов при однодуговой сварке применяют флюсы марок АН-348А и ОСЦ-45, а при многодуговой сварке на повышенной скорости АН-60.

    Для сталей марок 16ГС, 09Г2С, 10Г2С1 при эксплуатации не ниже - 40 oС рекомендуется использовать сварочные проволоки Св-08ГА, Св-10ГА, а при температурах эксплуатации до -70 oС (сталь 09Г2С в нормализированном состоянии) - сварочные проволоки Св-10НМА, Св-10НЮ, Св-08МХ с целью обеспечения достаточного уровня ударной вязкости.

    studfiles.net

    Свариваемость легированных Сталей

    Основы сварочного дела

    Свариваемость легированных ста­лей оценивается не только воз­можностью получения сварного сое­динения с физико-механическими свойствами, близкими к свойствам основного металла, но и возмож­ностью сохранения специальных свойств: коррозионной стойкости, жа­ропрочности, химической стойкости, стойкости против образования зака­лочных структур и др. Большое влия­ние на Свариваемость стали оказы­вает наличие в ней различных ле­гирующих примесей: марганца, крем­ния, хрома, никеля, молибдена и др.

    Влияние кремния и марганца на свариваемость стали рассмотрено ранее (см. § 9).

    Хром — содержание его в низко­легированных сталях не превышает 0,9%. При таком содержании хром не оказывает существенного влияния на свариваемость стали. В конструк­ционных сталях хрома содержится 0,7...3,5%, в хромистых—12...18%, в хромоникелевых —9...35%. При та­ком содержании хром снижает сва­риваемость стали, так как, окисляясь, образует тугоплавкие оксиды СГ2О3, резко повышает твердость стали в зоне термического влияния, образуя карбиды хрома, а также способствует возникновению закалочных структур.

    Никель в низколегированных ста­лях содержится в пределах 0,3...0,6%, в конструкционных сталях—1,0...5%, а в легированных сталях — 8...35%.

    Никель способствует измельчению кристаллических зерен, повышению пластичности и прочности стали; не снижает свариваемости.

    Молибден в теплоустойчивых ста­лях содержится от 0,15 до 0,8%; в сталях, работающих при высоких температурах и ударных нагрузках, его содержание достигает 3,5%. Способствует измельчению кристал­лических зерен, повышению прочности и ударной вязкости стали. Ухудшает свариваемость стали, так как спо­собствует образованию трещин в ме­талле шва и в зоне термического влияния. В процессе сварки легко окисляется и выгорает. Поэтому тре­буются специальные меры для надеж­ной защиты от выгорания молибде­на при сварке.

    Ванадий содержится в легиро­ванных сталях от 0,2 до 1,5%. Придает стали высокую прочность, повышает ее вязкость и упругость. Ухудшает сварку, так как способст­вует образованию закалочных струк­тур в металле шва и околошов­ной зоны. При сварке легко окисляет­ся и выгорает.

    Вольфрам содержится в легиро­ванных сталях от 0,8 до 18%. Значительно повышает твердость ста­ли и его' теплостойкость. Снижает свариваемость стали; в процессе свар­ки легко окисляется и выгорает.

    Титан и ниобий содержатся в нер­жавеющих и жаропрочных сталях в количестве от 0,5 до 1,0%. Они яв­ляются хорошими карбидообразова - телями и поэтому препятствуют обра­зованию карбидов хрома. При сварке нержавеющих сталей ниобий способ­ствует образованию горячих трещин.

    § 47. Сварка низколегированных сталей

    Низколегированные стали получи­ли большое применение в связи с тем, что они, обладая повышенными механическими свойствами, позволяют изготовлять строительные конструк­ции более легкими и экономичными. Для изготовления различных конст­рукций промышленных и гражданских сооружений применяются стали марок 15ХСНД, 14Г2, 09Г2С, 10Г2С1, 16ГС и др. Для изготовления арматуры железобетонных конструкций и свар­ных труб применяют стали 18Г2С, 25Г2С, 25ГС и 20ХГ2Ц. Эти стали относятся к категории удовлетвори­тельно свариваемых сталей; содержат углерода не более 0,25% и леги­рующих примесей не более 3,0%. Следует учитывать, что при содер­жании в стали углерода более 0,25% возможно образование закалочных структур и даже трещин в зоне сварного шва. Кроме того, выгорание углерода вызывает образование пор в металле шва.

    Сталь 15ХСНД сваривают вручную1 электродами типа Э50А или Э55А. Наилучшие результаты дают электро­ды УОНИ-13/55 и электроды Днеп­ровского электродного завода ДСК-50. Сварку электродами ДСК-50 можно выполнять переменным то­ком, но лучшие результаты дает сварка постоянным током обратной полярности. Многослойную сварку следует производить каскадным мето­дом. Чтобы предупредить перегрев стали, следует выполнять сварку при токах 40...50 А на 1 мм диаметра электрода. Рекомендуется применять электроды диаметром 4...5 мм. Авто­матическую сварку стали 15ХСНД производят проволокой Св-08ГА или Св-ЮГА под флюсом АН-348-А или ОСЦ-45

    Толщина металла, мм.......................................

    Диаметр электрода, мм.....................................

    Сварочный ток, А............................................

    При высоких скоростях, но при малой погонной энергии. В зимних условиях сварку конструкций из стали 15ХСНД, 15ГС и 14Г2 можно производить при температурах не ниже — 10°С. При бо­лее низких температурах зону сварки на ширине 100... 120 мм по обе стороны от шва предварительно нагревают до Ю0...150°С. При температуре —25°С сварка не допускается.

    Стали 09Г2С и 10Г2С1 относятся к группе незакаливающихся сталей, не склонных к перегреву и стой­ких против образования трещин. Ручная сварка электродами Э50А и Э55А выполняется на режимах, пре­дусмотренных для сварки низкоугле­родистой стали. Механические свойст­ва сварного шва не уступают пока­зателям основного металла. Автомати­ческая и полуавтоматическая сварка выполняется электродной проволокой Св-08ГА, Св-ЮГА или Св-10Г2 под флюсом АН-348-А или ОСЦ-45. Свар­ку листов толщиной до 40 мм производят без разделки кромок. При этом равнопрочность сварного шва обеспечивается за счет перехода ле­гирующих элементов из электродной проволоки в металл шва.

    Стали хромокремнемарганцови - стые (20ХГСА, 25ХГСА,30ХГСА и 35ХГСА) при сварке дают закалоч­ные структуры и склонны к образова­нию трещин. При этом чем меньше толщина кромок, тем больше опас­ность закалки металла и образования трещин, особенно в околошовной зоне. Стали с содержанием углеро­да ^0,25% свариваются лучше, чем стали с большим содержанигм углерода. Для сварки могут приме­няться электроды НИАТ-ЗМ типа Э70, Э85. Для ответственных сварных швов рекомендуются электроды, изго­товленные из проволоки Св-18ХГС или Св-18ХМА с покрытием ЦЛ-18-63, ЦК-18Мо, УОНИ-13/65, УОНИ-13/85, УОНИ-13/НЖ.

    При сварке можно рекомендовать следующие режимы:

    0,5.1,5 2...3 4...6 7...10

    1,5...2,0 2,5...3 3...5 4...6

    20...40 50...90 100...160 200...240

    При сварке более толстых метал­лов применяется многослойная сварка с малыми интервалами времени между наложениями последующих слоев. При сварке кромок разной толщины сварочный ток выбирается по кромке большей толщины и на нее направ­ляется большая часть зоны дуги. Для устранения закалки и повышения твердости металла шва и околошов­ной зоны рекомендуется после сварки нагреть изделие до температуры 650...680°С, выдержать при этой тем­пературе определенное время в зави­симости от толщины металла (1 ч на каждые 25 мм) и охладить на воздухе или в горячей воде.

    Сварку низколегированных сталей в защитном газе производят при плотностях тока более 80 А/мм2. Сварка в углекислом газе выполняет­ся на постоянном токе обратной поляр­ности. Рекомендуется электродная проволока диаметром 1,6—2,0 мм мар­ки Св-08Г2С - или Св-10Г2, а для сталей, содержащих хром и никель,— Св-08ХГ2С, Св-08ГСМТ.

    Электрошлаковая сварка сталей любой толщины успешно производит­ся электродной проволокой марки Св-10Г2 или Св-18ХМА под флюсом АН-8 при любой температуре окру­жающего воздуха. Прогрессивным способом является сварка в углекис­лом газе с применением порошковой проволоки.

    Газовая сварка отличается значи­тельным разогревом свариваемых кро­мок, снижением коррозионной стой­кости, более интенсивным выгоранием легирующих примесей. Поэтому каче­ство сварных соединений ниже, чем при других способах сварки. При газовой сварке пользуются только нор­мальным пламенем при удельной мощ­ности 75... 100 л/(ч-мм) при левом способе, а при правом способе — 100...130 л/(ч-мм). Присадочным ма­териалом служат проволоки Св-08, Св-08А, Св-10Г2, а для ответственных швов — Св-18ХГС и Св-18ХМА. Про­ковка шва при температуре 800... 850°С с последующей нормализацией несколько повышает механические свойства шва.

    В последнее время с появлением китайской техники на мировом рынке, сварочный аппарат стал наиболее популярным инструментом у владельцев частных домов, коттеджей, дач и гаражей. Учитывая соотношение цен на приобретение сварки …

    Выполнение сварочных работ на строительно-монтажной площадке требует особо четкого выполнения всех правил безопасности производ­ства работ. Сварочные работы на высоте с лесов, подмостей и люлек разрешается производить только по­сле проверки этих …

    Из применяемых средств контроля особую опасность представляют рент­геновские и гамма-лучи. Рентгенов­ские и гамма-лучи опасны для человека при продолжительном облу­чении и большой дозе. Предельно ДО­пустимая доза, которая не вызывает необратимых изменений …

    msd.com.ua

    Сварка конструкционных низколегированных сталей — Мегаобучалка

    Реферат

    Данная курсовая работа содержит 24 машинописные страницы, 9 рисунков, 5 таблиц и один чертеж на листе форматом А1.

    Ключевые слова: сварная конструкция, стрела трубоукладчика, 09Г2С, сварка, свариваемость, дуговая сварка покрытым электродом, дуговая сварка под флюсом, электрошлаковая сварка, дуговая сварка в среде защитных газов, углекислый газ, режимы сварки, сварочные дефекты, контроль качества.

     

    Содержание

    1. Сварная конструкция «Стрела трубоукладчика ТЛГ-10»………….4

    2. Выбор материала…………………………………………….…….….4

    3. Сварка конструкционных низколегированных сталей…………..…5

    Состав и свойства сталей…………………………………………......5

    Общие сведения о свариваемости……………………………….…..5

    Физическая и технологическая свариваемость………………..........8

    4. Способы сварки стали 09Г2С………………………………….….….9

    Технология сварки покрытыми электродами ……………..….…9

    Технология сварки под флюсом ……………………..…….10

    Технология сварки в защитных газах……………..…….…..11

    Технология электрошлаковой сварки…………………………12

    5. Выбор способа, оборудования и режимов сварки………………......14

    6. Дефекты и контроль качества сварных соединений……………...…16

    Заключение…………………………………………………………….......21

    Список литературы………………………………………………………..22

     

    Сварная конструкция «Стрела трубоукладчика ТЛГ-10»

    Стрела трубоукладчика ТЛГ-10 сварная, А-образной формы, неповоротная; стойки коробчатого сечения, сварные, составленные из двух угольников. В головной части стрелы на одной оси насажены четыре ролика для канатов подъема груза и стрелы.

    Стрела служит для удержания и укладки в траншеи труб, а также для подъема и перемещения груза с одного места на другое.

    Выбор материала

     

    От правильного выбора металла для сварных конструкций в значительной мере зависят их эксплуатационная надежность и экономичность. В настоящее время сварные конструкции в основном изготовляют из углеродистых и низколегированных сталей, а также из алюминиевых и титановых сплавов.

    С учетом требований, предъявляемых к конструкции, выбрана конструкционная низколегированная сталь повышенной прочности 09Г2С (по ГОСТ 19281-89) .

    Низколегированные стали содержат углерода до 0,25% и легирующих примесей до 3 %. Они относятся к категории удовлетворительно свариваемых сталей. Следует учитывать, что при содержании в стали углерода более 0,25% возможно образование закалочных структур и даже трещин в зоне сварного шва. Кроме того, выгорание углерода вызывает образование пор в металле шва.Сталь является спокойной, а значит затвердевает без кипения, что обусловлено введением в их состав элементов-раскислителей.

     

    2.1. Свойства материала

    Таблица 1Химический состав в % материала 09Г2С

    C Si Mn Ni S P Cr N Cu As
    до 0.12 0.5 - 0.8 1.3 - 1.7 до 0.3 до 0.04 до 0.035 до 0.3 до 0.008 до 0.3 до 0.08

    Таблица 2Температура критических точек материала 09Г2С.

    Ac1 = 725 , Ac3(Acm) = 860 , Ar3(Arcm) = 780 , Ar1 = 625

     

     

    Таблица 3Механические свойства при Т=20oС материала 09Г2С.

    Сортамент Размер Напр. в T 5 KCU Термообр.
    - мм - МПа МПа % % кДж / м2 -
    Лист        

     

    Рис.1 Диаграмма Шеффлера

     

    Сталь марки 09Г2С перлитного класс.

    Таблица 4Технологические свойства материала 09Г2С.

    Свариваемость: без ограничений.
    Флокеночувствительность: не чувствительна.
    Склонность к отпускной хрупкости: не склонна.

    2.2. Назначение 09Г2С

    Листы по ГОСТ 19281-89 категории 15 –– несущие элементы сварных конструкций, различные детали и элементы сварных металлоконструкций работающих при переменных нагрузках, при температуре от —70 до +425°С с повышенной прочностью.

    Сварка конструкционных низколегированных сталей

    3.1 Состав и свойства сталей

    Углерод является основным легирующим элементом в углеродистых конструкционных сталях и определяет механические свойства сталей этой группы. Повышение его содержания усложняет технологию сварки и затрудняет возможности получения равнопрочного сварного соединения без дефектов. Стали с содержанием углерода до 0,25% относятся к низкоуглеродистым. По качественному признаку углеродистые стали разделяют на две группы: обыкновенного качества и качественные. По степени раскисления стали обыкновенного качества обозначают: кипящую — кп, полуспокойную — пс и спокойную — сп. Кипящая сталь, содержащая не более 0,07% Si, получается при неполном раскислении металла марганцем. Сталь характеризуется резко выраженной неравномерностью распределения серы и фосфора по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах. Спокойные стали получаются при раскислении марганцем, алюминием и кремнием и содержат не менее 0,12% Si; сера и фосфор распределены в них более равномерно, чем в кипящих сталях. Эти стали менее склонны к старению и отличаются меньшей реакцией на сварочный нагрев. Полуспокойная сталь по склонности к старению занимает промежуточное положение между кипящей и спокойной сталью. Сталь обыкновенного качества поставляют без термической обработки в горячекатаном состоянии. Изготовленные из нее конструкции также не подвергают последующей термической обработке.

    3.2Общие сведения о свариваемости

    Совокупность технологических характеристик основного металла, определяющих его реакцию на изменения, происходящие при сварке, и способность при принятом технологическом процессе обеспечивать надежное в эксплуатации и экономичное сварное соединение, объединяют в понятие «свариваемость». Свариваемость не является неотъемлемым свойством металла или сплава, подобным физическим свойствам. Кроме технологических характеристик основного металла свариваемость определяется способом и режимом сварки, составом дополнительного металла, флюса, покрытия или защитного газа, конструкцией сварного узла и условиями эксплуатации изделия.

    В зависимости от марки основного металла и условий эксплуатации конструкции изменяется и совокупность показателей, определяющих понятие свариваемости. Так, под хорошей свариваемостью низкоуглеродистой стали, предназначенной для изготовления конструкций, понимают возможность при обычной технологии получить сварное соединение, равнопрочное с основным металлом, без трещин в металле шва и без снижения пластичности в околошовной зоне. Металл шва и околошовной зоны в рассматриваемом случае должен быть стойким против перехода в хрупкое состояние при температуре эксплуатации конструкций и при концентрации напряжений, обусловленной формой узла.

    Технология их сварки должна обеспечивать определенный комплекс требований, основными из которых являются равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном шве. Для этого механические свойства металла шва и околошовной зоны должны быть не ниже нижнего предела механических свойств основного металла. В некоторых случаях конкретные условия работы конструкций допускают снижение отдельных показателей механических свойств сварного соединения. Однако в большинстве случаев, особенно при сварке ответственных конструкций, швы не должны иметь трещин, непроваров, пор, подрезов. Геометрические размеры и форма швов должны соответствовать требуемым. Сварное соединение должно быть стойким против перехода в хрупкое состояние. В отдельных случаях к сварному соединению предъявляют дополнительные требования. Однако во всех случаях технология должна обеспечивать максимальную производительность и экономичность процесса сварки при требуемой надежности и долговечности конструкции.

    Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки и предыдущей и последующей термической обработкой. Химический состав металла шва зависит от доли участия основного и электродного металлов в образовании шва и взаимодействий между металлом и шлаком и газовой фазой. При сварке рассматриваемых сталей состав металла шва незначительно отличается от состава основного металла. В металле шва меньше углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем и кремнием.

    Повышенные скорости охлаждения металла шва способствуют увеличению его прочности, однако при этом снижаются пластические свойства и ударная вязкость. Это объясняется изменением количества и строения перлитной фазы. Скорость охлаждения металла шва определяется толщиной свариваемого металла, конструкцией сварного соединения, режимом сварки и начальной температурой изделия. Влияние скорости охлаждения в наибольшей степени проявляется при дуговой сварке однослойных угловых швов и последнего слоя многослойных угловых и стыковых швов при наложении их на холодные, предварительно сваренные швы. Металл многослойных швов, кроме последних слоев, подвергающийся действию повторного термического цикла сварки, имеет более благоприятную мелкозернистую структуру. Поэтому он обладает более низкой критической температурой перехода в хрупкое состояние.

    Основным фактором, определяющим после окончания сварки конечную структуру металла в отдельных участках зоны термического влияния, является термический цикл, которому подвергался металл в этом участке при сварке. Решающими факторами термического цикла сварки являются максимальная температура, достигаемая металлом в рассматриваемом объекте, и скорость его охлаждения. Ширина и конечная структура различных участков зоны термического влияния определяется способом и режимом сварки, составом и толщиной основного металла.

    Обеспечение равнопрочности сварного соединения при дуговой сварке низкоуглеродистых сталей обычно не вызывает затруднений. Механические свойства металла околошовной зоны зависят от конкретных условий сварки и от вида термической обработки стали до сварки. Повышение скоростей охлаждения при сварке на форсированных режимах металла повышенной толщины, а также однопроходных угловых швов при отрицательных температурах и т. д. может привести к появлению в металле шва и на участках перегрева полной и неполной рекристаллизации в околошовной зоне закалочных структур. Повышение содержания в стали марганца увеличивает эту вероятность. Если эта сталь перед сваркой прошла термическое упрочнение — закалку, то в зоне термического влияния шва на участках рекристаллизации и синеломкости будет наблюдаться отпуск металла, т. е. снижение его прочностных свойств. Изменение этих свойств зависит от погонной энергии, типа сварного соединения и условий сварки.

    Сварные соединения из низколегированных сталей, сваренные различными способами сварки, обладают удовлетворительной стойкостью против образования кристаллизационных трещин. Это обусловлено низким содержанием в них углерода. Однако при сварке на низкоуглеродистых сталях, содержащих углерод по верхнему пределу (свыше 0,20%), угловых швов и первого корневого шва в многослойных швах, особенно с повышенным зазором, возможно образование в металле шва кристаллизационных трещин, что связано в основном с неблагоприятной формой провара (узкой, глубокой). Легирующие добавки в низколегированных сталях могут повышать вероятность образования кристаллизационных трещин. Все низкоуглеродистые и низколегированные стали хорошо свариваются всеми способами сварки плавлением. Обычно не имеется затруднений, связанных с возможностью образования холодных трещин, вызванных образованием в шве или околошовной зоне закалочных структур. Однако в сталях, содержащих углерод по верхнему пределу и повышенное содержание марганца и хрома, вероятность образования холодных трещин в указанных зонах повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях предупреждение трещин достигается предварительным подогревом до 120—200 0С. Предварительная и последующая термическая обработка сталей, использующихся в ответственных конструкциях, служит для этой цели, а также позволяет получить необходимые механические свойства сварных соединений (высокую прочность или пластичность, или их необходимое сочетание).

    3.3. Физическая и технологическая свариваемость

    Физическая свариваемость характеризует принципиальную возможность получения монолитных сварных соединений и главным образом относится к разнородным материалам.

    Физческая свариваемость материалов зависит от степени их растворимости друг в друге в жидком и твердом состояниях. Материалы, нерастворимые в жидком состоянии, не способны образовывать монолитные соединения. Материалы, растворимые в жидком состоянии, имеют различные степени растворимости в твердом состоянии.

    Приняты три степени физической свариваемости:

    1. Хорошая – полная растворимость в твердом состоянии;

    2. Удовлетворительная – ограниченная растворимость в твердом состоянии;

    3. Плохая – металлы нерастворимы в твердом состоянии.

    Технологическая свариваемость рассматривается как свойство материалов, характеризующее их реакцию на сварочный термодеформационный цикл.

    Широкое применение получил прикладной аспект понятия свариваемости материалов, учитывающий назначение изготовленных из них сварных конструкций. Свариваемость – свойство металлов или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделий.

    Признаки, характеризующие ту или иную степень свариваемости, четко не определены и устанавливаются в зависимости от отраслевых технических требований к производству сварных конструкций.

    Традиционно принято различать несколько качественных степеней технологической свариваемости:

    1) хорошая,

    2) удовлетворительная,

    3) ограниченная,

    4) плохая.

    Для сварных конструкций, выполняемых из углеродистых сталей, принимают следующие показатели свариваемости:

    1) сопротивляемость образованию холодных трещин,

    2) сопротивляемость образованию горячих трещин,

    3) сопротивление развитию трещинообразных дефектов,

    4) сопротивляемость хрупкому разрушению,

    5) значение основных механических свойств шва и околошовной зоны.

     

    Оценим свариваемость стали 09Г2С по методу эквивалентного углерода:

     

    megaobuchalka.ru

    Сварка низколегированных сталей

    ⇐ ПредыдущаяСтр 4 из 7Следующая ⇒

    Легированные стали подразделяются на низколегированные (легирующих элементов в сумме менее 2,5%), среднелегированные (от 2,5 до 10%) и высоколегированные (более 10%). Низколегированные стали делят на низколегированные низкоуглеродистые, низколегированные теплоустойчивые и низколегированные сред неуглеродистые.

    Механические свойства и химический состав некоторых марок низколегированных сталей приведены в табл. 33.

    33. Механические свойства низколегированных низкоуглеродистых сталей при данном химическом составе

     

    Содержание углерода в низколегированных низкоуглеродистых конструкционных сталях не превышает 0,22%. В зависимости от легирования стали подразделяют на марганцовистые (14Г, 14Г2), кремнемарганцовистые (09Г2С, 10Г2С1, 14ГС, 17ГС и др.), хромокремнемар-ганцовистые (14ХГС и др.), марганцовоазотнованадиевые (14Г2АФ, 18Г2АФ, 18Г2АФпс и др.), марганцовониобиевая (10Г2Б), хромокремненикельмедистые (10ХСНД, 15ХСНД) и т. д.

    Низколегированные низкоуглеродистые стали применяют в транспортном машиностроении, судостроении, гидротехническом строительстве, в производстве труб и др. Низколегированные стали поставляют по ГОСТ 19281 - 73 и 19282 - 73 и специальным техническим условиям.

    Низколегированные теплоустойчивые стали должны обладать повышенной прочностью при высоких температурах эксплуатации. Наиболее широко теплоустойчивее стали применяют при изготовлении паровых энергетических установок. Для повышения жаропрочности в их состав вводят молибден (М), вольфрам (В) и ванадий (Ф), а для обеспечения жаростойкости - хром (X), образующий плотную защитную пленку на поверхности металла.

    Низколегированные среднеуглеродистые (более 0,22% углерода) конструкционные стали применяют в машиностроении обычно в термообработанном состоянии. Технология сварки низколегированных среднеуглеродистых сталей подобна технологии сварки среднелегирован-ных сталей.

    Особенности сварки низколегированных сталей. Низколегированные стали сваривать труднее, чем низкоуглеродистые конструкционные. Низколегированная сталь более чувствительна к тепловым воздействиям при сварке. В зависимости от марки низколегированной стали при сварке могут образоваться закалочные структуры или перегрев в зоне термического влияния сварного соединения.

    Структура околошовного металла зависит от его химического состава, скорости охлаждения и длительности пребывания металла при соответствующих температурах, при которых происходит изменение микроструктуры и размера зерен. Если в доэвтектоидной стали получить нагревом аустенит (рис. 100), а затем сталь охлаждать с различной скоростью, то критические точки стали снижаются.

    Рис. 100. Диаграмма изотермического (при постоянной температуре) распада аустенита низкоуглеродистой стали: А - начало распада, Б - конец распада, A1 - критическая точка стали, Мн и Мк - начало и конец превращения аустенита в мартенсит; 1, 2, 3 и 4 - скорости охлаждения с образованием различных структур

    При малой скорости охлаждения получают структуру перлит (механическая смесь феррита и цементита). При большой скорости охлаждения аустенит распадается на составляющие структуры при относительно низких температурах и образуются структуры - сорбит, троостит, бейнит и при очень высокой скорости охлаждения - мартенсит. Наиболее хрупкой структурой является мартенситная, поэтому не следует при охлаждении допускать превращения аустенита в мартенсит при сварке низколегированных сталей.

    Скорость охлаждения стали, особенно большой толщины, при сварке всегда значительно превышает обычную скорость охлаждения металла на воздухе, вследствие чего при сварке легированных сталей возможно образование мартенсита.

    Для предупреждения образования при сварке закалочной мартенситной структуры необходимо применять меры, замедляющие охлаждение зоны термического влияния, - подогрев изделия и применение многослойной сварки.

    В некоторых случаях в зависимости от условий эксплуатации изделий допускают перегрев, т. е. укрупнение зерен в металле зоны термического влияния сварных соединений, выполненных из низколегированных сталей.

    При Высоких температурах эксплуатации изделий для повышения сопротивления ползучести (деформирование изделия при высоких температурах с течением времени) необходимо иметь крупнозернистую структуру и в сварном соединении. Но металл с очень крупным зерном обладает пониженной пластичностью и поэтому размер зерен допускается до известного предела.

    При эксплуатации изделий в условиях низких температур ползучесть исключается и необходима мелкозернистая структура металла, обеспечивающая увеличенную прочность и пластичность.

    Покрытые электроды и другие сварочные материалы при сварке, низколегированных сталей подбираются такими, чтобы содержание углерода, серы, фосфора и других вредных элементов в них было ниже по сравнению с материалами для сварки низкоуглеродистых конструкционных сталей. Этим удается увеличить стойкость металла шва против кристаллизационных трещин, так как низколегированные стали в значительной степени склонны к их образованию.

    Технология сварки низколегированной стали. Низколегированные низкоуглеродистые стали 09Г2, 09Г2С, 10ХСНД, 10Г2С1 и 10Г2Б при сварке не закаливаются и не склонны к перегреву. Сварку этих сталей производят при любом тепловом режиме, аналогично режиму сварки низкоуглеродистой стали.

    Для обеспечения равнопрочности соединения ручную сварку выполняют электродами типа Э50А. Твердость и прочность околошовной зоны практически не отличаются от основного металла.

    Сварочные материалы при сварке порошковой проволокой и в защитном газе подбирают такими, чтобы обеспечить прочностные свойства металлу шва на уровне прочности, достигаемой электродами типа Э50А.

    Низколегированные низкоуглеродистые стали 12ГС, 14Г, 14Г2, 14ХГС, 15ХСНД, 15Г2Ф, 15Г2СФ, 15Г2АФ при сварке могут образовывать закалочные микроструктуры и перегрев металла шва и зоны термического влияния. Количество закаливающихся структур резко уменьшается, если сварка выполняется с относительно большой погонной энергией, необходимой для уменьшения скорости охлаждения сварного соединения. Однако снижение скорости охлаждения металла при сварке приводит к укрупнению зерен (перегреву) металла шва и околошовного металла вследствие повышенного содержания углерода в этих сталях. Это особенно касается сталей 15ХСНД, 14ХГС. Стали 15Г2Ф, 15Г2СФ и 15Г2АФ менее склонны к перегреву в околошовной зоне, так как они легированы ванадием и азотом. Поэтому сварка большинства указанных сталей ограничивается более узкими пределами тепловых режимов, чем сварка низкоуглеродистой стали.

    Режим сварки необходимо подбирать так, чтобы не было большого количества закалочных микроструктур и сильного перегрева металла. Тогда можно производить сварку стали любой толщины без ограничений при окружающей температуре не ниже - 10°С. При более низкой температуре необходим предварительный подогрев до 120 - 150°С При температуре ниже - 25°С сварка изделий из закаливающихся сталей запрещается. Для предупреждения большого перегрева сварку сталей 15ХСНД и 14ХГС следует проводить на пониженной погонной тепловой энергии (при пониженных значениях тока электродами меньшего диаметра) по сравнению со сваркой низкоуглеродистой стали.

    Для обеспечения равнопрочности основного металла и сварного соединения при сварке этих сталей надо применять электроды типа Э50А или Э55.

    Технология сварки низколегированных среднеуглеродистых сталей 17ГС, 18Г2АФ, 35ХМ и других подобна технологии сварки сред не легированных сталей.

    Читайте также:

    lektsia.com

    Сварка легированных сталей | soedenimetall.ru

    Свариваемость легированных сталей

    Свариваемость легированных ста­лей оценивается не только воз­можностью получения сварного сое­динения с физико-механическими свойствами, близкими к свойствам основного металла, но и возмож­ностью сохранения специальных свойств: коррозионной стойкости, жа­ропрочности, химической стойкости, стойкости против образования зака­лочных структур и др. Большое влия­ние на свариваемость стали оказы­вает наличие в ней различных ле­гирующих примесей: марганца, крем­ния, хрома, никеля, молибдена и др.

    Влияние кремния и марганца на свариваемость стали описано в статье — Свариваемость.

    Хром — содержание его в низколегированных сталях не превышает 0,9%. При таком содержании хром не оказывает существенного влияния на свариваемость стали. В конструк­ционных сталях хрома содержится 0,7…3,5%, в хромистых—12…18%, в хромоникелевых — 9…35%. При та­ком содержании хром снижает свариваемость стали, так как, окисляясь, образует тугоплавкие оксиды Cr2O3, резко повышает твердость стали в зоне термического влияния, образуя карбиды хрома, а также способствует возникновению закалочных структур.

    Никель в низколегированных сталях содержится в пределах 0,3…0,6%, в конструкционных сталях — 1,0…5%, а в легированных сталях — 8…35%. Никель способствует измельчению кристаллических зерен, повышению пластичности и прочности стали; не снижает свариваемости.

    Молибден в теплоустойчивых ста­лях содержится от 0,15 до 0,8%; в сталях, работающих при высоких температурах и ударных нагрузках, его содержание достигает 3,5%. Способствует измельчению кристаллических зерен, повышению прочности и ударной вязкости стали. Ухудшает свариваемость стали, так как спо­собствует образованию трещин в ме­талле шва и в зоне термического влияния. В процессе сварки легко окисляется и выгорает. Поэтому тре­буются специальные меры для надеж­ной защиты от выгорания молибде­на при сварке.

    Ванадий содержится в легиро­ванных сталях от 0,2 до 1,5%. Придает стали высокую прочность, повышает ее вязкость и упругость. Ухудшает сварку, так как способст­вует образованию закалочных струк­тур в металле шва и околошовной зоны. При сварке легко окисляет­ся и выгорает.

    Вольфрам содержится в легиро­ванных сталях от 0,8 до 18%. Значительно повышает твердость ста­ли и его теплостойкость. Снижает свариваемость стали; в процессе свар­ки легко окисляется и выгорает.

    Титан и ниобий содержатся в нер­жавеющих и жаропрочных сталях в количестве от 0,5 до 1,0%. Они яв­ляются хорошими карбидообразователями и поэтому препятствуют образованию карбидов хрома. При сварке нержавеющих сталей ниобий способ­ствует образованию горячих трещин.

    Сварка низколегированных сталей

    Низколегированные стали получи­ли большое применение в связи с тем, что они, обладая повышенными механическими свойствами, позволяют изготовлять строительные конструк­ции более легкими и экономичными. Для изготовления различных конст­рукций промышленных и гражданских сооружений применяются стали марок 15ХСНД, 14Г2, 09Г2С, 10Г2С1, 16ГС и др. Для изготовления арматуры железобетонных конструкций и свар­ных труб применяют стали 18Г2С, 25Г2С, 25ГС и 20ХГ2Ц. Эти стали относятся к категории удовлетвори­тельно свариваемых сталей; содержат углерода не более 0,25% и легирующих примесей не более 3,0%. Следует учитывать, что при содер­жании в стали углерода более 0,25% возможно образование закалочных структур и даже трещин в зоне сварного шва. Кроме того, выгорание углерода вызывает образование пор в металле шва.

    Сталь 15ХСНД сваривают вручную электродами типа Э50А или Э55А. Наилучшие результаты дают электро­ды УОНИ-13/55. Сварку можно выполнять переменным то­ком, но лучшие результаты дает сварка постоянным током обратной полярности. Многослойную сварку следует производить каскадным мето­дом. Чтобы предупредить перегрев стали, следует выполнять сварку при токах 40…50 А на 1 мм диаметра электрода. Рекомендуется применять электроды диаметром 4…5 мм. Авто­матическую сварку стали 15ХСНД производят проволокой Св-08ГА или Св-10ГА под флюсом АН-348-А или ОСЦ-45 при высоких скоростях, но при малой погонной энергии. В зимних условиях сварку конструкций из стали 15ХСНД, 15ГС и 14Г2 можно производить при температурах не ниже — 10°С. При бо­лее низких температурах зону сварки на ширине 100… 120 мм по обе стороны от шва предварительно нагревают до 100…150°С. При температуре —25°С сварка не допускается.

    Стали 09Г2С и 10Г2С1 относятся к группе незакаливающихся сталей, не склонных к перегреву и стой­ких против образования трещин. Ручная сварка электродами Э50А и Э55А выполняется на режимах, предусмотренных для сварки низкоугле­родистой стали. Механические свойст­ва сварного шва не уступают пока­зателям основного металла. Автомати­ческая и полуавтоматическая сварка выполняется электродной проволокой Св-08ГА, Св-10ГА или Св-10Г2 под флюсом АН-348-А или ОСЦ-45. Свар­ку листов толщиной до 40 мм производят без разделки кромок. При этом равнопрочность сварного шва обеспечивается за счет перехода ле­гирующих элементов из электродной проволоки в металл шва.

    Стали хромокремнемарганцовистые (20ХГСА, 25ХГСА, 30ХГСА и 35ХГСА) при сварке дают закалоч­ные структуры и склонны к образова­нию трещин. При этом чем меньше толщина кромок, тем больше опасность закалки металла и образования трещин, особенно в околошовной зоне. Стали с содержанием углерода ≤0,25% свариваются лучше, чем стали с большим содержанием углерода.

    При сварке можно рекомендовать следующие режимы:

    Толщина металла, мм Диаметр электрода, мм Сварочный ток, А
    0,5…1,5 2…3 4…6 7…10
    1,5…2,0 2,5…3 3…5 4…6
    20…40 50…90 100…160 200…240

    При сварке более толстых металлов применяется многослойная сварка с малыми интервалами времени между наложениями последующих слоев. При сварке кромок разной толщины сварочный ток выбирается по кромке большей толщины и на нее направ­ляется большая часть зоны дуги. Для устранения закалки и повышения твердости металла шва и околошовной зоны рекомендуется после сварки нагреть изделие до температуры 650…680°С, выдержать при этой тем­пературе определенное время в зави­симости от толщины металла (1ч на каждые 25 мм) и охладить на воздухе или в горячей воде.

    Сварку низколегированных сталей в защитном газе производят при плотностях тока более 80 А/мм2. Сварка в углекислом газе выполняет­ся на постоянном токе обратной поляр­ности.

    Газовая сварка отличается значи­тельным разогревом свариваемых кро­мок, снижением коррозионной стойкости, более интенсивным выгоранием легирующих примесей. Поэтому каче­ство сварных соединений ниже, чем при других способах сварки. При газовой сварке пользуются только нор­мальным пламенем при удельной мощ­ности 75…100 л/(ч·мм) при левом способе, а при правом способе — 100…130 л/(ч·мм). Проковка шва при температуре 800… 850°С с последующей нормализацией несколько повышает механические свойства шва.

    Сварка средне- и высоколегированных сталей

    Сварка средне- и высоколе­гированных сталей затруднена по следующим причинам: в процессе сварки происходит частичное выгора­ние легирующих примесей и угле­рода; вследствие малой теплопро­водности возможен перегрев свари­ваемого металла; повышенная склон­ность к образованию закалочных структур; больший, чем у низкоуглеродистых сталей, коэффициент линейного расширения может вызвать значительные деформации и напряже­ния, связанные с тепловым влия­нием дуги. Чем больше в стали углерода и легирующих примесей, тем сильнее сказываются эти причины. Для устранения влияния их на качест­во сварного соединения рекомен­дуются следующие технологиче­ские меры:

    1. Тщательно подготавливать изделие под сварку;
    2. Сварку вести при больших скоро­стях с малой погонной энергией, чтобы не допускать перегрева метал­ла;
    3. Применять термическую обработку для предупреждения образования за­калочных структур и снижения внут­ренних напряжений;
    4. Применять легирование металла шва через электродную проволоку и покрытие, чтобы восполнить выгора­ющие в процессе сварки примеси.

    Для сварки высоколегированных сталей применяют электроды по ГОСТ 10052—75 «Электроды покрытые металлические для ручной дуго­вой сварки высоколегированных ста­лей с особыми свойствами. Типы». Электроды изготовляют из высоколе­гированной сварочной проволоки по ГОСТ 2246—70. Применяют покрытие типа Б. Обозначение типа электрода состоит из индекса Э и следующих за ним цифр и букв. Две или три цифры, следующие за индексом, указывают на количество углерода в металле шва в сотых долях процента. Следующие затем буквы и цифры ука­зывают химический состав металла, наплавленного электродом. Сварку производят постоянным током обрат­ной полярности. При этом сварочный ток выбирается из расчета 25…40 А на 1 мм диаметра электро­да. Длина дуги должна быть возможно короткой. Рекомендуется при­менять многослойную сварку вали­ками малого сечения при малой погонной энергии.

    В строительстве и промышленно­сти широко применяются средне- и высоколегированные стали: хромистые, хромоникелевые, марганцови­стые, молибденовые и др.

    Хромистые стали относятся к груп­пе нержавеющих коррозионно-стойких и кислотостойких сталей. По содержа­нию хрома они делятся на среднеле­гированные (до 14% Сг) и высоко­легированные (14. ..30% Сг). При сварке хромистых сталей возникают следующие затруднения. Хром при температуре 600…900 °С легко вступа­ет во взаимодействие с углеродом, образуя карбиды, которые, распола­гаясь в толще металла, вызывают межкристаллитную коррозию, снижа­ющую механические свойства стали. При этом чем выше содержание углерода в стали, тем активнее обра­зуются карбидные соединения. Кроме того, хромистые стали обладают спо­собностью к самозакаливанию (при охлаждении на воздухе), вследствие чего при сварке металл шва и околошовной зоны получает повы­шенную твердость и хрупкость. Воз­никающие при этом внутренние напряжения повышают опасность возникновеня трещин в металле шва. Усилен­ное окисление хрома и образова­ние густых и тугоплавких оксидов являются также серьезными препят­ствиями при сварке хромистых ста­лей.

    Среднелегированные хромистые стали мартенситного класса (углерода до 2%) свариваются удовлетворительно, но требуют подогрева до 200…300 °С и последующей термиче­ской обработки.

    Высоколегированные хромистые стали ферритного класса (углерода до 0,35%) сваривают с предварительным нагревом до 300…400 °С; после сварки для снятия внутренних напряже­ний и восстановления первоначальных физико-механических свойств изделие подвергают высокому отпуску (нагрев до 650…750 °С и медленное охлажде­ние).

    Хромистые стали, как и большин­ство легированных сталей, обладают малой теплопроводностью и легко подвергаются перегреву. Поэтому сварку их производят постоянным током об­ратной полярности при малых свароч­ных токах. Ток берут из расчета 25… 30 А на 1 мм диаметра электрода.

    Высоколегированные хромонике­левые аустенитные стали обладают рядом важных физико-химических и механических свойств: коррозионной стойкостью, кислотоупорностью, те­плостойкостью, вязкостью, стойкостью против образования окалины. Важным качеством этих сталей является хоро­шая свариваемость. Стали марок 08Х18Н10 и 12Х18Н9 при нагреве до температуры 600…800 °С теряют антикоррозионную стойкость. Выделение карбидов хрома по границам зерен приводит к межкристаллитной корро­зии стали. Поэтому сварку следует выполнять постоянным током обрат­ной полярности при малых сварочных токах, сокращая продолжительность нагрева металла. Следует применять также меры по отводу теплоты, например, с помощью медных подкла­док или охлаждения. После сварки рекомендуется изделие подвергнуть закалке ,с температуры 850…1100°С в воде (или воздухе для малых тол­щин металла).

    Хромоникелевые стали марок 12Х18Н9Т и 08Х18Н12Б содержат ти­тан и ниобий, которые, являясь более сильными карбидообразователями, связывают углерод стали, пре­дупреждая образование карбидов хрома. Поэтому эти стали после сварки не подвергают термообработке. Для сварки хромоникелевых сталей применяют электроды марок ОЗЛ-7, ОЗЛ-8, ЦТ-1 и ЦТ-7. Рекоменду­ются электроды, изготовленные из сварочной проволоки Св-01Х19Н9, Св-06Х19Н9Т или Св-04Х19Н9С2 с по­крытием ЦЛ-2, ЦЛ-4 (содержащим 35,5% мрамора, 41% плавикового шпата, 8,5% ферромарганца и 15% молибдена), УОНИ-13/НЖ и др. Тонколистовую сталь 12Х18Н9Т сле­дует сваривать аргонодуговой свар­кой, так как при сварке качест­венными электродами или под флю­сом происходит науглероживание ме­талла шва, которое снижает стой­кость стали против межкристаллитной коррозии.

    Хромоникелевые аустенитные ста­ли сваривают газовой сваркой при толщине металла не более 3 мм точно нормальным пламенем при удельной мощности 75 л/(ч·мм). Присадоч­ным материалом служат проволоки Св-01Х19Н9, Св-04Х19Н9С2, Св-06Х19Н9Т, Св-07Х19Н10Б.

    Высоколегированная марганцови­стая сталь, обладающая большой твердостью и износостойкостью, содержит 13…18% марганца и 1,0… 1,3% углерода. Она применяется для изготовления зубьев экскавато­ров, шеек камнедробилок и других ра­бочих органов дорожных и строитель­ных машин, работающих при ударных нагрузках и на истирание. Для сварки применяют электроды со стержнями из углеродистой проволоки Св-08А, Св-08ГА, Св-10Г2 с покрытием, кото­рое применяется для наплавочных электродов марки ОМГ, содержащим 23% мрамора, 15% плавикового шпата, 60% феррохрома, 2% графита, замешанных на жидком стекле (30% к общей массе сухих компонентов), а также , типа ОЗН (45… 49% мрамора, 15… 18% плавикового шпата, 26…33% ферромарганца, 3% алюминия, 4% поташа, заме­шанных на жидком стекле). При­меняют также стержни электродов из проволоки Св-04Х19Н9 и Св-07Х25Н13 с покрытием ЦЛ-2, состоящим из 44% мрамора, 51% плавикового шпата, 5% ферромарганца, замешанных на жидком стекле (20…22% к массе сухих компонентов). Хорошие результаты дает также покрытие УОНИ-13/НЖ. Сварка выполняется постоянным током обратной полярности короткими участками. Сварочный ток определяется из расчета 30… 35 А на 1 мм диаметра электрода. Для получения шва повышенной прочности и износостойкости сварной шов следует проковать в горячем состоянии. При этом металл шва следует интенсивно охлаждать холодной водой (закаливать).

    Стали молибденовые, хромомолибденовые и хромомолибденованадиевые относятся к теплоустойчивым сталям перлитного класса. Эти стали применяют при изготовлении сварных паровых котлов, турбин, различной аппаратуры в химической и нефтяной промышленности, работающей при высоких температурах и давлениях. Как правило, эти стали свариваются удовлетворительно при выполнении установленных технологических приемов: предварительного нагрева 200…300 °С и последующего отжига при температуре 680…780 °С или отпуска при температуре 650 °С. Температура окружающего воздуха должна быть не ниже +5 °С. Сварка выполняется постоянным током обратной полярности. Рекомендуются электроды типа ОЗС-11, ТМЛ, ЦЛ-38 и др.

    Для автоматической и полуавтоматической сварки применяют сварочную проволоку Св-08ХМ, Св-10Х5М, 18ХМА. При сварке в углекислом газе применяют предварительный и сопутствующий нагрев до 250…300°С, а присадочную проволоку — 10ХГ2СМА. После сварки рекомендуется термообработка.

    Газовая сварка выполняется нормальным пламенем при удельной плотности 100 л/(ч·мм). Присадочный материал — сварочная проволока Св-08ХНМ, Cв-18XMA, Cв-08XM. Рекомендуется предварительный нагрев до 250…300 °С. После сварки необходима термообработка — нормализация с температуры 900…950 °С.

    При сварке легированных сталей не следует допускать перегрева зоны термического влияния. Сварку выполняют при относительно малых сварочных токах (25…40 А на 1 мм диаметра электрода). Перед сваркой сталь подогревают, а затем произ­водят соответствующую термообра­ботку для получения высоких механических свойств и равновесной структуры металла. Сварка при тем­пературе ниже 5°С не допускается.

    soedenimetall.ru

    Сварка углеродистых и легированных сталей

     

    Сварка низколегированных и среднелегированных конструкционных сталей

    Свариваемость таких сталей зависит от содержания углерода и легирующих компонентов и ухудшается с ростом содержания углерда и легирующих  компонентов. Стали   кремнемарганцевой группы 15ГС, 18Г2С и 25Г2С сваривают  электродами типа Э60А марки УОНИ-13/65. Перед сваркой кромки тщательно зачищают от грязи, ржавчины и окалины.

    Сварку выполняют предельно короткой дугой. Изделие перед сваркой подогревают до температуры 200 С, электроды перед сваркой прокаливают при 400°С в течение одного часа.

    Кремнемарганцемедистые стали 10Г2СД, 10ХГСНД, 15ХСНД и 12ХГ сваривают электродами типа Э50А марки УОНИ-13/55. Изделие перед сваркой не подогревают.Сварка низколегированных и среднелегированных конструкционных сталей

     

    Особенности сварки высоколегированных сталей

    К высоколегированным относят стали, суммарный состав легирующих элементов в которых составляет не менее 10%, при содержании одного из них не менее 8%. При этом содержание железа должно составлять не менее 45%. В основном это стали, обладающие повышенной коррозионной стойкостью или жаростойкостью. Легирование сталей выполняют углеродом, марганцем, кремнием, молибденом, алюминием, ванадием, вольфрамом, титаном и ниобием, бором, медью, серой и фосфором. Введение легирующих элементов меняет физические и химические особенности стали.

    Так, углерод способствует повышению прочности стали и снижению ее пластичности. Окисление углерода в процессе сварки способствует появлению пор. Кремний является раскислителем и содержание его в стали более 1% приводит к снижению свариваемости. Хром также снижает свариваемость, способствуя созданию тугоплавких окислов. Никель повышает прочность и пластичность сварочного шва, не снижая свариваемость стали. Молибден увеличивает прочность и ударную вязкость стали, ухудшая свариваемость. Ванадий в процессе сварочных работ сильно окисляется, поэтому его содержание в стали предусматривает введение раскислителей. Вольфрам тоже сильно окисляется при повышенных температурах, ухудшает свариваемость стали.

    Титан и ниобий предотвращают межкристаллитную коррозию. Бор повышает прочность, но затрудняет свариваемость. Медь повышает прочность, ударную вязкость и коррозийную стойкость стали, но снижает ее свариваемость. Повышенное содержание в стали серы приводит к образованию горячих трещин, а фосфор способствует образованию холодных трещин.

    Содержание тех или иных легирующих элементов определяют по маркировке стали. Первые две цифры в маркировке означают содержание углерода в сотых долях процента; легирующие элементы обозначают буквенными символами, а стоящие за ними цифры указывают на примерное содержание этих элементов, при этом единицу и меньше не ставят. Символ «А», установленный в конце маркировки, указывает, что сталь высококачественная, с пониженным содержанием серы и фосфора. Наиболее широкое применение получили коррозионно-стойкие хромоникелевые стали (12Х18Н10Т, 10Х23Н18 и некоторые другие).

    Из вышесказанного видно, что, как правило, легирование стали приводит к снижению ее свариваемости, а первостепенную роль при этом играет углерод. Поэтому доля влияния каждого легирующего элемента может быть отнесена к доле влияния углерода. Повышенное содержание углерода и легирующих элементов способствует увеличению склонности стали к резкой закалке в пределах термического цикла, происходящего во время сварки. В результате этого околошовная зона оказывается резко закаленной и теряет свою пластичность.

    Поэтому при сварочных процессах высоколегированных сталей, происходящих в зоне плавления металла и околошовной области, возникают горячие трещины и межкристаллитная коррозия, проявляющаяся в процессе эксплуатации. Основной причиной появления трещин является образование крупнозернистой структуры в процессе кристаллизации и значительные остаточные напряжения, полученные при затвердевании металла. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, поэтому у большинства высоколегированных сталей сварочный шов формируется хуже, чем у низколегированных и даже углеродистых сталей.

    Межкристаллитная коррозия характерна для всех видов высоколегированных сталей, имеющих высокое содержание хрома. Под действием нагрева образовавшиеся карбиды хрома выпадают по границам зерен, снижая их антикоррозийные свойства.

    Препятствует образованию карбидов хрома легирование стали титаном, ниобием, танталом, цирконием и ванадием. Положительное влияние на качество сварочного шва оказывает дополнительное легирование сварочной проволоки хромом, кремнием, алюминием, ванадием, молибденом и бором.

    Для сварки высоколегированных сталей используют как ручную дуговую, так механизированную сварку под флюсом и в среде защитных газов. Сварка выполняется при минимальном тепловложении с использованием термообработки и применением дополнительного охлаждения. Введение легирующих элементов меняет и технологические особенности стали. Так, система легирования снижает теплопроводность стали и повышает ее электрическое сопротивление. Это оказывает влияние на скорость и глубину плавления металла, что требует меньшего вложения энергии, и увеличения скорости подачи сварочной проволоки.

    Ручную дуговую сварку высоколегированных сталей выполняют при пониженных тока обратной полярности. Сварку ведут короткой дугой ниточными валиками без поперечных колебаний.

    Проволока, применяемая для изготовления электродов, должна соответствовать марке стали с учетом ее свариваемости. Защитное покрытие электродов должно иметь состав, снижающий отрицательное действие повышенной температуры. К примеру, для сварки кислотостойкой стали 12X18HI0T электроды типа Э-04Х20Н9 (марки ЦЛ-11) препятствуют образования горячих трещин и межкристаллитной коррозии. Предварительный и сопутствующий подогрев снижает опасность возникновения трещин. Для защиты сварочной ванны используют инертный газ или аргон и его смеси с гелием, кислородом и углекислым газом.

    Сварку в среде углекислого газа можно выполнять только в случаях, когда отсутствует опасность возникновения межкристаллитной коррозии. Сварка плавящимся электродом выполняется при значениях тока, обеспечивающих струйный перенос электродного металла.

    При сварке возникает опасность коробления и остаточных сварочных напряжений. Поэтому после сварки часто возникает необходимость в термообработке. 

    build.novosibdom.ru