- Высокая окалиностойкость. Это свойство связано с процессом образования защитной пленки на поверхности изделия при его нагреве.
- Высокая защита от окислительных процессов.
- Высокие антикоррозионные свойства. В результате алитирования изделие может использоваться даже при условии воздействия морской воды.
- Рассматривая твердость поверхностного слоя нужно уделить внимание тому, что максимальный достигаемый показатель составляет около 500HV.
- Алитирование в порошкообразных смесях проводится использовании металлических ящиков. Заготовка помещается в твердый карбюризатор. При этом приготовленная смесь может использоваться многократно, что делает данную технологию экономически выгодной. Температура алитирования стали в данном случае выдерживается в пределе от 950 до 1050 градусов Цельсия, процесс занимает от 6 до 12 часов. Максимальная глубина проникновения алюминия составляет 0,5 миллиметров. Используемый состав представлен алюминиевой пудрой, порошка и определенных добавок. Добавки представлены окисью алюминия и молотой глиной, а также хлористыми разновидностями аммония и алюминия. В некоторых случаях процедура затягивается до 30 часов, что делает ее экономически не выгодной. Данный метод применим в случае сложной конфигурации детали, так как изменение поверхностного этапа проводится поэтапно. Изменение состава поверхностного слоя порошкообразной смесью – самый дорогой метод из всех применяемых.
- Алитирование напылением проводится в случае, если нужно сократить время проведения данной операции. Данная технология алитирования определяет воздействие относительно невысокой температуры, около 750 градусов Цельсия, требуется порядком одного часа для проникновения алюминия на глубину 0,3 миллиметра. Достоинства данного метода заключается в быстроте исполнения, но нельзя его использовать для получения износостойких ответственных деталей, так как поверхностная пленка очень тонкая. Поверхностное насыщение стали рекомендуют проводить при массовом производстве. Прочность сцепления напыляемого слоя в этом случае невысокая, составляет 0,2-2 кг/мм2. Также особенности данной технологии определяют высокую пористость структуры.
- Металлизация с последующим обжигом проводится при нагреве детали до температуры 900-950 градусов Цельсия, длительность нагрева составляет 2-4 часа. Данный метод существенно уступает предыдущему, так как получаемый слой имеет толщину не более 0,2-0,4 миллиметров, а расходы повышаются по причине существенного увеличения времени нагрева. Однако его часто применяют в случае, когда нужно получить деталь с прочной и твердой поверхностью, которая будет подвергаться существенным нагрузкам. Это связано с тем, что проводимый отжиг позволяет снизить показатель хрупкости, повысив прочность.
- Алитирование в вакууме предусматривает нанесение покрытия путем испарения алюминия с его последующим осаждением на поверхности изделия. Толщина получаемого покрытия незначительно, но вот достигаемое качество одно из самых высоких. Для нагрева среды проводится установка специальных печей, которые способны раскалить подающийся состав до температуры 1400 градусов Цельсия. Высокое качество покрытия достигается за счет равномерного распределения алюминия по всей поверхности. Технология в данном случае предусматривает предварительный нагрев поверхности до температуры от 175 до 370 градусов Цельсия. Следует уделять много внимания предварительной подготовке детали, так как даже незначительная оксидная пленка становится причиной существенного снижения качества сцепления поверхностного и внутреннего состава. Высокая стоимость процесса и его сложность определяют применимость только при производстве ответственных деталей.
- Алитирование методом погружения пользуется большой популярностью по причине того, что покрытие наносится в течение 15 минут. При этом оказывается относительно невысокая температура: от 600 до 800 градусов Цельсия. Кроме этого данный метод один из самых доступных в плане стоимости. Суть процедуры заключается в погружении заготовки в жидкий алюминий, нагретый до высокой температуры. При этом получается слой толщиной от 0,02 до 0,1 миллиметра. Особое внимание уделяется подготовке среды, в которой будет проводится процесс изменения химического состава поверхностного слоя.
- Углеродистые стали. При этом преимущественно используются низкоуглеродистые стали, реже среднеуглеродистые. При высоком содержании углерода в составе процедура становится малоэффективной.
- Легированные стали применяются реже, но при правильном проведении технологии можно получить износостойкие детали.
- Чугун также можно подвергать процедуре алитирования для изменения основных эксплуатационных качеств.
Технология процесса алитирования. Технология алитирование стали
технология и методы поверхностного насыщения стали алюминием
На протяжении нескольких столетий основные эксплуатационные качества металлов изменялись при помощи химико-термического воздействия. Проведенные тесты указывают на то, что процент содержания определенных примесей в металле может оказывать влияние на его твердость, прочность, коррозионную стойкость и многие другие качества. Алитирование углеродистой стали – процесс насыщения поверхностного слоя изделия алюминием, который проходит при определенной температуре. Процесс алитирования стали достаточно сложен, при его проведении проводится установка определенного оборудования. Рассмотрим особенности проведения работы по насыщению поверхностного слоя стали и чугуна алюминием.
Алитирование стали
Применение алитирования
Придаваемые свойства изделию во многом определяют область применения рассматриваемой технологии химико-термической обработки. В производстве алитирование сталей применяется для изменения следующих свойств обрабатываемой стали:
Рассматривая достоинства и недостатки алитирования стали, нужно отметить тот момент, что воздействие высокой температуры становится причиной перестроения атомной решетки, вследствие чего поверхностный слой становится хрупким.
При обработке данным химико-термическим методом ответственных деталей, проводится обжиг в течение нескольких часов. Поэтому процесс внесения алюминия характеризуется большой продолжительностью.
Алитирование стали 20
Технология и методы алитирования
Диффузионное алитирование проходит при температуре от 700 до 1100 градусов Цельсия. Оптимальные режимы обработки выбираются в зависимости от особенностей обрабатываемого материала. Выделяют несколько наиболее распространенных технологий химико-термического воздействия:
Микроструктура вставки, алитированной по оптимальному режиму
Есть и другие методы внесения алюминия, которые позволяют изменить основные эксплуатационные качества заготовок.
Контролировать качество поверхности с использованием дефектоскопа – устройства, которое применяется для проверки дефектов методом неразрушающего контроля.
Наиболее распространенным дефектами называют нарушения однородности структуры, появления зоны коррозионного поражения, отклонение требуемого химического состава и так далее.
Долговечность изделия в зависимости от толщины алитированного слоя
Материалы, допускаемые к алитированию
Металлизация – технология, которая предназначенная для изменения свойств поверхностного слоя. Разновидностью данной технологии является и алитирование. Насыщению поверхностного слоя подвергают:
Для получения нержавеющей стали алитированию подвергают как углеродистые, так и легированные стали. В некоторых случаях проводится предварительная подготовка сталей и сплавов, представленная закалкой или другими процедурами химико-термической обработки.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
stankiexpert.ru
Технология процесса алитирования
Промышленное применение нашли в основном три метода алитирования: в твердых порошкообразных смесях, в ваннах с расплавленным алюминием, а также метод поверхностной металлизация алюминием с последующим диффузионным отжигам.
Возможно также алитирование в вакууме осаждением из парогазовой фазы, электролитическое—в ваннах, состоящих из солей алюминия, а также газовое алитирование, при котором через твердые смеси, содержащие алюминий, пропускают водород.
Алитирование в твердых смесях проводят в герметичных контейнерах, применяя порошок алюминия (49—50%) или ферроалюминий (50—99%) с добавками окиси алюминия (при применении FeAl добавка Аl2Оз необязательна, так как порошок почти не подвержен спеканию) и Nh5Cl (1—2,%).
Химические реакции, протекающие в таком контейнере, подобны реакциям при хромировании:
МН4С1=NНз+НС1;
6НС1 + 2А1 = 2А1С1з + ЗН2;
А1С1з+2А1=3А1С1;
или
А1С1з = А1С1 + Cl2.
Считается, что образующийся субхлорид алюминия А1С1 путем самовосстановления на поверхности стали образует атомарный алюминий
ЗА1С1= А1С1з+2А1.
Однако возможно и протекание обменной реакции типа
А1С1з + Fe (изделие) =FеС1з + А1.
Оптимальной температурой процесса считается температура 950—1050° С. Процесс достаточно длительный и в зависимости от требуемой глубины составляет 4—30 ч.
Для уменьшения хрупкости слоя иногда после такого алитироваяия проводят диффузионный отжиг при 800—1000°, в результате которого содержание алюминия в поверхностном слое снижается до 20—30% с увеличением общей глубины слоя.
Большой производительностью отличается метод погружения изделий в ванну с расплавленным алюминием.
Процесс ведут при 700—800°, слой толщиной 0,02—0,1 мм образуется уже в течение 1 — 15 мин. Однако при всей своей простоте и кратковременности этот метод обладает рядом недостатков: 1) повышенной хрупкостью слоя, которая также должна устраняться диффузионным отжигом; 2) разъеданием и растворением изделий в расплавленном алюминии; 3) малой стойкостью тиглей; 4) местным налипанием алюминия и пленки окиси алюминия на деталях; 5) неравномерностью насыщения; 6) окислением железа во время погружения.
Правда, существует целый ряд мероприятий для повышения качества алитирования в ваннах. Добавление в ванну 8—12% Fe или 20—22,% Ni уменьшает интенсивность растворения и разъедания деталей.
Метод также усовершенствован за счет применения флюсов, что уменьшает разъедание (прогрев производится в слое флюса), защищает расплав от окисления, улучшает смачивание и тем самым способствует образованию более однородного по глубине слоя, облегчает очистку поверхности от загрязнений при встряхивании деталей в слое флюса. В качестве флюсов применяются составы, содержащие NaCI, HC1, LiCI, ZnCl2, А1Fз, NaF, Na3AlF6 в различных пропорциях.
При алитировании рассматриваемым способом стальных листов и проволоки перед загрузкой в ванну проводят отжиг в проходных печах с восстановительной атмосферой диссоциированного аммиака. При этом удаляются все окисные пленки, и поверхность стали эффективно смачивается расплавленным алюминием.
Алитирование методом металлизации проводят в несколько приемов. На предварительно очищенную поверхность (пескоструйная обработка, обработка металлической крошкой для очистки и создания повышенной шероховатости с целью повышения сцепления покрытия и основного металла) путам распыления наносится слой алюминия толщиной 0,8—1,2 мм. Процесс покрытия состоит в плавлении металла и разбрызгивании его струёй сжатого воздуха под давлением 2—4 ат с помощью специальных металлизаторов (газовых, электрических или высокочастотных). При этом получается пористый слой с малой прочностью сцепления. Далее производится обмазка поверхности защитными составами (серебристый графит, огнеупорная глина, кварцевый песок, жидкое стекло и т. д.) для защиты от окисления при последующем диффузионном отжиге. Отжиг проводится при температуре 900—1100° с предварительным подогревом и медленным охлаждением. Этот метод вполне экономичен и может конкурировать с другими методами.
§ 17. Структура алитированного слоя и влияние различных факторов на результаты процесса
Структура и фазовый состав алитированного слоя зависят от метода алитирования. Содержание алюминия в поверхности может достигать ~ 50,% при применении твердых смесей и даже 75—80% при металлизации с последующим отжигом.
В соответствии с диаграммой Fe—А1 (см. рис. 32) при этом на поверхности образуются интерметаллиды Fе3А1, FeAl, FeAl2 и т. д. Эти фазы, так же как и примыкающий к сердцевине а- твердый раствор алюминия в железе, при обычном травлении выявляются в виде светлой нетравящейся зоны. При алитировании в расплавленном алюминии граница слоя имеет извилистый иглообразный характер.
Это обусловлено спецификой образующейся в поверхности фазы Fe2Al5 с ромбической решеткой. Скорость диффузии алюминия в этой фазе максимальна и другие фазы при этом методе не образуются.
Рис. 33. Изменение концентрации алюминия и углерода в алитированном слое стали с 0,4% С ( фазовый состав дан для температуры диффузии)
Особенности кристаллографической структуры этой фазы таковы, что наблюдается преимущественная диффузия в направлении, перпендикуляр- ном поверхности, что и обусловливает иглообразный направленный характер кристаллов этой фазы.
При наличии углерода в стали часто за зоной а- фазы наблюдается зона с высоким содержанием углерода (рис. 33), однако это происходит не всегда. Отсутствие зоны, в сталях с содержанием более 0,7% С объясняется образованием ε- фазы, характерной для системы Fe—А1—С. Кроме того, высокая концентрация углерода может привести к образованию в поверхностном слое иглообразных включений карбида А14Сз.
Увеличение содержание углерода снижает глубину алитированного слоя (рис. 34,а). На рис. 34,6 показано для сравнения, насколько, интенсивнее протекает процесс алитирования в расплавленном алюминии по сравнению с порошкообразной смесью.
Данные о влиянии легирующих элементов на результаты алитирования довольно противоречивы. Однако по аналогии с влиянием элементов на рост хромированного слоя можно заключить, что в безуглеродистых сталях снижать скорость роста будут те элементы, которые стабилизируют γ-фазу.
Дата добавления: 2015-07-08; просмотров: 509 | Нарушение авторских прав
Читайте в этой же книге: Путем вычитания получим | Карбюризаторы для цементации | Стали для цементации | Глава 3. АЗОТИРОВАНИЕ СТАЛИ | Технология азотирования | Стали, подвергаемые азотированию | Свойства азотированной стали | Высокотемпературная нитроцементация | Низкотемпературная нитроцементация | Цианирование стали |mybiblioteka.su - 2015-2018 год. (0.054 сек.)mybiblioteka.su
Сталь алитирование - Справочник химика 21
Хорошая устойчивость к сероводородной коррозии достигается путем алитирования углеродистой и хромистой (с 7% Сг) стали из расплава. [c.87]Диффузионное насыщение поверхности стали алюминием применяют в основном для повышения жаростойкости стали, в окислительных и особенно в сероводородсодержащих средах. Алитированная сталь при температурах 500—600 °С успешно конкурирует с хромоникелевой нержавеющей сталью типа 18—8 в средах, содержащих сероводород. На выносливость стали алитирование влияет по-разному в зависимости от толщины слоя. Так, порошковое алитирование на глубину 0,1—0,2 мм резко снижает предел выносливости стали и практически не влияет на коррозионную усталость. Алитирование на глубину 0,04—0,05 мм незначительно влияет на предел выносливости стали и более чем в 2 раза повышает условный предел коррозионной усталости. Алитирован-ный слой также понижает влияние концентраторов напряжений, особенно в коррозионной среде. [c.88]
Углеродистая сталь алитированная. .........................500—600 [c.194]Металлизация применяется также для повышения жаростойкости сталей алитированием (цементационные ящики, кожухи термопар и др.), для нанесения декоративных покрытий, защиты изделий от науглероживания при цементация и др. [c.600]
Чистый алюминий используется для плакирования стали с целью повышения ее стойкости к коррозии. Для этой цели применяется также алитирование — насыщение поверхности стали алюминием на глубину 0,02—1,2 мм, в результате чего создается плотная н прочная антикоррозийная пленка. [c.259]
Алитирование. Процесс алитирования заключается в насыщении поверхности стальных деталей алюминием. При алитировании детали упаковывают в ящики со смесью, состоящей из 48% алюминия, 48% окиси алюминия и 2% нашатыря, затем выдерживают от 5 до 15 час. при температуре от 900 до 1050° С. Насыщенная алюминием поверхность стали имеет высокую жароупорность. [c.30]
Важной областью применения А1 является использование его для насыщения (алитирования) поверхности изделий из железа и стали, для придания им жаропрочности и предохранения от коррозии. Наибольшую ценность в этом отношении имеет А1 высокой степени чистоты. [c.281]
Горячее алитирование применяют при производстве стальной ленты непрерывным способом. Алитированная сталь обладает коррозионной стойкостью алюминия и прочностью стального листа. Поверхность алитированных листов — матовая серебристая. Тол- [c.79]
Диффузионное алитирование мелких предметов проводят аналогичным способом, но при температуре около 1000° С. Покрытия, помимо сказанного, стойки к продуктам сгорания при высоких температурах. Диффузионное алитирование труб или предметов больших размеров проводят следующим образом. Прежде всего поверхность изделия очищают (лучше струйной обработкой), напыляют слой алюминия и несколько слоев жидкого стекла, а затем выдерживают при температуре 900—1050° С в течение 2—4 ч. Жидкое стекло образует защитный слой, под которым протекает диффузия алюминия в сталь. Трубы с такими покрытиями применяют в обменных аппаратах, предназначенных для работы в среде двуокиси серы, сероводорода, продуктов сгорания и т. д. [c.83]
На рис. 79 показано влияние продолжительности и температуры алитировання на толщину алитированного слоя стали марки 10, а на рис. 80 — распределение концентрации алюминия в железе по глубине слоя после алитировання в порошкообразной смеси. [c.121]
Основными мерами борьбы против коррозии в неэлектролитах является использование коррозионностойких материалов, например нержавеющих и алитированных сталей и др. В боль-щинстве случаев в нефти имеет место и электрохимический коррозионный процесс, что дает возможность применять ингибиторы и протекторную защиту. [c.15]
В — при 600°С в горячих газах, содержащих 8О2 и пары воды. Алитирование предохраняет сталь от коррозии в горячих газах, содержащих Ъ% 80г. [c.409]
К числу таких покрытий на углеродистых и легированных сталях относятся покрытия на основе алюминия, кадмия, цинка. Ц1широко применяют в различных отраслях техники, так как он надежно защищает металлические изделия от коррозии и коррозионно-механического разрушения. Алитирование же как способ антикоррозионной защиты пока не нашло достаточного распространения, хотя в ряде агрессивных сред, особенно содержащих сернистые соединения, оно эффективнее цинкования. [c.184]
Нами изучено влияние диффузионного цинкования и различных методов алитирования на сопротивление коррозионной усталости углеродистых сталей. [c.184]
Стационарный потенциал алитированных сталей равен —(915 920) мВ (см. рис. 100), т.е. на 350—370 мВ отрицательнее, чем у сТалей без покрытия. Однако через 4 сут испытаний потенциал стали 20 смещается в положительную сторону, примерно до —540 мВ. Сдвиг потенциала алитированной стали 45 происходит с меньшей интенсивностью и после 12 сут достигает (-680) -ь (-690 мВ). Причина смещения потенциалов — интенсивное растворение слоя алюминия. Однако сталь остается защищенной от воздействия среды слоем интерметаллида, потенциал которого более положительный, чем у сталей, и составляет —(530—540) мВ. Таким образом, защитные слои, получаемые при жидкостном алитировании, функционируют сначала в качестве анодного, а затем катодного покрытия. [c.187]
В условиях коррозионной усталости при высоких уровнях циклического напряжения характер изменения электродного потенциала и кинетики разрушения алитированных сталей подобны наблюдаемым у оцинкованных. При нагружении алитированных образцов более низкими циклическими нагрузками происходит интенсивное коррозионно-усталостное разрушение слоя алюминия и в дальнейшем интерметаллидный слой и сталь находятся в условиях катодной защиты в результате анодного растворения слоя алюминия. После смещения потенциалов образцов до (-54) (—550 мВ) в результате полного растворения слоя алюминия разрушение возникающей системы интерметаллидный слой - сталь протекает аналогично разрушению сталей с катодными покрытиями. [c.187]
Диффузионное хромирование протекает медленнее, чем алитирование. На поверхности изделия образуется не только химически стойкий, но и прочный при высоких температурах слой из сложных карбидов. Для хромирования применяют смесь, состоящую из 60% порошка металлического хрома, 36% глинозема или каолина и 4% нашатыря, в которую помещают хромируемую деталь. Процесс ведут при температуре около 1 000° С. За 25—30 ч на поверхности детали из малоуглеродистой стали образуется хромированный слой толщиной от 0,05 до 0,1 мм. [c.70]
Основными способами защиты от газовой коррозии являются легирование металлов, создание защитных покрытий и замена агрессивной газовой среды. Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. Для защиты используют и неметаллические покрытия, изготовленные из керамических и керамико-металлических (керметы) материалов. [c.687]
Для повышения стойкости против окисления углеродистых печных труб рекомендуется их алитировать. По данным трубного института стойкость алитированных труб против окисления по сравнению с трубами углеродистой стали без покрытия выше до 800° в 30—50 раз, до 900° — в 10 раз, до 1000° — в 5 раз. [c.423]
Для получения 1 кг ЫН методом Р. Альберта и И. Махе [3] применяют сосуд из малоуглеродистой стали, защищенный снаружи от непосредственного действия пламени манжетой из алитированной стали. Верхнюю часть сосуда и его плоскую крышку, укрепленную с помощью резинового кольца, охлаждают водой. Сосуд снабжен боковыми трубками для пропускания водорода, присоединения к вакуумной системе и введения термопары. Внутри сосуда находятся два цилиндрических тигля, из которых один плотно входит в другой, [c.35]
Подобно алитированию при нагреве стальных изделий в соответствующих порошкообразных смесях производят хромирование и силицирование стали. При хромировании (при 1050—1150° С) поверхностный слой стали насыщается хромом, в результате чего у низкоуглеродистых сталей повышаются антикоррозийные свойства, а у высокоуглеродистых сталей повышается также твердость и стойкость против истирания. При силицировании (при 1100— 1200° С) происходит насыщение поверхностного слоя кремнием, благодаря чему повышается кислотостойкость стали. [c.294]
На основе А. методом порошковой металлургии созданы спеченные алюминиевые сплавы, отличающиеся высокой жаропрочностью. А. используют для раскисления стали, получения некоторых металлов методом алюмотермии, взрывчатых веществ, а также в композиционных материалах на различной основе. См. также Алюминиевая бронза. Алюминиевая латунь. Алюминиевый чугун, Алюми-нирование, Алитирование. [c.66]
Алитирование хромистых сталей позволяет значительно расширить область их применения при повышенных температурах в агрессивных средах, содержащих сероводород. Коррозионная стойкость алитированных 3%-ных хромистых сталей в чистом сероводороде при 500—550 °С выше коррозионной стойкости стали 12Х18Н10Т. Для изготовления трубчатых змеевиков печей, а также для коммуникационных трубопроводов и пучков трубчатых теплообменников в США и некоторых других странах на установках гидроочисткн нефтепродуктов используют в промышленном или опытном масштабе алитированные трубы из стали 15Х5М взамен труб из дорогой стали типа 18—8. Опыт подтверждает целесообразность такой замены материала. [c.27]
Исследования водородопроницаемости при повьипенных температурах стали марки 12Х18Н9Т с алитированными, борированными, хромированными слоями показали, что эти покрытия - эффективный барьер потоку водорода. Для стали с алитированным покрытием толщиной 90 мкм температурная зависимость водородопроницаемости в интервале 800-550 °С линейна, энергия активации на этом участке составляет Ер = 158 кДж/моль, что несколько выше, чем у непокрытой стали ( р = 122 кДж/моль), водородопроницаемость снижается почти в 5 раз. У борированных образцов с толщиной слоя 80 мкм наблюдается снижение водородопронииэемости в 13 раз при температуре 800 °С и в 70 раз при температуре 400°С энергия активации "р = 168 кДж/моль. [c.64]
Для повышения надежности работы трубчатых печей в условиях повышенной ванадиевосернистой коррозии рекомендуется крепление радиантных труб и конвекционной решетки выполнять из сталей 25Х23Н7СЛ с предварительным алитированием. Кроме того, значительное снижение ванадиевосернистой коррозии может быть достигнуто по ачей в газовый поток доломитовой пыли или введением в мазут присадки ВТИ-4ст (39]. По данным Всесоюзного теплотехнического научно-исследовательского института им. Ф. Э. Дзержинского, введение присадки ВТИ-4ст позволяет [c.216]
Диффузионные покрытия (алитирование) получают барабанной обработкой в атмосфере водорода при температуре около 1000 °С в смеси алюминиевого порошка, AljOa и небольшого количества Nh5 1. Получается поверхностный сплав алюминия с железом, который обеспечивает стойкость как к высокотемпературному окислению на воздухе (до 850—950 °С), так и к коррозии в серу-содержащей атмосфере (например, при очистке нефти). Диффузионные алюминиевые покрытия на стали обычно не обеспечивают [c.242]
При термодиффузионном способе нанесения покрытия изделие помещают в смесь, содержащую порошок металла покрытия. При повышенной температуре происходит диффузия наносимого металла в основной металл. Таким путем получают покрытия алюминием (алитирование) и цинком. Иногда покрытия наносят при реакциях в газовой фазе. Например, при пропускании парообразного СгСЬ над поверхностью стали при 1000 °С образуется поверхностный сплав Сг—Ре, содержащий до [c.236]
Покрытие наносят в герметически закрытом контейнере. Очи-щенные металлические изделия погружают в порошок, содержащий металл покрытия. В течение нескольких часов контейнер нагревается при температуре, близкой (но меньшей) точке плавления металла. Цинковые покрытия, нанесенные на сталь, называются шерадизационными. Диффузионный слой представляет собой сплав, содержащий 8—9% железа в цинке. Алюминиевые покрытия на стали или меди называют алитиро-ванными. На них образуется окись алюминия во всех поверхностных слоях с содержанием алюминия более 8%. Эта окисная пленка обеспечивает высокую сопротивляемость действию коррозии, но сильно охрупчивает поверхностные слои, поэтому после алитирования необходимо подвергнуть изделие отжигу. [c.105]
Диффузионное алюминирование (алитирование). Алитиро-ванные нелегированные стали широко применяются вместо термоустойчивых высоколегированных сталей. [c.106]
Длительные испытания труб с различными диффузионными покрытиями — борирование, алитирование и хромоалитирова-ние — показали, что они не вызывают повышения коррозионной стойкости труб из стали 12Х1МФ при эксплуатации в нижней радиационной части и в пароперегревателе парогенераторов. Указанный результат получен в парогенераторах с различными видами топлива сернистый мазут, антрацитовый штыб и эстонский сланец. [c.245]
Жидкостное алитирование или, как его называют, алюминирование не оказало заметного влияния на предел выносливости образцов из стали 45 в воздухе и увеличило условный предел коррозионной выносливости образцов в 3 %-ном растворе Na I с 50 до 160 МПа. Аналогичное повыше- [c.185]
В практике 3. от к. широко применяют поверхностное легирование недорогих сплавов, имеющих хорошие мех. характеристики. Повер.хностный слой обычной стали можно превратить в сплав с высокой коррозионной стойкостью путем нагрева в порошкообразной шихте, содержащей Zn (диффузионное цинкование). А1 (алитирование) нли Сг (хромирование), иногда со спец. активирующими добавками. Можно также п 1акнровать дешевый малостойкий материал тонким слоем более коррозионностойкого, напр, путем совместной горячей прокатки двух листов до нужной толщины образчюшегося биметалла . [c.165]
По характеру изменения хим. состава обрабатываемого изделия л.-т. о, можно разделить на диффузионное насыщение неметаллами или металлами и диффузионное удаление элементов (чаще всего углерода в слабоокислит. среде или водорода в вакууме). Разновидности Х.-т. о. цементация- насыщение гл. обр. стальных изделий углеродом азотирование - насыщение азотом стали, сплавов на основе Ti и тугоплавких металлов оксидирование-окисление поверхностных слоев алюминиевых и магниевых сплавов цианирование и нитроцементация -одновременное насыщение углеродом и азотом стальных (чудных) изделий соотв. из расплава солей и газовой фазы борирование - насыщение бором изделий из стали, сплавов на основе Ni, Со и тугоплавких меташюв силициро-вание - насыщение кремнием алитирование - насыщение алюминием гл. обр. сталей, реже чугунов и сплавов на основе Ni и Со хром ирование и цинкование-насыщение стали соотв. хромом и цинком меднение-насыщение медью изделий из стали. Из всех видов Х.-т. о. наиб, широко используют насыщение стали углеродом и азотом. Углерод и азот быстро диффундируют в железо, образуя при этом твердые р-ры, карбидные и нитридные фазы, резко отличающиеся по физ.-хим. св-вам от железа. [c.230]
Диффузионное насыщение стали алюминием является одним из самых надежных способов защиты от действия кислорода при высоких температурах. Алитированые изделия могут использоваться вместо жаростойких сталей. [c.277]
Для защиты сталей от окисления используются термодиффузиоыные способы упрочнения поверхности металлов (хромирование, алитирование, силицирова-ние) [50]. [c.138]
chem21.info
Процесс - алитирование - Большая Энциклопедия Нефти и Газа, статья, страница 2
Процесс - алитирование
Cтраница 2
Процесс алитирования не представляет трудностей как в части оборудования, так и в части освоения технологии процесса. [16]
Процесс алитирования в расплавленном алюминии протекает при температуре 660 - 750 С. [17]
Процесс алитирования применяется также для повышения стойкости нержавеющих сталей к окислению. [19]
Процесс алитирования состоит в насыщении поверхности стальных деталей алюминием, что значительно повышает их жароупорность. [21]
Процесс алитирования никелевых сплавов в порошкообразной смеси, состоящей из 98 % ферроалюминия [ 50 % ( по массе) А1 ] и 2 % МН4С1, исследован в работах [ 20, с. Насыщение проводят в герметизированных контейнерах при 950 С; оно происходит в результате диспропорционирования хлоридов алюминия и обменных реакций между ними и алюминием. Пока эта фаза существует на поверхности и не растворяется в результате взаимной диффузии компонентов сплавов, пленка окиси алюминия продолжает образовываться и защищает основу от окисления. С растворением фазы Ni3Al начинается интенсивное окисление сплавов. Алитирование по данной технологии защищает никелевые сплавы от окисления при температурах 950 - 1000 С в течение нескольких тысяч часов. [22]
Хотя процесс алитирования, как один из способов химико-термической обработки металлов, достаточно известен и используется для черных металлов, в применении к меди и ее сплавам он изучен недостаточно. [23]
Химизм процесса Алитирования может быть. [24]
В процессе алитирования изделия нагревают до высокой температуры в среде, содержащей алюминий. При этом поверхностный слой насыщается алюминием в результате термодиффузионного процесса. [26]
Для проведения процессов алитирования разработана конструкция алюминизатора из УКМ. Основными элементами алюминизатора являются кюветы, в которые засыпается шихта, и решетки, на которых размещаются обрабатываемые детали. К элементам алюминизатора предъявляются достаточно высокие требования по жесткости и прочности. Рассмотрены технологические особенности процесса изготовления элементов алюминизатора. [27]
По окончании процесса алитирования производится диффузионный отжиг в течение 3 - 5 часов, необходимый для устранения хрупкости наружного слоя. [28]
Применительно к процессу алитирования технология, условия и режимы нанесения покрытий имеют ряд особенностей. [29]
В статье рассматривается процесс алитирования никеля и изложены результаты исследования фазового состава алитированных слоев на никеле и никелевых сплавах. При выдержках на воздухе в окислительной атмосфере при 950 на алитирован-ной поверхности образуется окись алюминия а - А12О3, которая предохраняет образец от окисления до тех пор, пока под слоем окисла не растворятся, за-счет встречной диффузии алюминия и никеля, интерметаллидные слои: Ш2А13, NiAl, NisAl. На алитированных жаропрочных сплавах, в отличие от алитированного никеля под слоями интерметаллидов системы Ni - А1 расположен не однофазный твердый раствор, а гетерофазный слой с высокой твердостью, состоящий из соединения Ni3Al и дисперсной фазы, которая образуется при обеднении подслоя никелем. Никель из подслоя идет на образование интерметаллидов Ni - А1, покрывающих образец. Наличие насыщенного алюминием твердого раствора и упрочняющей дисперсной фазы Ni3AI в жаропрочных никелевых сплавах является причиной относительного термодинамического равновесия между фазовым составом алитированного слоя и фазовым составом сплавов. Защитные свойства слоя и его долговечность определяются наличием на поверхности тонкой пленки окиси алюминия. Слой из Ni3Al и NiAl, покрытый окисью алюминия а - А1203, с подслоем из Ni3Al, в котором распределена дисперсная вторая фаза, сохраняется на жаропрочных никелевых сплавах при 950 в течение нескольких тысяч часов. [30]
Страницы: 1 2 3 4
www.ngpedia.ru
Алитирование - Справочник химика 21
Хорошая устойчивость к сероводородной коррозии достигается путем алитирования углеродистой и хромистой (с 7% Сг) стали из расплава. [c.87]Диффузионное насыщение поверхности стали алюминием применяют в основном для повышения жаростойкости стали, в окислительных и особенно в сероводородсодержащих средах. Алитированная сталь при температурах 500—600 °С успешно конкурирует с хромоникелевой нержавеющей сталью типа 18—8 в средах, содержащих сероводород. На выносливость стали алитирование влияет по-разному в зависимости от толщины слоя. Так, порошковое алитирование на глубину 0,1—0,2 мм резко снижает предел выносливости стали и практически не влияет на коррозионную усталость. Алитирование на глубину 0,04—0,05 мм незначительно влияет на предел выносливости стали и более чем в 2 раза повышает условный предел коррозионной усталости. Алитирован-ный слой также понижает влияние концентраторов напряжений, особенно в коррозионной среде. [c.88]
Чистый алюминий используется для плакирования стали с целью повышения ее стойкости к коррозии. Для этой цели применяется также алитирование — насыщение поверхности стали алюминием на глубину 0,02—1,2 мм, в результате чего создается плотная н прочная антикоррозийная пленка. [c.259]И, ) естны также способы горячего алитирования, заключающиеся в том, что детали погружают в ванну с флюсом, а затем в расплавленный алюминий при 770—800° С. [c.327]
Весьма перспективно также алитирование — насыщение поверхности металла алюминием на глубину 0,02—1,2 мм., в результате чего создается плотная и прочная антикоррозионная пленка. [c.182]
Важной областью применения А1 является использование его для насыщения (алитирования) поверхности изделий из железа и стали, для придания им жаропрочности и предохранения от коррозии. Наибольшую ценность в этом отношении имеет А1 высокой степени чистоты. [c.281]
Очень важным является применение алюминия для алитирования — насыщения поверхности стальных или чугунных изделий алюминием с целью защиты их от окисления при нагревании до 900 °С. Алитирование производят путем погружения изделия в расплавленный алюминий или чаще нагреванием изделия со смесью порошкообразного алюминия и оксида алюминия(1П). При этом алюминий проникает в поверхностный слой изделия, образуя с железом твердый раствор. [c.438]
На рис. 79 показано влияние продолжительности и температуры алитировання на толщину алитированного слоя стали марки 10, а на рис. 80 — распределение концентрации алюминия в железе по глубине слоя после алитировання в порошкообразной смеси. [c.121]
Термодиффузионный способ широко используется для получения жаростойких покрытий алюминием (алитирование), кремнием (сили- [c.219]
Термодиффузионный способ широко используется для получения жаростойких покрытий алюминием (алитирование), кремнием (силицирование), хромом (хромирование), титаном (титанирование). Жаростойкие покрытия позволяют сочетать высокую жаропрочность основного материала с высокой жаростойкостью поверхностного слоя. [c.237]
Из других способов обработки отметим алитирование — насыщение поверхности стальных и железных изделий металлическим алюминием, что сообщает им жаростойкость. [c.230]
Железо > 99,9 Ра Алитированное железо [c.175]
Горячее алитирование применяют при производстве стальной ленты непрерывным способом. Алитированная сталь обладает коррозионной стойкостью алюминия и прочностью стального листа. Поверхность алитированных листов — матовая серебристая. Тол- [c.79]
Алитированные листы имеют коррозионную стойкость в атмосфере, воде и в продуктах сгорания топлив при высоких температурах. Эти листы рекомендуется соединять точечной сваркой, [c.80]
Рис. 5.35. Жаростойкость gя алитированного (/) и неалитированного (2) образцов сплава ЭИ652 в продуктах сгорания гидроочищенного топлива Т-7П (без снятия окалины) в зависимости от температуры продуктов сгорания. |
Диффузионное алитирование мелких предметов проводят аналогичным способом, но при температуре около 1000° С. Покрытия, помимо сказанного, стойки к продуктам сгорания при высоких температурах. Диффузионное алитирование труб или предметов больших размеров проводят следующим образом. Прежде всего поверхность изделия очищают (лучше струйной обработкой), напыляют слой алюминия и несколько слоев жидкого стекла, а затем выдерживают при температуре 900—1050° С в течение 2—4 ч. Жидкое стекло образует защитный слой, под которым протекает диффузия алюминия в сталь. Трубы с такими покрытиями применяют в обменных аппаратах, предназначенных для работы в среде двуокиси серы, сероводорода, продуктов сгорания и т. д. [c.83]
Основными мерами борьбы против коррозии в неэлектролитах является использование коррозионностойких материалов, например нержавеющих и алитированных сталей и др. В боль-щинстве случаев в нефти имеет место и электрохимический коррозионный процесс, что дает возможность применять ингибиторы и протекторную защиту. [c.15]
Важным является применение алюминия для алитирования, которое заключается в насыщении поверхности стальных или чугунных изделий алюминием с целью защиты основного материала от окислсния при сильном нагревании. В металлургии а.пюмииий применяется для получения кальция, бария, лития и некоторых других металлов методом алюминотермии (см. 192). [c.637]
Алитирование хромистых сталей позволяет значительно расширить область их применения при повышенных температурах в агрессивных средах, содержащих сероводород. Коррозионная стойкость алитированных 3%-ных хромистых сталей в чистом сероводороде при 500—550 °С выше коррозионной стойкости стали 12Х18Н10Т. Для изготовления трубчатых змеевиков печей, а также для коммуникационных трубопроводов и пучков трубчатых теплообменников в США и некоторых других странах на установках гидроочисткн нефтепродуктов используют в промышленном или опытном масштабе алитированные трубы из стали 15Х5М взамен труб из дорогой стали типа 18—8. Опыт подтверждает целесообразность такой замены материала. [c.27]
Для повышения надежности работы трубчатых печей в условиях повышенной ванадиевосернистой коррозии рекомендуется крепление радиантных труб и конвекционной решетки выполнять из сталей 25Х23Н7СЛ с предварительным алитированием. Кроме того, значительное снижение ванадиевосернистой коррозии может быть достигнуто по ачей в газовый поток доломитовой пыли или введением в мазут присадки ВТИ-4ст (39]. По данным Всесоюзного теплотехнического научно-исследовательского института им. Ф. Э. Дзержинского, введение присадки ВТИ-4ст позволяет [c.216]
Диффузионные покрытия (алитирование) получают барабанной обработкой в атмосфере водорода при температуре около 1000 °С в смеси алюминиевого порошка, AljOa и небольшого количества Nh5 1. Получается поверхностный сплав алюминия с железом, который обеспечивает стойкость как к высокотемпературному окислению на воздухе (до 850—950 °С), так и к коррозии в серу-содержащей атмосфере (например, при очистке нефти). Диффузионные алюминиевые покрытия на стали обычно не обеспечивают [c.242]
Исследования водородопроницаемости при повьипенных температурах стали марки 12Х18Н9Т с алитированными, борированными, хромированными слоями показали, что эти покрытия - эффективный барьер потоку водорода. Для стали с алитированным покрытием толщиной 90 мкм температурная зависимость водородопроницаемости в интервале 800-550 °С линейна, энергия активации на этом участке составляет Ер = 158 кДж/моль, что несколько выше, чем у непокрытой стали ( р = 122 кДж/моль), водородопроницаемость снижается почти в 5 раз. У борированных образцов с толщиной слоя 80 мкм наблюдается снижение водородопронииэемости в 13 раз при температуре 800 °С и в 70 раз при температуре 400°С энергия активации "р = 168 кДж/моль. [c.64]
Процесс диффузионной алюминизации получил особое название — алитирования (реже калоризации). [c.369]
При термодиффузионном способе нанесения покрытия изделие помещают в смесь, содержащую порошок металла покрытия. При повышенной температуре происходит диффузия наносимого металла в основной металл. Таким путем получают покрытия алюминием (алитирование) и цинком. Иногда покрытия наносят при реакциях в газовой фазе. Например, при пропускании парообразного СгСЬ над поверхностью стали при 1000 °С образуется поверхностный сплав Сг—Ре, содержащий до [c.236]
Алюминием защищают металлы от коррозии, например, -насыщая поверхность их алюминием (алитирование) или методом плакирова- [c.283]
Покрытие наносят в герметически закрытом контейнере. Очи-щенные металлические изделия погружают в порошок, содержащий металл покрытия. В течение нескольких часов контейнер нагревается при температуре, близкой (но меньшей) точке плавления металла. Цинковые покрытия, нанесенные на сталь, называются шерадизационными. Диффузионный слой представляет собой сплав, содержащий 8—9% железа в цинке. Алюминиевые покрытия на стали или меди называют алитиро-ванными. На них образуется окись алюминия во всех поверхностных слоях с содержанием алюминия более 8%. Эта окисная пленка обеспечивает высокую сопротивляемость действию коррозии, но сильно охрупчивает поверхностные слои, поэтому после алитирования необходимо подвергнуть изделие отжигу. [c.105]
Третий метод уменьшения скорости газовой коррозии заключается в защите поверхности металла специальными термостойкими покрытиями термодифузионными железоалюминиевыми или железохромовыми покрытиями (процессы нанесения этих покрытий известны под названием алитирование и термохромирование ), металлокерамическими покрытиями, или керметами, металлоокисными покрытиями, для получения которых в качестве неметаллических компонентов применяют тугоплавкие окислы, например А12О3, М 0, и соединения типа нитридов и карбидов. Металлическими компонентами служат металлы группы железа, хром, вольфрам и молибден. [c.14]
Неорганическая химия (1981) -- [ c.438 ]Физика и химия в переработке нефти (1955) -- [ c.8 ]
Общая химия ( издание 3 ) (1979) -- [ c.387 ]
Курс общей химии (1964) -- [ c.245 ]
Неорганическая химия Издание 2 (1976) -- [ c.397 ]
Общая химия 1982 (1982) -- [ c.555 , c.637 ]
Общая химия 1986 (1986) -- [ c.537 , c.617 ]
Неорганическая химия (1981) -- [ c.438 ]
оборудование производств основного органического синтеза и синтетических каучуков (1965) -- [ c.31 ]
Неорганическая химия (1978) -- [ c.293 ]
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.91 ]
Общая химия Издание 4 (1965) -- [ c.238 ]
Ремонт и монтаж оборудования химических и нефтеперерабатывающих заводов Издание 2 (1980) -- [ c.71 ]
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.162 ]
Общая химия Издание 18 (1976) -- [ c.629 ]
Общая химия Издание 22 (1982) -- [ c.555 , c.637 ]
Основы общей химической технологии (1963) -- [ c.194 ]
Оборудование производств Издание 2 (1974) -- [ c.24 ]
Общая химическая технология Том 2 (1959) -- [ c.153 , c.154 ]
Краткая химическая энциклопедия Том 2 (1963) -- [ c.97 ]
Основы общей химии Том 2 (1967) -- [ c.194 ]
Основы общей химии Том 2 Издание 3 (1973) -- [ c.37 ]
Коррозия пассивность и защита металлов (1941) -- [ c.7 ]
Коррозия металлов Книга 1,2 (1952) -- [ c.667 , c.668 ]
Курс общей химии (0) -- [ c.236 ]
Курс общей химии (0) -- [ c.236 ]
Предмет химии (0) -- [ c.236 ]
Коррозия металлов Книга 2 (1952) -- [ c.0 ]
chem21.info
Диффузионная металлизация
Диффузионная металлизация - это процесс диффузионного насыщения поверхностных слоев стали различными металлами. Она может осуществляться в твердых, жидких и газообразных средах.
При диффузионной металлизации в твердых средах применяют порошкообразные смеси, состоящие обычно из ферросплавов с добавлением хлористого аммония.
Жидкая диффузионная металлизация осуществляется погружением детали в расплавленный металл (например, цинк, алюминий).
При газовом способе насыщения применяют летучие хлористые соединения металлов, образующиеся при взаимодействии хлора с металлами при высоких температурах. Хлориды диссоциируют на поверхности железа и выделяющийся в атомарном состоянии металл диффундирует в железо.
Диффузия металлов в железе идет значительно медленнее, чем углерода и азота, потому что углерод и азот образуют с железом твердые растворы внедрения, а металлы - твердые растворы замещения. Это приводит к тому, что диффузионные слои при металлизации получаются в десятки раз более тонкими. Поверхностное насыщение стали металлами проводится при температурах 900—1200° С.
Алитирование (Al)
Алитированием называется процесс насыщения поверхности стали алюминием. В результате алитирования сталь приобретает высокую окалиностойкость (до850—900° С) и коррозионную стойкость в атмосфере и в ряде сред.
При алитировании в порошкообразных смесях чистые детали вместе со смесью упаковывают в железный ящик. В рабочую смесь входят: порошковый алюминий (25—50%) или ферроалюминий (50—75%), окись алюминия (25—50%) и хлористый алюминий (~1,0%). Процесс осуществляется при температуре 900—1000°С в течение 3—12 ч.
Реже применяют алитирование в ваннах с расплавленным алюминием. Алитируемые детали погружают в расплавленный алюминий (92—94% А1 и 6—8% Fe). Железо добавляют для того, чтобы предотвратить растворение обрабатываемых деталей в алюминии. Процесс проводят при температурах 700—800°С в течение 45— 90 мин.
Алитирование в расплавленном алюминии отличается от алитирования в порошкообразных смесях простотой метода, быстротой и более низкими температурами. Основной недостаток процесса — налипание алюминия на поверхность деталей.
Иногда применяют металлизацию поверхности стали алюминием (напыление слоя алюминия на обрабатываемую поверхность) с последующим диффузионным отжигом при температуре 900—1000°С в течение 1—3 ч.
Для предохранения алюминия от окисления во время диффузионного отжига изделие покрывают обмазкой, состоящей из серебристого графита (48%), кварцевого песка (30%), глины (20%), хлористого алюминия(2%) и 20—25% от массы первых четырех составляющих - жидкого стекла.
Алитирование стали металлизацией с последующим диффузионным отжигом в несколько раз дешевле, чем в порошках. Агитированный слой представляет собой твердый раствор алюминия в железе, концентрация алюминия в поверхностном слое достигает 30-40%. Алитированию подвергают трубы, инструмент для литья цветных сплавов, чехлы термопар, детали газогенераторных машин и т. д.
studfiles.net
Процесс - алитирование - Большая Энциклопедия Нефти и Газа, статья, страница 1
Процесс - алитирование
Cтраница 1
Процесс алитирования, разработанный авторами и внедренный на заводах [1, 2], происходит в закрытых железных контейнерах, где детали находятся в порошкообразной смеси, состоящей из 98 % сплава FeAl ( 50 вес. [1]
Процесс алитирования из порошков по разработанной технологии протекает в несколько стадий, главная из которых - перенос атомов алюминия с поверхности крупинок ферроалюминия на поверхность детали и хемосорбция алюминия никелем. [2]
Процесс алитирования состоит из следующих операций: подготовка поверхности, нанесение алюминиевого слоя ( обычно напылением), обмазка покрытия и отжиг. [3]
Процесс алитирования заключается в насыщении поверхности стальных деталей алюминием. При алитировании детали упаковывают в ящики со смесью, состоящей из 48 % алюминия, 48 % окиси алюминия и 2 % нашатыря, затем выдерживают от 5 до 15 час. Насыщенная алюминием поверхность стали имеет высокую жароупорность. [4]
Процесс алитирования ведут, например, путем нагрева трубки в алюминиевом порошке, смешанном с оксидом алюминия, в присутствии хлористого аммония при температуре около 1000 С. [5]
Процесс алитирования длится 3 - 5 мин, температура расплава поддерживается около 700 С. При таких условиях толщина диффузионного слоя для стали составляет 0 02 - 0 04 мм. Толщина налипшего алюминия не превышает 0 3 - 0 4 мм. [6]
Процесс алитирования заключается в насыщении поверхности стальных деталей алюминием. При алитировании детали упаковывают в ящики со смесью, состоящей из 48 % алюминия, 48 % окиси алюминия и 2 % нашатыря, затем выдерживают от 5 до 15 час. Насыщенная алюминием поверхность стали имеет высокую жароупорность. [7]
Процесс алитирования длится от 5 до 15 часов. Сталь с али-тированной поверхностью весьма жароупорна и применяется в деталях, соприкасающихся с пламенем. [8]
Процесс алитирования длится от 5 до 15 часов. Сталь с али-тированной поверхностью весьма жароупорна и применяется в деталях, соприкасающихся с шшменем. [9]
Процесс алитирования длится от 5 до 15 час. Сталь с алити-рованной поверхностью весьма жароупорна и применяется в деталях, соприкасающихся с пламенем. [10]
Процесс алитирования длится от 5 до 15 час. Сталь с алити-рованной поверхностью весьма жароупорна и применяется в деталях, соприкасающихся с пламенем. [11]
Процесс алитирования, разработанный авторами и внедренный на заводах [1, 2], происходит в закрытых железных контейнерах, где детали находятся в порошкообразной смеси, состоящей из 98 % сплава FeAl ( 50 вес. [12]
Процесс алитирования из порошков по разработанной технологии протекает в несколько стадий, главная из которых - перенос атомов алюминия с поверхности крупинок ферроалюминия на поверхность детали и хемосорбция алюминия никелем. [13]
Процесс алитирования заключается в насыщении поверхностного слоя железа, стали и чугуна алюминием за счет диффузии порошкообразного металла при высокой температуре. Глубина диффузионного слоя зависит от температуры нагрева и продолжительности процесса алитирования; практически она составляет от 0 3 до 0 8 мм. Детали, подлежащие алитированию, загружают в герметически закрывающийся железный ящик и тщательно засыпают указанной смесью. Нагрев производят при температуре 1000 в течение 3 - 4 час. [14]
Процесс алитирования производится следующим образом. Стальные детали, подлежащие алитированию, закладывают в ящики и пересыпают алитирующей смесью, составленной из следующих частей ( в % по весу): 1) 40 - 60 порошка алюминия, 2) 60 - 40 порошка окиси алюминия, или мелко истолченного шамота, или обожженной огнеупорной глины, 3) 1 5 - 3 хлористого аммония. Эти вещества тщательно перемешивают. Выдержка при этой температуре осуществляется в течение 5 - 14 час. Кроме твердого алитирования, применяется и газовое алитирование, похожее на газовую цементацию. [15]
Страницы: 1 2 3 4
www.ngpedia.ru