Железоуглеродистые сплавы — сталь и чугун. Процентное содержание углерода в стали


    Определение массовой доли углерода в стали и марки стали по ее структуре

    Возможность определения массовой доли углерода в стали по структуре, обусловливается тем обстоятельством, что структурные составляющие медленно охлажденной, т.е. находящейся в равновесном состоянии стали, содержат определенные и постоянные массовые доли углерода. При изменении доли углерода в такой стали в пределах данной структурной группы (доэвтектоидная, заэвтектоидная) изменяется только количественное соотношение структурных составляющих. Из этого вытекает, что определение массовой доли углерода может производиться только по равновесной структуре.

    Поскольку плотности структурных составляющих сталей близки, то соотношение их массовых долей можно заменить соотношением занимаемых ими площадей.

    В доэвтектоидных сталях массовая доля углерода определяется по

    формуле:

    (3.1)

    где Fn – площадь поля зрения микроскопа, занимаемая перлитом, %; 0,8 – % С в перлите.

    Рассчитав массовую долю углерода заданной доэвтектоидной стали по формуле (3.1), можно по таблицам определить марку этой стали.

    Влияние примесей на свойства сталей

    В углеродистой стали кроме основных компонентов (железа и углерода) присутствует ряд примесей Мn, Si, S, P и др. Присутствие разных примесей объясняется соответствующими причинами. Мn и Si в десятых долях процента переходят в сталь в процессе ее раскисления; S и Р в сотых долях процента остаются в стали из-за трудности их полного удаления; Сr и Ni переходят в сталь из шихты, содержащей легированный металлический лом, и допускаются в количестве не более 0,3 % каждого. Таким образом, сталь фактически является многокомпонентным сплавом. Допустимые количества примесей в сталях регламентируются соответствующими стандартами. Примеси оказывают влияние на механические и технологические свойства стали. Так, например, Мп и Si повышают твердость и прочность, Р придает стали хладноломкость – хрупкость при нормальной и пониженных температурах, а S – горячеломкость (красноломкость) – хрупкость при температурах горячей обработки давлением. Поскольку в сталях допускаются небольшие количества примесей, то их влияние на свойства незначительно. Основным элементом, определяющим механические и технологические свойства стали, является углерод.

    Каждой марке углеродистой стали соответствуют регламентированные стандартами определенные пределы содержания углерода.

    Маркировка углеродистых сталей

    По назначению и качеству углеродистые стали классифицируются следующим образом:

    1. Стали конструкционные углеродистые обыкновенного качества содержат вредных примесей: серы до 0,05 %, а фосфора до 0,04 % (ГОСТ 380-94). Эти стали маркируются Ст0, Ст1кп, Ст1пс, Ст1сп и т.д. до Cт6 (табл. 3.1). Если после марки стоят буквы "кп" - это означает, что сталь кипящая, полностью нераскисленная (раскисляют только ферромарганцем). Если "сп" – сталь спокойная, получаемая полным раскисленнем (раскисляют ферромарганцем, ферросилицием и алюминием). Если "пс" – сталь полуспокойная промежуточного типа.

    Стали углеродистые обыкновенного качества широко применяются в

    строительстве. Из ряда марок изготавливают детали машиностроения. В судостроении применяются как корпусные, для малоответственных конструкций, деталей машин, механизмов и устройств судов и плавительных средств всех типов.

    2. Стали конструкционные углеродистые качественные (ГОСТ 1050-88).

    К сталям этой группы предъявляют более высокие требования относительно состава: меньшее содержание серы (менее 0,04 %) и фосфора (менее 0,035 %). Они маркируются двузначными цифрами, обозначающими среднюю массовую долю углерода в стали в сотых долях процента (табл. 3.2).

    Например, сталь 30 – углеродистая конструкционная качественная сталь со средней массовой долей углерода 0,3 %.

    Качественные конструкционные углеродистые стали широко применяются во всех отраслях машиностроения и в судостроении в частности.

    Низкоуглеродистые стали (08, 10, 15, 20, 25) обладают высокой пластичностью, но низкой прочностью. Стали 08, 10 используют для изготовления деталей холодной штамповкой и высадкой (трубки, колпачки). Стали 15, 20, 25 применяют для цементируемых и цианируемых деталей (втулки, валики, пальцы), работающих на износ и не испытывающих высоких нагрузок. Низкоуглеродистые качественные стали используют и для ответственных сварных конструкций.

    Среднеуглеродистые стали (30, 35, 40, 45, 50), обладающие после термической обработки хорошим комплексом механических свойств, применяются для изготовления деталей повышенной прочности (распределительных валов, шпинделей, штоков, плунжеров, осей, зубчатых колес).

    Высокоуглеродистые стали (55, 60) обладают более высокий прочностью, износостойкостью и упругими свойствами; применяются для деталей работающих в условиях трения при наличии высоких статических и вибрационных нагрузок. Из этих сталей изготавливают прокатные валки, шпиндели, диски сцепления, регулировочные шайбы и т.п.

    3.Стали углеродистые инструментальные качественные и высококачественные (ГОСТ 1435-90).

    Эти стали маркируются буквой У и следующей за ней цифрой, показывающей среднюю массовую долю углерода в десятых долях процента (табл. 3.3). Например, сталь У10 – инструментальная углеродистая качественная сталь со средней массовой долей углерода 1 %. Если в конце марки стоит буква "А", это означает, что сталь высококачественная, т.е. содержит меньше вредных примесей (серы менее 0,018 % и фосфора менее 0,025 %). Для режущего инструмента (фрезы, зенкеры, сверла, ножовки, напильники и т.п.) обычно применяют заэвтектоидные стали (У10, У11, У12, У13). Деревообрабатывающий инструмент, зубила, отвертки, топоры и тому подобное изготавливают из сталей У7 и У8.

    Табл. 3.1. Химический состав углеродистых конструкционных сталей

    обыкновенного качества по ГОСТ 380-94

    Марка стали

    Массовая доля элементов, %

    С

    Mn

    Si

    Ст0

    < 0,23

    -

    -

    Ст1кп

    0,06 – 0,12

    0,25 – 0,50

    < 0,05

    Ст1пс

    0,06 – 0,12

    0,25 – 0,50

    0,05 – 0,15

    Ст1сп

    0,06 – 0,12

    0,25 – 0,50

    0,15 – 0,30

    Ст2кп

    0,09 – 0,15

    0,25 – 0,50

    < 0,05

    Ст3пс

    0,14 – 0,22

    0,30 – 0,65

    0,05 – 0,15

    Ст4сп

    0,18 – 0,27

    0,40 – 0,70

    0,15 – 0,30

    Ст5сп

    0,28 – 0,37

    0,50 – 0,80

    0,15 – 0,30

    Ст6пс

    0,38 – 0,49

    0,50 – 0,80

    0,05 – 0,15

    Табл.3.2. Содержание углерода и механические свойства углеродистых качественных конструкционных сталей ГОСТ 1050-88

    Массовая

    доля С, %

    Механические свойства

    Предел

    текучести

    σ0,2, МПа

    Временное

    сопротивление

    σb, МПа

    Относительное

    удлинение

    δ, %

    Относительное

    сужение

    Ψ, %

    Ударная

    вязкость

    KCU, Дж/см2

    Число

    твердости

    HB, МПа

    (кгс/мм2)

    Не менее

    Не более

    0,05 – 0,12

    0,07 – 0,14

    0,12 – 0,19

    0,17 – 0,24

    0,22 – 0,30

    0,27 – 0,35

    0,32 – 0,40

    0,37 – 0,45

    0,42 – 0,50

    0,47 – 0,55

    0,52 – 0,60

    0,57 – 0,65

    196

    206

    225

    245

    274

    294

    314

    333

    353

    373

    382

    402

    320

    330

    370

    410

    450

    490

    530

    570

    600

    630

    650

    680

    33

    31

    27

    25

    23

    21

    20

    19

    16

    14

    13

    12

    60

    55

    55

    55

    50

    50

    45

    45

    40

    40

    35

    35

    88

    70

    69

    59

    49

    38

    1284 (131)

    1401 (143)

    1460 (149)

    1597 (163)

    1666 (170)

    1754 (179)

    2029 (207)

    2127 (217)

    2244 (229)

    2362 (241)

    2499 (255)

    2499 (255)

    Табл. 3.3. Химический состав углеродистых инструментальных

    качественных и высококачественных сталей по ГОСТ 1435-90.

    Марки стали

    Массовая доля элементов, %

    C

    Si

    Mn

    S

    P

    Не более

    У7; У7А

    У8; У8А

    У9; У9А

    У10; У10А

    У11; У11А

    У12; У12А

    У13; У13А

    0,65 – 0,74

    0,75 – 0,84

    0,85 – 0,94

    0,95 – 1,04

    1,05 – 1,14

    1,15 – 1,24

    1,25 – 1,35

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,17 – 0,33

    0,028; 0.018

    0,028; 0.018

    0,028; 0.018

    0,028; 0.018

    0,028; 0.018

    0,028; 0.018

    0,028; 0.018

    0,030; 0,025

    0,030; 0,025

    0,030; 0,025

    0,030; 0,025

    0,030; 0,025

    0,030; 0,025

    0,030; 0,025

    studfiles.net

    Железоуглеродистые сплавы — сталь и чугун

    Наиболее широкое применение в современном машиностроении имеют железоуглеродистые сплавы — сталь и чугун.

    Сталь — это сплав железа с углеродом; содержание углерода в стали не превышает 2%.

    К сталям относятся:

    • техническое железо,

    • конструкционная и

    • инструментальная сталь.

    Чугун — сплавы железа с углеродом, в которых содержание углерода превышает 2%. Среднее содержание углерода в чугуне 2,5—3,5%.

    Кроме железа и углерода, в сталях и чугунах присутствуют примеси:

    • кремний и марганец в десятых долях процента (0,15— 0,60%)

    • сера и фосфор в сотых долях процента (0,05—0,03%) каждого элемента.

    Сталь

    Сталь с содержанием углерода до 0,7% применяется для изготовления:

    • листов,

    • ленты,

    • проволоки,

    • рельсов,

    • таврового и уголкового железа,

    • различного фасонного профиля,

    • а также для многочисленных деталей в машиностроении: шестерни, оси, валы, шатуны, болты, молотки, кувалды и т.п.

    Сталь с содержанием углерода свыше 0,7% применяется для изготовления различного режущего инструмента:

    • резцы,

    • сверла,

    • метчики,

    • бородки,

    • зубила и др.

    Свойства стали зависят от содержания углерода. Чем больше углерода, тем сталь прочнее и тверже.

    Чугун

    Машиностроительный чугунприменяют для производства отливок всевозможных деталей машин.

    По составу и строению чугуны делятся на:

    • белый,

    • серый,

    • ковкий.

    Ковкий чугун

    Ковкий чугун получается в результате специальной обработки белого чугуна. В белом чугуне весь углерод находится в химически связанном состоянии с железом (Fe3C — цементит), что придает этому чугуну большую твердость и хрупкость и плохую обрабатываемость.

    Белый чугун

    В машиностроении белый чугун применяют для изготовления отливок, отжигаемых на так называемый ковкий чугун.

    При отжиге цементит разлагается па железо и свободный углерод, и отливки приобретают невысокую твердость и хорошую обрабатываемость.

    Серый чугун

    Наиболее широкое применение в технике имеет серый чугун, в котором большая часть углерода находится в свободном состоянии, в виде графита. Этому способствует высокое содержание кремния.

    Такой чугун обладает хорошими литейными качествами и применяется для производства чугунных отливок. Детали из этого чугуна получаются путем отливки в земляные или металлические формы (станины, шестерни, цилиндры, блоки и т.п.).

    Благодаря наличию свободного углерода (графита) серый чугун имеет небольшую твердость и хорошо обрабатывается резанием.

    §

    www.conatem.ru

    2.2. Стали | Материаловед

    Для производства различных фасонных отливок в качестве конструкционного исходного материала, обладающего повышенными механическими свойствами, применяют стали конструкционные, инструментальные и с особыми физико–химическими свойствами (легированные).

    Отливки из углеродистых, конструкционных сталей, имеющие высокие прочностные свойства, преимущественно получают из следующих марок: сталь 15 Л; 20 Л; 30 Л; 40 Л; 50 Л; 55 Л.

    Конструкционные углеродистые стали

    Конструкционные углеродистые стали применяют в литейном производстве для изготовления литых деталей, несущих главным образом механические нагрузки (статические, динамические, вибрационные и др.).

    Широко применяемые в литейном производстве стали имеют следующий химический состав: 0,15-0,45% С, 0,5-1% Mn, 0,2-0,5% Si. Содержание серы и фосфора должно быть минимальным. Сталь по сравнению с чугуном обладает более высокими механическими свойствами и имеет большую величину усадки (около 2,5 %). Она имеет худшую жидкотекучесть и склонность к образованию внутренних напряжений и трещин. Большинство отливок из углеродистых сталей подвергают термической обработке, которую проводят для улучшения их микроструктуры, механических и эксплуатационных свойств.

    Конструкционные углеродистые стали разделяют на стали обыкновенного качества, стали качественные и стали высококачественные. Стали обыкновенного качества содержат повышенное количество серы (до 0,05-0,06 %) и фосфора (до 0,04-0,07 %). В качественных сталях максимальное содержание вредных примесей составляет не более 0,04 %. Кроме того, качественные стали имеют более узкие пределы содержания углерода (0,07-0,08%), в пределах одной марки. В сталях же обыкновенного качества он находится в пределах от 0,09 до 0,11 %. Качественная сталь менее загрязнена неметаллическими включениями и имеет меньшее содержание растворимых газов. Поэтому при примерно одинаковом содержании углерода качественные стали имеют более высокую пластичность и вязкость.

    По химическому составу стали подразделяют на углеродистые (низко- и среднеуглеродистые) и легированные, а по структуре — на феррито-перлитного и перлитного классов.

    Отливки из низкоуглеродистой стали марок сталь 15 Л…25 Л применяют в электромеханической и машиностроительной промышленности. Их подвергают цементации и закалке. Изготовление фасонных отливок из низкоуглеродистых сталей связано с рядом трудностей: высокой температурой их плавления, пониженной жидкотекучестью и образованием в отливке горячих трещин.

    Отливки из среднеуглеродистых сталей марок сталь 30 Л…45 Л применяют преимущественно в машиностроении при изготовлении фасонных деталей сложной формы. Такие отливки подвергают термической обработке, отжигу, нормализации и закалке с последующим отпуском. Среднеуглеродистые стали обладают хорошей жидкотекучестью, меньшей склонностью образования горячих трещин и имеют высокие механические свойства.

    Следует отметить, что в связи с высокой температурой плавления и температурой разливки, низкой жидкотекучестью и трудностью заливки форм, стали обыкновенного качества в качестве литейного сплава для изготовления фасонных отливок применяются чрезвычайно редко. Поэтому основным материалом при производстве фасонных стальных отливок являются низко- и среднеуглеродистые стали в зависимости от требуемых механических свойств литых деталей.

    Литейные марки качественных углеродистых сталей приведены в таблице 2.4.

    Таблица 2.4. Марки углеродистых качественных конструкционных сталей, применяемые для изготовления литых заготовок

    Марка стали Содержание основных элементов, %
    углерода марганца
    15 КП Л 0,12-0,19 0,25-0,50
    15 ПС Л 0,12-0,19 0,35-0,65
    20 КП Л 0,17-0,24 0,25-0,50
    20 ПС Л 0,17-0,24 0,35-0,65
    25 Л 0,22-0,30 0,50-0,80
    30 Л 0,27-0,35 0,50-0,80
    35 Л 0,32-0,40 0,50-0,80
    40 Л 0,37-0,45 0,50-0,80
    45 Л 0,42-0,50 0,50-0,80
    50 Л 0,52-0,60 0,50-0,80
    55 ПС Л 0,55-0,63 Не более 0,2
    60 Л 0,57-0,65 0,50-0,80

    Примечания:

    1. В указанных марках содержится не более кремния (Si) – 0,17-0,37%; хрома (Cr) – 0,25%; серы (S) и фосфора (Р) не более 0,04% (каждого).
    2. В обозначении марок углеродистых качественных сталей цифры показывают среднее содержание углерода в стали в сотых долях процента. Буква «Л» означает, что сталь литая, буквы «КП», «ПС» — степень раскисления стали; КП – кипящая; ПС – полуспокойная; маркировка без индекса — спокойная.

    Среднеуглеродистые стали применяют в машиностроении предпочтительно для изготовления фасонных отливок сплошной формы. Отливки из сталей подвергают термической обработке: отжигу, нормализации и закалке с последующим отпуском.

    Как правило, отливки, изготовленные из литейных сталей, обладают высоким временным сопротивлением (400-600 МПа), относительным удлинением (10-24%), ударной вязкостью и достаточной износостойкостью при ударных нагрузках. Основной элемент, определяющий механические свойства углеродистых литейных сталей – углерод.

    Инструментальные углеродистые  стали применяются для изготовления литого инструмента (режущий, мерительный, штамповочный и т.п.). Марки инструментальных углеродистых сталей приведены в таблице 2.5.

    Таблица 2.5. Стали инструментальные углеродистые

    Марка стали Содержание углерода, % Марка стали Содержание углерода, %
    У 7 0,65-0,73 У 10 0,95-1,03
    У 8 0,76-0,83 У 11 1,06-1,13
    У 8 Г 0,81-0,89 У 12 1,16-1,23
    У 9 А 0,86-0,93 У 13 1,26-1,34

    В обозначениях марок углеродистых инструментальных сталей цифры показывают среднее процентное содержание углерода в десятых долях процента. Буквы, стоящие за цифрами, указывают: Г – на повышенное содержание марганца в стали; А – на принадлежность стали к группе высококачественных сталей, в которых содержится наименьшее количество вредных примесей (фосфора и серы соответственно не боле 0,018% и 0,025% каждого).

    Легированные стали

    Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т.д.). Например, марганец повышает износостойкость, хром – жаростойкость. Никель – коррозионную стойкость и т.д.

    Легированные стали используют в энергомашиностроении, химической и нефтяной промышленности и металлургии и других областях. Из них изготовляют методом литья турбинные лопатки, клапаны гидропрессов, зубья ковшей экскаваторов и другие отливки.

    Легирующие элементы обозначают русскими буквами:

    А – азот; К – кобальт; Т – титан;
    Б – ниобий; М – молибден; Ф – ванадий;
    В – вольфрам; Н – никель; Х – хром;
    Г – марганец; П – фосфор; Ю – алюминий;
    Д – медь; Р – бор; Ц – цирконий;
    Е – селен; С – кремний; Ч – редкоземельные металлы.

    Марки легированных сталей обозначают буквами и цифрами. Буквы обозначают присутствие в стали определенного легирующего элемента, цифры, стоящие за буквами, показывают содержание легирующих элементов в процентах. Если содержание элементов не превышает 1,5%, то цифра легирующего элемента не ставится. Содержание углерода в сталях указывается в начале марки легированной стали. Для конструкционных сталей первые цифры показывают среднее содержание углерода в сотых долях процента, для инструментальных (высокоуглеродистых) – в десятых долях процента. Буква «Л», стоящая в конце марки, указывает на то, что эта сталь литая. Пример записи и расшифровки одной из марок легированных жаропрочных сталей: 18Н12МЗТ Л, где Л – сталь литая, 0,18% углерода, 12% никеля, 3% молибдена, до 1,5% титана.

    Наиболее высокими физико-механическим свойствами обладают отливки, изготовленные из высоколегированных сталей.

    Стали высоколегированные со специальными свойствами подразделяются на следующие группы:

    1) коррозионно-стойкие (нержавеющие), обладающие стойкостью против атмосферной коррозии: 25Х18 Л; 20Х13 Л; 10Х17 Н3С Л и др.;

    2) кислотоупорные, обладающие сопротивляемостью агрессивным средам (кислотам): 15Х18 Н9Т Л; 5Х18Н11В Л и др.;

    3) окалиностойкие (жаростойкие), обладающие стойкостью против окалинообразования (окисления при высоких температурах): 15Х9ЧС2 Л; 25Х23Н7С Л и др.;

    4) жаропрочные, сохраняющие достаточно высокую прочность при высоких температурах: 15Х22 Н15 Л; 30×24Н12С Л; 15Х25Н19С2 Л и др.;

    5) износостойкие с высокой сопротивляемостью износу при абразивном и ударном воздействиях в разных условиях: 110Г13Л; 15Х34 Л и др.

    Легированные стали обладают плохими литейными свойствами и резко повышают себестоимость изготовления литой детали. Поэтому они рекомендуются к применению в исключительных случаях, когда невозможно применение конструкционных качественных углеродистых сталей.

    xn--80aagiccszezsw.xn--p1ai

    Максимальное содержание - углерод - Большая Энциклопедия Нефти и Газа, статья, страница 4

    Максимальное содержание - углерод

    Cтраница 4

    Наименование марок легированных сталей состоит из обозначения элементов и следующих за ним цифр. Цифры, стоящие после букв, указывают среднее значение содержания легирующего элемента в процентах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед первым буквенным обозначением указывают среднее или максимальное содержание углерода в стали в сотых долях процента.  [47]

    Одним из наиболее эффективных и широко применяемых методов защиты от МКК является легирование стали сильными карбидообразующими элементами, такими, как титан и ниобий. Эти элементы связывают углерод в прочные карбиды, тем самым предотвращая образование карбидов хрома и обеспечивая достаточную концентрацию хрома в твердом растворе. Содержание титана принимают равным Ti 5 ( С-002) %, ниобия Nb10 ( С-002) %, где 0 02 % - максимальное содержание углерода, при котором сохраняется стойкость стали против МКК. Преимуществом ниобия перед титаном является более высокая устойчивость его карбидов к растворению при повышении температуры закалки и к выгоранию при сварке, однако ниобий придает сталям склонность к горячим трещинам при сварке.  [48]

    В марках нержавеющих высоколегированных сталей по ГОСТ 5632 - 72 химические элементы обозначаются следующими буквами: А - азот, В - вольфрам, Д - медь, М - молибден, Р - бор, Т - титан, Ю - алюминий, X - хром, Б - ниобий, Г - - марганец, Е - селен, Н - никель, С - кремний, Ф - ванадий, К - кобальт, Ц - цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых единицах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента.  [49]

    После этого в поглотители Реберга вносят ( подтоком очищенного кислорода) по 1 50мл 0 02 jV раствора Ва ( ОН) 2 и пропускают воздух еще в течение 15 мин и под током воздуха оттитровывают раствор барита 0 01 N раствором соляной кислоты. Отсутствие разницы между расходом этой кислоты в данном титровании и отдельно установленным соотношением между баритом и соляной кислотой указывает на чистоту установки; в противном случае необходимо продолжать очистку прибора. После окончания такой очистки под током кислорода при скорости 5 мл / мин в сухие поглотители Реберга вносят по 2 00 - 2 50 мл 0 02 N. Оптимальный объем воды для анализа определяется содержанием в ней суммарного углерода: исходя из ниже приведенного соотношения между 1 мл 0 01 N раствора НС1 и углеродом, крайние пределы содержания суммарного углерода в пробе воды составляют от 10 до 200 мкг С. При правильном проведении анализа даже при максимальном содержании углерода титр барита в третьем поглотителе изменяется мало.  [50]

    С помощью рис. 25.6 посмотрим, что происходит при охлаждении расплавов различного состава ниже эвтектической температуры 1130 С. Сплав, состав которого определяется на диаграмме точкой 1, при охлаждении затвердевает в эвтектической точке Е, образуя смесь цементита Fe3C и аустенита; последний представляет собой твердый раствор углерода в железе. Описанная смесь называется ледебуритом. Расплав, состав которого отвечает точке 2, при отвердевании образует кристаллы аустенита, а остающийся расплав обогащается углеродом до тех пор, пока не будет достигнута эвтектическая точка. После этого получается твердая фаза, содержащая аустенит и ледебурит. Таким образом, расплавы состава 1 и 2 в итоге дают смеси одинаковых твердых веществ, аустенита и цементита, но в различных пропорциях. Эта величина характеризует максимальное содержание углерода в его твердом растворе с железом, а также определяет верхний предел содержания углерода в обычных углеродистых сплавах. При наличии большего количества углерода сплавы железа называются чугуном. При охлаждении расплава с составом 3 сначала образуются аустенитные кристаллы, более бедные углеродом, чем расплав; расплав же, наоборот, обогащается углеродом. При охлаждении до температуры, соответствующей точке на кривой солидуса, которая отвечает составу исходного расплава, он кристаллизуется с образованием аустенита.  [52]

    В течение последних лет было выполнено достаточное количество работ по изучению фазовых диаграмм и процессов испарения высокоогнеупорных псевдометаллических карбидов элементов IV и V групп, на основе которых можно представить общий характер поведения этих материалов. Эти соединения ( а также аналогичные нитриды, тройные и четвертные карбидонитриды, окси-карбиды и оксикарбонитриды) имеют очень высокую энергию связи. На основании электропроводности и магнитных свойств этих соединений установлено, что связи в них имеют металлический характер во всей кристаллической решетке. Составы образующихся фаз не определяются валентностями, как это имеет место в случае ионных соединений переходных металлов или в случае соединений типа адамантина, в которых преобладают ст-связи. В карбидах при высоких температурах обычно присутствуют три нестехиометрические фазы. Металл ( а-фаза) при высоких температурах присоединяет 5 - 10 ат. Следующая фаза имеет идеальную гексагональную решетку с химической формулой МаС, а отклонения от стехиометрического состава при температурах значительно ниже эвтектической, по-видимому, очень незначительны. При приближении к эвтектической температуре минимальная концентрация углерода в фазе М2С быстро уменьшается, а максимальная концентрация углерода увеличивается лишь незначительно. В любом случае при очень высокой температуре фаза М2С неустойчива и изменяется по перитектической реакции с образованием расплава и у-фазы типа NaCl с большими отклонениями от стехиометрического состава. Фаза имеет широкий диапазон составов. Однако представляется, что во всех изученных системах максимальное содержание углерода в карбиде, находящемся в равновесии с графитом, остается меньше стехиометрического. Результаты, полученные различными исследователями, иногда не согласуются, а интерпретация результатов затрудняется легкостью внедрения в эти фазы кислорода и азота, а также сложностью определения малых примесей.  [53]

    Страницы:      1    2    3    4

    www.ngpedia.ru