Сплавы алюминия с сурьмой, медью и другими элементами, которые образуют твердые фазы в мягкой алюминиевой основе. Наибольшее распространение получил сплав АСМ, содержащий сурьму (до 6,5%) и магний (0,3— 0,7%). Этот сплав хорошо работает при высоких нагрузках и больших скоростях в условиях жидкостного трения, его широко применяют для изготовления вкладышей подшипников коленчатого вала двигателей тракторов и авто мобилей.
Сплавы алюминия с оловом и медью, например АО20-1 (20% олова и до 1,2% меди) А09-2 (9% олова и 2% меди). Они хорошо работают в условиях сухого и полужидкого трения и по антифрикционным свойствам близки к баббитам. Их используют для производства подшипников в автомобилестроении, транспортном общем машиностроении.
Валы. Сталь для подшипников марка
ШХ15
Характеристика материала.Сталь ШХ15
Марка | Сталь ШХ-15 |
Заменитель | сталь ШХ9,сталь ШХ12,сталь ШХ15СГ |
Классификация | Сталь конструкционная подшипниковая |
Прочие обозначения | |
Иностранные аналоги | |
Применение | шарики диаметром до 150 мм, ролики диаметром до 23 мм, кольца подшипников с толщиной стенки до 14 мм, втулки плунжеров, плунжеры, нагнетательные клапаны, корпуса распылителей, ролики толкателей и другие детали, от которых требуется высокая твердость, износостойкость и контактная прочность. |
Вид поставки | |
Сортовой прокат, в том числе фасонный: | ГОСТ 801-78, ГОСТ 2590-88 ГОСТ 2591-88 |
Калиброванный пруток | ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78 |
Шлифованный пруток и серебрянка | ГОСТ 14955-77 |
Полоса | ГОСТ 103-76 |
Проволока | ГОСТ 4727-83 |
Химическийсостав
Химический элемент | % |
Кремний (Si) | 0.17-0.37 |
Медь (Cu), не более | 0.25 |
Марганец (Mn) | 0.20-0.40 |
Никель (Ni), не более | 0.30 |
Фосфор (P), не более | 0.027 |
Хром (Cr) | 1.30-1.65 |
Сера (S), не более | 0.020 |
Термообработка, состояние поставки | Сечение, мм | σ0,2, МПа | σB, МПа | δ5, % | Ψ, % | KCU, Дж/м2 | HB | HRCэ |
Отжиг 800 °С, печь до 730 °С, затем до 650 °С со скоростью 10-20 град/ч, воздух. | 370-410 | 590-410 | 15-25 | 35-55 | 44 | 179-207 | ||
Закалка 810 °С, вода до 200 °С, затем масло. Отпуск 150 °С, воздух. | 30-60 | 1670 | 1670 | 62-65 |
Механическиесвойствавзависимостиоттемпературыотпуска
t отпуска, °С | σ0,2, МПа | σB, МПа | d5, % | δ4, % | KCU, Дж/м2 | HB | HRCэ |
Закалка 840 °С, масло. | |||||||
200 | 1960-2200 | 2160-2550 | 61-63 | ||||
300 | 1670-1760 | 2300-2450 | 56-58 | ||||
400 | 1270-1370 | 1810-1910 | 50-52 | ||||
450 | 1180-1270 | 1620-1710 | 46-48 | ||||
Закалка 860 °С, масло. | |||||||
400 | 1570 | 15 | 480 | ||||
500 | 1030 | 1270 | 8 | 34 | 20 | 400 | |
550 | 900 | 1080 | 8 | 36 | 24 | 360 | |
600 | 780 | 10 | 40 | 34 | 325 | ||
650 | 690 | 780 | 16 | 48 | 54 | 280 |
Механическиесвойствавзависимостиоттемпературыиспытания
t испытания, °C | s0,2, МПа | sB, МПа | d5, % | y, % | KCU, Дж/м2 |
Нагрев при 1150 °С и охлаждение до температур испытаний | |||||
800 | 130 | 35 | 43 | ||
900 | 88 | 43 | 50 | ||
1000 | 59 | 42 | 50 | ||
1100 | 39 | 40 | 50 | ||
Образец диаметром 6 мм и длиной 30 мм, деформированный и отожженный. Скорость деформирования 16 мм/мин. Скорость деформации 0,009 1/с | |||||
1000 | 32 | 42 | 61 | 100 | |
1050 | 28 | 48 | 62 | 100 | |
1100 | 20 | 29 | 72 | 100 | |
1150 | 17 | 25 | 61 | 100 | |
1200 | 18 | 22 | 76 | 100 | |
Закалка 830 °С, масло. Отпуск 150 °С, 1,5 ч | |||||
25 | 2550 | 88 | |||
-25 | 2650 | 69 | |||
-40 | 2600 | 64 |
Технологическиесвойства
Температура ковки | Начала 1150, конца 800. Сечения до 250 мм охлаждаются на воздухе, 251-350 мм - в яме. |
Свариваемость | |
Обрабатываемость резанием | В горячекатаном состоянии при НВ 202 и sB = 740 МПа K тв.спл. = 0.90, K б.ст. = 0.36. |
Склонность к отпускной способности | склонна |
Флокеночувствительность | чувствительна |
Шлифуемость | хорошая. |
Температуракритическихточек
Критическая точка | Mn | Ar1 | Ar3 | Ac1 | Ac3 |
°С | 210 | 700 | 713 | 724 | 900 |
Пределвыносливости
s-1, МПа | n | s0,2, МПа | Термообработка, состояние стали | |
333 | 1Е+6 | НВ 192. Отжиг. | ||
804 | 1Е+6 | НВ 616. Закалка 830 С. Отпуск 150 С, масло. | ||
652 | 1Е+6 | 2160 | 1670 | НВ 582-67 |
Прокаливаемость
Расстояние от торца, мм / HRC э | |||||||||
1.5 | 3 | 4.5 | 6 | 9 | 12 | 15 | 18 | 24 | 33 |
65,5-68,5 | 63-68 | 58,5-67,5 | 51,5-67 | 40-64 | 38-54 | 38-47 | 33-41,5 |
Кол-во мартенсита, % | Крит.диам. в воде, мм | Крит.диам. в масле, мм | Крит. твердость, HRCэ |
50 | 28-60 | 9-37 | 57 |
90 | 20-54 | 6-30 | 62 |
Физическиесвойства
Температура испытания, °С | 20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
Модуль нормальной упругости, Е, ГПа | 211 | |||||||||
Модуль упругости при сдвиге кручением G, ГПа | 80 | |||||||||
Плотность, pn, кг/см3 | 7812 | 7790 | 7750 | 7720 | 7680 | 7640 | ||||
Коэффициент теплопроводности Вт/(м ·°С) | 40 | 37 | 32 | |||||||
Уд. электросопротивление (p, НОм · м) | 390 | 470 | 520 | |||||||
Температура испытания, °С | 20- 100 | 20- 200 | 20- 300 | 20- 400 | 20- 500 | 20- 600 | 20- 700 | 20- 800 | 20- 900 | 20- 1000 |
Коэффициент линейного расширения (a, 10-6 1/°С) | 11.9 | 15.1 | 15.5 | 15.6 | 15.7 |
Теплостойкость, красностойкость
Теплостойкость
Температура, °С | Время, ч | Твердость, HRCэ |
150-160 | 1 | 63 |
Обозначения:
Механические свойства | |
sв | - Предел кратковременной прочности , [МПа] |
sT | - Предел пропорциональности (предел текучести для остаточной деформации), [МПа] |
d5 | - Относительное удлинение при разрыве , [ % ] |
y | - Относительное сужение , [ % ] |
KCU | - Ударная вязкость , [ кДж / м2] |
HB | - Твердость по Бринеллю , [МПа] |
Физические свойства : | |
T | - Температура, при которой получены данные свойства , [Град] |
E | - Модуль упругости первого рода , [МПа] |
a | - Коэффициент температурного (линейного) расширения (диапазон 20o - T ) , [1/Град] |
l | - Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)] |
r | - Плотность материала , [кг/м3] |
C | - Удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
R | - Удельное электросопротивление, [Ом·м] |
Свариваемость | |
без ограничений | - сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | - сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | - для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг |
s-stal.ru
Шарикоподшипниковые стали
(ШХ6, ШХ9, ШХ15) применяют для изготовления шариков и роликов подшипников. По химическому составу (ГОСТ 801—60) и структуре эти стали относятся к классу инструментальных сталей. Они содержат около 1% Сu 0,6—1,5% Сr Для деталей размером до 10 мм применяют сталь ШХ6 (1,05—1,15% С и 0,4—0,7% Сr), а для деталей размером более 18 мм — сталь ШХ15 (0,95—1,05% С и 1,3—1,65% Сr). Термическая обработка шарикоподшипниковых сталей с небольшим содержанием хрома заключается и закалке и низком отпуске (до 200°С), в результате чего обеспечивается твердость HВ 600—660.
Графитизированную сталь (высокоуглеродистую, содержащую 1,5—2% С и до 2% Сr) используют для изготовления поршневых колец, поршней, коленчатых валов и других фасонных отливок, работающих в условиях трения. Графитизированная сталь содержит в структуре ферритоцементитную смесь и графит. Количество графита может значительно меняться в зависимости от режима термической обработки и содержания углерода. Графитизированная сталь после закалки сочетает свойства закаленной стали и серого чугуна. Графит в такой стали играет роль смазки.
Высокомарганцовистую сталь Г13Л, содержащую 1,2% С и 13% Мn, применяют для изготовления железнодорожных крестовин, звеньев гусениц и т. п. Эта сталь обладает максимальной износостойкостью, когда имеет однофазную структуру аустенита, что обеспечивается закалкой (1000-1100°С) при охлаждении на воздухе. Охлажденная сталь имеет низкую твердость (НВ 200), после закаленного наклепа ее твердость повышается до НВ 600.
Антифрикционные сплавы
Антифрикционные сплавы предназначены для повышения долговечности трущихся поверхностей машин и механизмов. Трение происходит в подшипниках скольжения между валом и вкладышем подшипника. Поэтому для вкладыша подшипника подбирают такой материал, который предохраняет вал от износа, сам минимально изнашивается, создает условия для оптимальной смазки и уменьшает коэффициент трения. Исходя из этих требований, антифрикционный материал представляет собой сочетания достаточно прочной и пластичной основы, в которой имеются опорные (твердые) включения. При трении пластичная основа частично изнашивается, а вал опирается на твердые включения. В этом случае трение происходит не по всей поверхности подшипника, а смазка удерживается в изнашивающихся местах пластичной основы.
Антифрикционными сплавами служат сплавы на основе олова, свинца, меди или алюминия, обладающие специальными антифрикционными свойствами. Антифрикционные свойства сплавов проявляются при трении в подшипниках скольжения. Это, в первую очередь, низкий коэффициент трения, хорошая прирабатываемость к сопрягаемой детали, высокая теплопроводность, способность удерживать смазку и др. Из антифрикционных сплавов наиболее широко применяют баббит, бронзу, алюминиевые сплавы, чугун и металлокерамические материалы.
Антифрикционные сплавы хорошо прирабатываются в парах трения благодаря мягкой основе — олову, свинцу или алюминию. Более твердые металлы (цинк, медь, сурьма), вкрапленные в мягкую основу, способны выдерживать большие нагрузки. После приработки и частичной деформации мягкой основы в ней образуются углубления, способные удерживать смазку, необходимую для нормальной работы пары.
Баббиты — антифрикционные материалы на основе олова или свинца. Их применяют для заливки вкладышей подшипников скольжения, работающих при больших окружных скоростях и при переменных и ударных нагрузках. По химическому составу баббиты классифицируют на три группы: оловянные (Б83, Б88). оловянно-свинцовые (БС6. Б16) и свинцовые (БК2, БКА). Последние не имеют в своем составе олова.
Лучшими антифрикционными свойствами обладают оловянные баббиты. Микроструктура оловянносурьмяномедного баббита Б83 состоит из мягкой основы, представляющей собой твердый раствор на базе олова.
Баббиты на основе свинца имеют несколько худшие антифрикционные свойства, чем оловянные, но они дешевле и менее дефицитны. Свинцовые баббиты применяют в подшипниках, работающих в легких условиях. В марках баббитов цифра показывает содержание олова.
Расшифровка: БС6 содержит по 6% олова и сурьмы, остальное — свинец.
Для оловянных и оловянно-фосфористых бронз характерны высокие антифрикционные свойства: низкий коэффициент трения, небольшой износ, высокая теплопроводность, что позволяет подшипникам, изготовленным из этих материалов, работать при высоких окружных скоростях и нагрузках.
Алюминиевые бронзы, используемые в качестве подшипниковых сплавов, отличаются большой износостойкостью, но могут вызвать повышенный износ вала. Их применяют вместо оловянных и свинцовых баббитов и свинцовых бронз.
Свинцовые бронзы в качестве подшипниковых сплавов могут работать в условиях ударной нагрузки.
Латуни по антифрикционным свойствам уступают бронзам. Их используют для подшипников, работающих при малых скоростях и умеренных нагрузках.
Из-за дефицитности олова и свинца применяют сплавы на менее дефицитной основе. Алюминиевые сплавы обладают хорошими антифрикционными свойствами, высокой теплопроводностью, хорошей коррозионной стойкостью в масляных средах и достаточно хорошими механическими и технологическими свойствами. Их применяют в виде тонкого слоя, нанесенного на стальное основание, т. е. в виде биметаллического материала. В зависимости от химического состава различают две группы сплавов.
Для работы в подшипниковых узлах трения применяют специальные антифрикционные чугуны. Изготовляют три типа антифрикционного чугуна: серый с пластинчатым графитом, высокопрочный с шаровидным графитом и ковкий с хлопьевидным графитом. Антифрционный чугун идет на изготовление червячных зубчатых колес, направляющих для ползунов т. п. деталей машин, работающих в условиях трения.
studfiles.net
Валы
Основными условиями, которым должна отвечать конструкция вала, являются достаточная прочность; жесткость, обеспечивающая нормальную работу зацеплений и подшипников; технологичность конструкции и экономия материала.
В качестве материала для валов используют углеродистые и легированные стали. Основные марки сталей для валов приведены в табл.
Марка стали | Диаметр заготовки, мм | Твердость, HB не менее | σB МПа | σT МПа | ΤT МПа | σ-1 МПа | Τ-1 МПа | Ψσ | ΨΤ | ГОСТ | Качество поверхности в зависимости от назначения | |
Ст. 5 пс3 Ст. 5 сп3 ВСт. 5 пс2 ВСт. 5 сп2 | До 20 > 20 до 40 > 40 до 100 > 100 | — | 500...640 | 290 280 270 260 | 170 170 160 160 | (0,4...0,5) σB | (0,2...0,3) σB | 0000 | 0000 | 380—71 | Три группы качества | |
Сталь 45(45-2)(45—3) | Свыше 5 | 229* | 197 | 610 | 360 | 210 | 270 | 150 | 0,1 | 0,05 | 1050—74 | То же |
40Х 40ХН | Свыше 5 | 217229 | 1000 | 800 | 480 | 450 | 250 | 0,15 | 0,1 | 4543—71 | Две группы качества | |
12ХН3А | Любого диаметра | 217 | 950 | 700 | 420 | 420 | 240 | 0,15 | 0,1 | |||
18ХГТ | То же | 217 | 1000 | 900 | 1300 | 540 | 450 | 250 | 0,15 | |||
30ХГТ | » | 229 | 1500 | 1300 | 780 | 670 | 380 | 0,15 | 0,1 | |||
Примечание. * Без термообработки; ГОСТ 380—71 — сталь углеродистая обыкновенного качества; ГОСТ 1050—74—сталь углеродиста конструкционная; ГОСТ 4543—71 - сталь легированная конструкционная |
Неответственные валы или валы, габариты которых не играют существенной роли, изготовляют из стали Ст. 5. Для более ответственных валов, в том числе и большинства валов редукторов общего назначения, применяют стали 45, 50, 40X подвергнутые термическому улучшению (закалка с высоким отпуском). Для ответственных тяжело нагруженных валов, которые должны иметь небольшие габариты, применяют легированные стали 40ХН, 30ХГС и др. Термообработка — улучшение, закалка ТВЧ. Наконец, для весьма ответственных валов, работающих в подшипниках скольжения, используют также цементируемые стали — 20Х, 20ХН, 12ХН3А, 18ХГТ и т. д.
metiz-bearing.ru