Улучшаемые (среднеуглеродистые) стали. Сталь среднеуглеродистая марки


    2. Легированные низкоуглеродистые и среднеуглеродистые конструкционные стали. Принцип легирования, упрочняющая обработка, марки, применение.

    Углеродистые стали.

     Низкоуглеродистые стали 05 кп, 08, 10, 10 пс обладают малой прочностью высокой пластичностью. Применяются без термической обработки для изготовления малонагруженных деталей – шайб, прокладок и т.п.

    Среднеуглеродистые стали 35, 40, 45 применяются после нормализации, термического улучшения, поверхностной закалки.

    В нормализованном состоянии по сравнению с низкоотпущенным обладают большей прочностью, но меньшей пластичностью. После термического улучшения наблюдается наилучшее сочетание механических свойств. После поверхностной закалки обладают высокой поверхностной твердостью и сопротивлением износу.

    Высокоуглеродистые стали 60, 65, 70,75 используются как рессорно-пружинные после среднего отпуска. В нормализованном состоянии – для прокатных валков, шпинделей станков.

    Достоинства углеродистых качественных сталей – дешевизна и технологичность. Но из-за малой прокаливаемости эти стали не обеспечивают требуемый комплекс механических свойств в деталях сечением более 20 мм.

     Цементуемые легированные стали применяют для более крупных и тяжелонагруженных деталей, в которых необходимо иметь, кроме высокой твердости поверхности, достаточно прочную сердцевину (кулачковые муфты, поршни, пальцы, втулки).

    Хромистые стали 15Х, 20Х используются для изготовления небольших изделий простой формы, цементуемых на глубину h =1…1,5 мм. При закалке с охлаждением в масле, выполняемой после цементации, сердцевина имеет бейнитное строение. Вследствие этого хромистые стали обладают более высокими прочностными свойствами при несколько меньшей пластичности в сердцевине и большей прочностью в цементованном слое.

    Дополнительное легирование хромистых сталей ванадием (сталь 15ХФ), способствует получению более мелкого зерна, что улучшает пластичность и вязкость.

    Никель увеличивает глубину цементованного слоя, препятствует росту зерна и образованию грубой цементитной сетки, оказывает положительное влияние на свойства сердцевины. Хромоникелевые стали 20ХН, 12ХН3А применяют для изготовления деталей средних и больших размеров, работающих на износ при больших нагрузках (зубчатые колеса, шлицевые валы). Одновременное легирование хромом и никелем, который растворяется в феррите, увеличивает прочность, пластичность и вязкость сердцевины и цементованного слоя. Стали мало чувствительны к перегреву. Большая устойчивость переохлажденного аустенита в области перлитного и промежуточного превращений обеспечивает высокую прокаливаемость хромоникелевых сталей и позволяет проводить закалку крупных деталей с охлаждением в масле и на воздухе.

    Стали, дополнительно легированные вольфрамом или молибденом (18Х2Н4ВА, 18Х2Н4МА), применяют для изготовления крупных тяжелонагруженных деталей. Эти стали являются лучшими конструкционными сталями, но дефицитность никеля ограничивает их применение.

    Хромомарганцевые стали применяют вместо дорогих хромоникелевых, однако эти стали менее устойчивы к перегреву и имеют меньшую вязкость. Введение небольшого количества титана (0,06…0,12 %) уменьшает склонность стали к перегреву (стали 18ХГТ, 30ХГТ).

    С целью повышения прочности применяют легирование бором (0,001…0,005 %) 20ХГР, но бор способствует росту зерна при нагреве.

     

     

    Улучшаемые углеродистые стали 35, 40, 45 дешевы, из них изготавливают детали, испытывающие небольшие напряжения (сталь 35), и детали, требующие повышенной прочности (стали 40, 45). Но термическое улучшение этих сталей обеспечивает высокий комплекс механических свойств только в деталях небольшого сечения, так как стали обладают низкой прокаливаемостью. Стали этой группы можно использовать и в нормализованном состоянии.

    Детали, требующие высокой поверхностной твердости при вязкой сердцевине (зубчатые колеса, валы, оси, втулки), подвергаются поверхностной закалке токами высокой частоты. Для снятия напряжений проводят низкий отпуск.

     Улучшаемые легированные стали применяют для более крупных и более нагруженных ответственных деталей. Стали обладают лучшим комплексом механических свойств: выше прочность при сохранении достаточной вязкости и пластичности, ниже порог хладоломкости.

    Хромистые стали 30Х, 40Х, 50Х используются для изготовления небольших средненагруженных деталей. Эти стали склонны к отпускной хрупкости, поэтому после высокого отпуска охлаждение должно быть быстрым.Повышение прокаливаемости достигается микролегированием бором (35ХР). Введение в сталь ванадия значительно увеличивает вязкость (40ХФА).

    Хромокремнистые (33ХС) и хромокремниймарганцевые (хромансил) (25ХГСА) стали обладают высокой прочностью и умеренной вязкостью. Стали хромансилы обладают высокой свариваемостью, из них изготавливают стыковочные сварные узлы, кронштейны, крепежные и другие детали. Широко применяются в автомобилестроении и авиации.

    Хромоникелевые стали 45ХН, 30ХН3А отличаются хорошей прокаливаемостью, прочностью и вязкостью, но чувствительны к обратимой отпускной хрупкости. Для уменьшения чувствительности вводят молибден или вольфрам. Ванадий способствует измельчению зерна.

    Стали 36Х2Н2МФА, 38ХН3ВА др. обладают лучшими свойствами, относятся к мартенситному классу, слабо разупрочняются при нагреве до 300…400 oС. из них изготавливаются валы и роторы турбин, тяжелонагруженные детали редукторов и компрессоров.

    Билет24

    studfiles.net

    Улучшаемые (среднеуглеродистые) стали

    Улучшаемые стали содержат 0,3-0,4% С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3-5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий). Обычная термическая обработка таких сталей закалка, в масле и высокий отпуск (660-650°). Чем больше в стали легирующих элементов, тем больше ее прокаливаемость. Поскольку механические свойства стали разных марок после указанной термической обработки в случае сквозной прокаливаемости близки, то не механические свойства, а прокаливаемость определяет выбор стали для той или иной детали.

    Чем больше сечение детали, тем более легированную сталь следует выбирать. Во избежание развития отпускной хрупкости, что особенно опасно для крупных деталей, которые невозможны быстро охлаждать при отпуске, следует использовать стали, содержащие молибден (0,15-0,30%).

    Сложные по конфигурации детали, особенно если они подвергаются ударным воздействиям, желательно изготавливать из сталей, содержащих никель. Интенсивность падения свойств при увеличении диаметра термически обрабатываемой заготовки тем меньше, чем более легирована сталь.

    Строительная сталь предназначается для изготовления строительных конструкций- мостов, газо- и нефтепроводов, ферм, котлов и т.д.. Все строительные стали как правило, являются сварными, и свариваемость- одно из основных свойств строительной стали. Поэтому строительная сталь-это низкоуглеродистая сталь, с С<0,22-0,25 %. Повышение прочности дос­тигается легированием обычно дешевыми элементами марганцем и кремнием. В этом случае и при низком содержании углерода предел текучести возрастает до 40-45 кгс/ мм2 (предел прочности до 50-60 кгс/ мм2), а при использовании термической обработки и выше. Простые углеродистые строительные стали-Ст1,Ст2 и СтЗ. Сталь 18Г2АФ имеет феррито-перлитную структуру, но с сильно измельченным зерном благодаря присутствию нитридов ванадия. Измельчение зерна обеспечивает повышение предела текучести примерно на 10кгс/ мм2.

    Арматурная сталь Для армирования железобетонных конструкций применяют прутки (гладкие и периодического профиля) и проволоку.

    В предварительно напряженной железобетонной конструкции металл испытывает значительные напряжения, и поэтому в таких конструкциях применяют высокопрочные стальные стержни или высокопрочную проволоку.

    В ненапряженных конструкциях применяют стали обыкновенного качества, так как сталь не испытывает больших напряжений (СтЗ, Ст5),а в предварительно напряженных конструкциях-среднеуглеродистые и высокоуглеродистые стали в горячекатанном состоянии, а также упрочненные термической обработкой. Арматурная сталь делится на классы по прочности. Арматурная сталь классов A-I, А-П и A-III применяют для ненапряженных конструкций, а арматурную сталь -более высоких классов- для предварительно напряженных конструкций. Свойства, соответствующие классу A-IV, могут быть получены в горячекатанном состоянии в легированных сталях марок 20ХГЦ или 80С или в простой углеродистой стали марки Ст5 после упрочняющей термической обработки (закалка в воде, отпуск при 400°С). Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска (300°С), применяемого главным образом для удаления из металла водорода, получает свойства класса A-V. Арматуру. более высоких классов (А-VI- A-VIII) изготавливают только с применением упрочняющей термической обработки.

    Для работы при низких температурах лучше применять стали с более низким содержанием углерода или стали после термической обработки. Пружинная сталь.

    Работа пружин, рессор и тому подобных деталей характеризуется тем, что в них используют только упругие свойства стали. Большая суммарная величина упругой деформации пружины (рессоры и т.д.) определяется ее конструкцией- числом и диаметром витков, длинной пружины. Главное требование состоит в том, чтобы сталь имела высокий предел упругости (текучести). Это достигается закалкой с последующим отпуском при температуре в районе 300-400°С. При такой температуре отпуска предел упругости (текучести) получает наиболее высокое значение, а то, что эта температура лежит в интервале развития отпускной хрупкости I рода, в силу содержания углерода как правило, все же более низким, чем у инструментальных. Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска 300°С( применяемого главным образом для удаления из металла водорода сталей)имеет приблизительно 0,5-07%С, часто с добавками марганца и кремния .Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами.

    Термическая обработка пружин и рессор из легированных сталей заключается в закалке от 800-850° (в зависимости от марки стали) в масле или в воде с последующим отпуском в районе 400-500°С на твердость HRC 35-45. Это соответствует бв=130-160 кгс/мм2.

    Шарикоподшипниковая сталь.

    Шарикоподшипниковая сталь прежде всего должна обладать высокой твердостью, поэтому применяют высокоуглеродистые стали типа инструментальной (иногда низкоуглеродистые в цементованном состоянии). Чтобы шарикоподшипниковая сталь легко принимала закалку (т.е. имела низкую критическую скорость закалки) и в качестве закалочной среды для нее можно было бы применять масло, сталь легируют (обычно хромом). Обозначение марки .например ШХ 15 надо расшифровывать так: шарикоподшипниковая хромистая; цифра показывает примерное содержание хрома в десятых долях процента. Хром, как указывалось, вводят для обеспечения необходимой прокаливаемости. Следовательно, чем меньше размер закаливаемой детали подшипника, тем меньше может быть содержание хрома в стали.

    Рекомендуется шарики и ролики диаметром до 13,5 и 10 мм изготавливать из стали ШХ9, шарики диаметром 13,5 и 22,5 мм и ролики диаметром 10-15 мм- из стали ШХ12 и, наконец, шарики диаметром 22,5 мм и ролики диаметром 15-30 мм- из стали ШХ15. Из этой же стали следует изготавливать кольца всех размеров за исключением очень крупных; ролики диаметром свыше 30 мм и кольца с толщенной стенки свыше 15 мм- из стали марки ШХ15СГ, в которую, кроме хрома, вводят легирующие элементы- кремний и марганец, увеличивающие прокаливаемость.

    Термическая обработка деталей шарикоподшипника (шарики, ролики, кольца) состоит из двух основных операций закалки и отпуска. Закалку проводят в масле, температура нагрева 830-840°С с последующим отпуском при 150-160°С в течении 1-2 ч, что обеспечивает получение твердости не ниже НRС 62. Структура должна представлять собой отпущенный очень мелко игольчатый мартенсит с равномерно распределенными избыточными карбидами.

    Дефекты легированных сталей

    Высокие механические свойства легированных сталей обеспечили им преимущественное применение по сравнению с углеродистыми во многих отраслях специального машиностроения (авиации, автомобилестроении и т.д.). Вместе с тем в легированных сталях чаще появляются различные дефекты, встречающихся, но реже в углеродистых сталях. Часто при самом строгом соблюдении правильно установленных технологических режимов эти дефекты не поддаются полному устранению. Важнейшие из них: отпускная хрупкость, дендритная ликвация и флокены (явление отпускной хрупкости).

    Дендритная ликвация. Появление дендритной ликвации обусловлено неравновесной кристаллизацией сплавов. После прокатки или ковки получаются волокна, вытянутые вдоль направления деформации.

    Для уменьшения дендритной ликвации прибегают к диффузионному отжигу слитков перед прокаткой, который состоит в длительном нагреве стали при весьма высоких температурах (1000-1200°С).

    Флокены. Флокены представляют собой тонкие трещины округлой и овальной формы, возникающие вследствие структурных напряжений в стали, насыщенной водородом (более 2 см3 на 100 г металла). Флокены представляют собой в изломе пятна (хлопья),а в поперечном микрошлифе -трещины. Естественно, что наличие трещин вызывает снижение механических свойств. Трещины - флокены тем более опасны, чем более высокую прочность имеет сталь. Флокены можно устранить последующей ковкой (прокаткой) на меньший размер, так как при этом трещины (флокены) завариваются. Флокены редко обнаруживаются в малых сечениях (диаметром менее 25-30 мм).Наиболее склонны к флокенообразованию легированные конструкционные и инструментальные стали, подшипниковые и реже углеродистые стали.

    studfiles.net

    Улучшаемые (среднеуглеродистые) стали

    Улучшаемые стали содержат 0,3-0,4% С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3-5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий). Обычная термическая обработка таких сталей закалка, в масле и высокий отпуск (660-650°). Чем больше в стали легирующих элементов, тем больше ее прокаливаемость. Поскольку механические свойства стали разных марок после указанной термической обработки в случае сквозной прокаливаемости близки, то не механические свойства, а прокаливаемость определяет выбор стали для той или иной детали.

    Чем больше сечение детали, тем более легированную сталь следует выбирать. Во избежание развития отпускной хрупкости, что особенно опасно для крупных деталей, которые невозможны быстро охлаждать при отпуске, следует использовать стали, содержащие молибден (0,15-0,30%).

    Сложные по конфигурации детали, особенно если они подвергаются ударным воздействиям, желательно изготавливать из сталей, содержащих никель. Интенсивность падения свойств при увеличении диаметра термически обрабатываемой заготовки тем меньше, чем более легирована сталь.

    Строительная сталь предназначается для изготовления строительных конструкций- мостов, газо- и нефтепроводов, ферм, котлов и т.д.. Все строительные стали как правило, являются сварными, и свариваемость- одно из основных свойств строительной стали. Поэтому строительная сталь-это низкоуглеродистая сталь, с С<0,22-0,25 %. Повышение прочности достигается легированием обычно дешевыми элементами марганцем и кремнием. В этом случае и при низком содержании углерода предел текучести возрастает до 40-45 кгс/ мм2 (предел прочности до 50-60 кгс/ мм2), а при использовании термической обработки и выше. Простые углеродистые строительные стали-Ст1,Ст2 и СтЗ. Сталь 18Г2АФ имеет феррито-перлитную структуру, но с сильно измельченным зерном благодаря присутствию нитридов ванадия. Измельчение зерна обеспечивает повышение предела текучести примерно на 10кгс/ мм2.

    Арматурная сталь Для армирования железобетонных конструкций применяют прутки (гладкие и периодического профиля) и проволоку.

    В предварительно напряженной железобетонной конструкции металл испытывает значительные напряжения, и поэтому в таких конструкциях применяют высокопрочные стальные стержни или высокопрочную проволоку.

    В ненапряженных конструкциях применяют стали обыкновенного качества, так как сталь не испытывает больших напряжений (СтЗ, Ст5),а в предварительно напряженных конструкциях-среднеуглеродистые и высокоуглеродистые стали в горячекатанном состоянии, а также упрочненные термической обработкой. Арматурная сталь делится на классы по прочности. Арматурная сталь классов A-I, А-П и A-III применяют для ненапряженных конструкций, а арматурную сталь - более высоких классов- для предварительно напряженных конструкций. Свойства, соответствующие классу A-IV, могут быть получены в горячекатанном состоянии в легированных сталях марок 20ХГЦ или 80С или в простой углеродистой стали марки Ст5 после упрочняющей термической обработки (закалка в воде, отпуск при 400°С). Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска (300°С), применяемого главным образом для удаления из металла водорода, получает свойства класса A-V. Арматуру. более высоких классов (А-VI- A-VIII) изготавливают только с применением упрочняющей термической обработки.

    Для работы при низких температурах лучше применять стали с более низким содержанием углерода или стали после термической обработки. Пружинная сталь.

    Работа пружин, рессор и тому подобных деталей характеризуется тем, что в них используют только упругие свойства стали. Большая суммарная величина упругой деформации пружины (рессоры и т.д.) определяется ее конструкцией- числом и диаметром витков, длинной пружины. Главное требование состоит в том, чтобы сталь имела высокий предел упругости (текучести). Это достигается закалкой с последующим отпуском при температуре в районе 300-400°С. При такой температуре отпуска предел упругости (текучести) получает наиболее высокое значение, а то, что эта температура лежит в интервале развития отпускной хрупкости I рода, в силу содержания углерода как правило, все же более низким, чем у инструментальных. Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска 300°С (применяемого главным образом для удаления из металла водорода сталей)имеет приблизительно 0,5-07%С, часто с добавками марганца и кремния. Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами.

    Термическая обработка пружин и рессор из легированных сталей заключается в закалке от 800-850° (в зависимости от марки стали) в масле или в воде с последующим отпуском в районе 400-500°С на твердость HRC 35-45. Это соответствует бв=130-160 кгс/мм2.

    Шарикоподшипниковая сталь.

    Шарикоподшипниковая сталь прежде всего должна обладать высокой твердостью, поэтому применяют высокоуглеродистые стали типа инструментальной (иногда низкоуглеродистые в цементованном состоянии). Чтобы шарикоподшипниковая сталь легко принимала закалку (т.е. имела низкую критическую скорость закалки) и в качестве закалочной среды для нее можно было бы применять масло, сталь легируют (обычно хромом). Обозначение марки, например, ШХ 15 надо расшифровывать так: шарикоподшипниковая хромистая; цифра показывает примерное содержание хрома в десятых долях процента. Хром, как указывалось, вводят для обеспечения необходимой прокаливаемости. Следовательно, чем меньше размер закаливаемой детали подшипника, тем меньше может быть содержание хрома в стали.

    Рекомендуется шарики и ролики диаметром до 13,5 и 10 мм изготавливать из стали ШХ9, шарики диаметром 13,5 и 22,5 мм и ролики диаметром 10-15 мм - из стали ШХ12 и, наконец, шарики диаметром 22,5 мм и ролики диаметром 15-30 мм - из стали ШХ15. Из этой же стали следует изготавливать кольца всех размеров за исключением очень крупных; ролики диаметром свыше 30 мм и кольца с толщенной стенки свыше 15 мм - из стали марки ШХ15СГ, в которую, кроме хрома, вводят легирующие элементы- кремний и марганец, увеличивающие прокаливаемость.

    Термическая обработка деталей шарикоподшипника (шарики, ролики, кольца) состоит из двух основных операций закалки и отпуска. Закалку проводят в масле, температура нагрева 830-840°С с последующим отпуском при 150-160°С в течении 1-2 ч, что обеспечивает получение твердости не ниже НRС 62. Структура должна представлять собой отпущенный очень мелко игольчатый мартенсит с равномерно распределенными избыточными карбидами.

    Дефекты легированных сталей

    Высокие механические свойства легированных сталей обеспечили им преимущественное применение по сравнению с углеродистыми во многих отраслях специального машиностроения (авиации, автомобилестроении и т.д.). Вместе с тем в легированных сталях чаще появляются различные дефекты, встречающихся, но реже в углеродистых сталях. Часто при самом строгом соблюдении правильно установленных технологических режимов эти дефекты не поддаются полному устранению. Важнейшие из них: отпускная хрупкость, дендритная ликвация и флокены (явление отпускной хрупкости).

    Дендритная ликвация. Появление дендритной ликвации обусловлено неравновесной кристаллизацией сплавов. После прокатки или ковки получаются волокна, вытянутые вдоль направления деформации.

    Для уменьшения дендритной ликвации прибегают к диффузионному отжигу слитков перед прокаткой, который состоит в длительном нагреве стали при весьма высоких температурах (1000-1200°С).

    Флокены. Флокены представляют собой тонкие трещины округлой и овальной формы, возникающие вследствие структурных напряжений в стали, насыщенной водородом (более 2 см3 на 100 г металла). Флокены представляют собой в изломе пятна (хлопья), а в поперечном микрошлифе -трещины. Естественно, что наличие трещин вызывает снижение механических свойств. Трещины - флокены тем более опасны, чем более высокую прочность имеет сталь. Флокены можно устранить последующей ковкой (прокаткой) на меньший размер, так как при этом трещины (флокены) завариваются. Флокены редко обнаруживаются в малых сечениях (диаметром менее 25-30 мм). Наиболее склонны к флокенообразованию легированные конструкционные и инструментальные стали, подшипниковые и реже углеродистые стали.

    studfiles.net

    Качественные углеродистые стали | Учебные материалы

    К этим сталям предъявляются более высокие требования по химическому составу и структуре: ограничены пределы по содержанию углерода, меньше неметаллических включений, серы и фосфора (S ~ 0,04 %; Р ~ 0,035…0,04 %).

    Качественные углеродистые стали маркируют цифрами, показывающими содержание углерода в сотых долях процента. В зависимости от содержания марганца стали делятся на две группы; с нормальным и с повышенным содержания марганца (до 1,2 %, в этом случае к маркировке стали добавляется буква <Г>).

    Стали I группы: 08, 10, 15, 20, 25, 30…85.

    Стали II группы: 15Г, 20Г, 25Г, 30Г, 35Г … 70Г.

    Механические свойства некоторых углеродистых качественных конструкционных сталей приведены в таблице 9.

    Таблица 9 — Механические свойства углеродистых качественных конструкционных сталей

    Марка Временное сопротивление sв, МПа Предел текучести, sт, МПа Относительноеудлинениеd5, % Относительноесужение, y, %
    не менее
    0810203045608530Г60Г 3303404205006106901150550710 2002102503003604101000320420 33312521161262011 605555504035304535

    Низкоуглеродистые стали

    Низкоуглеродистые стали 08 и 10 применяют без термической обработки для малонагруженных деталей, тонколистовую сталь используют для холодной штамповки изделий. Сталь 10 применяется для изготовления элементов сварных конструкций, корпусов и трубных пучков теплообменных аппаратов, трубопроводов, змеевиков и других деталей, работающих от минус 40 до плюс 450 0С, к которым предъявляются требования высокой пластичности.

    Стали 15, 20, 25 чаще применяют без термической обработки или в нормализованном состоянии. Низкоуглеродистые качественные стали используют и для ответственных сварных конструкций, а также для деталей машин упрочняемых цементацией. Сталь 20 применяется для изготовления трубопроводов, змеевиков, труб перегревателей, трубных пучков теплообменных аппаратов, и других деталей, работающих от минус 40 до плюс 475 0С.

    Среднеуглеродистые стали

    Среднеуглеродистые стали 30…55 применяют после нормализации, улучшения и поверхностной закалки для самых разнообразных деталей во всех отраслях машиностроения. Прокаливаемость сталей невелика; критический диаметр после закалки в воде не превышает 10…12 мм. Для повышения прокаливаемости стали добавочно легируют марганцем (40Г, 50Г).

    Высокоуглеродистые стали

    Высокоуглеродистые стали 60…85 обладают повышенной прочностью, твердостью, износостойкостью и упругими свойствами. Их применяют после закалки и отпуска, нормализации для деталей, работающих в условиях трения при наличии высоких статических вибрационных нагрузок. Из этих сталей изготавливают пружины, рессоры, мембраны, шпиндели станков и т.д.

    Для изготовления деталей и частей паровых котлов и сосудов, работающих под давлением не более 60 атм. и температуре не выше 450 0С, промышленность выпускает листовую горячекатаную углеродистую сталь толщиной от 4 до 60 мм. Марки котельных сталей: 12К, 15К, 16К, 18К, 20К, 22К. Числа показывают среднее содержание углерода в сотых долях процента. Буква <К> указывает их основное назначение — котельные стали.

    dprm.ru

    Среднеуглеродистая легированная сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Среднеуглеродистая легированная сталь

    Cтраница 1

    Среднеуглеродистые легированные стали применяют для деталей, подвергаемых улучшению и поверхностной или объемной закалке до средней или высокой твердости. Легирующие элементы в конструкционных легированных сталях, как правило, повышают механические свойства, закаливаемость и прокаливаемость сталей.  [1]

    Среднеуглеродистые легированные стали применяют для деталей, подвергаемых улучшению, поверхностной или объемной закалке до средней или высокой твердости. Легирующие элементы в конструкционных легированных сталях, как правило, повышают механические свойства и прокаливаемость сталей.  [2]

    Среднеуглеродистые легированные стали применяют для деталей, подвергаемых улучшению и поверхностной или объемной закалке до средней или высокой твердости. Легирующие элементы в конструкционных легированных сталях, как правило, повышают механические свойства, закаливаемость и прокаливаемость сталей.  [3]

    Для среднеуглеродистых и легированных сталей применяют сварку с прерывистым оплавлением без последующей термообработки.  [4]

    При сварке среднеуглеродистых и легированных сталей глубина проплавления свариваемых кромок влияет на качество сварных соединений еще и потому, что она сказывается на механических свойствах металла шва. В этих случаях химический состав электродного металла заметно отличается от химического состава свариваемого металла. Поэтому изменение глубины проплавления кромок свариваемого металла влияет на долю основного металла в металле шва, что изменяет его химический состав и тем самым механические свойства.  [5]

    Чаще всего азотируют среднеуглеродистые легированные стали типов 38ХМЮА, 38ХВФЮ ( нитралои), в поверхности которых образуются твердые нитриды хрома, молибдена, алюминия.  [6]

    Болты изготовляют из среднеуглеродистых и легированных сталей, а в отдельных случаях - из проката цветных сплавов.  [8]

    Результаты определения прокаливаемости литой среднеуглеродистой и легированной стали некоторых марок приведены на рис. 31; образцы для торцовой закалки вырезали из пробных брусков толщиной 60 мм. Прокаливаемость литой стали почти не отличается от прокаливаемости деформированной стали такого же химического состава: сталь 35Л прокаливается на 15 - 20 мм, стали ЗОХНВЛ и 35ХМЛ - до 60 мм, а ЗОХНМЛ и ЗОДХСНЛ - до 180 мм.  [10]

    НТМО применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит.  [12]

    НТМО применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит.  [14]

    НТМО применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит. При НТМО деформации подвергается переохлажденный аустенит. Обычно пластическая деформация осуществляется при температурах ниже температуры рекристаллизации, но выше температуры начала мартенситного превращения ( рис. 134 6), поэтому НТМО применима для сталей с широкой зоной устойчивости аустенита в надмартенсит-ной области. После деформации производят закалку и низкотемпературный отпуск при 150 - 200 С. В результате такой обработки получают предел прочности до 280 - 300 кгс / мм2 при 6 - 6 - 8 %, ударная вязкость в 1 5 - 2 раза больше по сравнению с обычной термической обработкой.  [15]

    Страницы:      1    2    3    4

    www.ngpedia.ru