Стали углеродистые обыкновенного качества
Стали углеродистые качественные конструкционные
Стали углеродистые специального назначения
Стали листовые
Цементуемые легированные стали
Улучшаемые легированные стали
Высокопрочные легированные стали
5.7. Порошковые стали специального назначения. Стали углеродистые специального назначения
Углеродистые стали специального назначения
Количество просмотров публикации Углеродистые стали специального назначения - 548
Строительные стали.Строительные стали предназначены для изготовления мостов, ферм, труб газо- и нефтепроводов, и других конструкций. Строительные конструкции, как правило, сварные, в связи с этим необходимым требованием к данным сталям является высокая свариваемость.
Свариваемость стали определяется углеродным эквивалентом, который зависит в основном от содержания углерода. Для обеспечения хорошей свариваемости содержание углерода в строительных сталях не должно превышать 0,18 %. В качестве строительных наиболее часто используются углеродистые стали обыкновенного качества Ст1, Ст2, Ст3, Ст5, по степени раскисления – спокойные, полуспокойные. Для конструкций неответственного назначения используют кипящие стали обыкновенного качества.
Строительные стали не подвергают термической обработке у потребителя, а их конечные свойства обеспечивают на металургическом заводе. Эти стали поставляют в горячекатаном, реже в нормализованном состоянии. Для получения более высоких прочностных характеристик стали должны содержать повышенное количество Mn и Si, до 1 – 1,25 % каждого элемента. Чем выше предел текучести, являющийся расчетной характеристикой конструкций, тем меньше сечение и, соответственно, масса конструкций.
Строительные низкоуглеродистые стали используют там, где требуется высокая жесткость конструкций. Их применяют для армирования железобетонных изделий. К недостаткам этих сталей относят низкую хладностойкость, характеристикой которой служит температура перехода из вязкого состояния в хрупкое. Эксплуатация конструкций в условиях Сибири и районах Крайнего Севера приводит к снижению их механических характеристик, что требует большой массы конструкций.Повышение прочности, хладностойкости и надежности при эксплуатации является проблемой, решаемой с помощью легирования сталей.
Стали для глубокой вытяжки.До 50 процентов массы легковых автомобилей содержат детали, полученные методом глубокой вытяжки или штамповки из тонколистовой стали. Глубокая вытяжка применяется также для изделий легкой пищевой промышленности (консервные банки, крышки, эмалированная посуда и т.д.). Основным требованием, предъявляемым к тонколистовой стали для пищевой и автомобильной промышленности, является способность к глубокой вытяжке, что свойственно сталям с низким содержанием углерода.
Малоуглеродистые стали, согласно ГОСТ 9045 – 80, должны иметь содержание углерода 0,08 – 0,12 %. Превышение этого предела увеличивает прочность, но понижает пластичность, столь необходимую для вытяжки. Содержание углерода ниже 0,06 % нежелательно, в связи с тем, что при этом увеличивается склонность стали к газонасыщению, к росту зерна при нагреве. Сталь должна содержать 0,3 – 0,45 % марганца. Недостаток содержания марганца ухудшает условия горячей прокатки из-за образования трещин на кромках, а повышенное его содержание понижает эффективность очистки сталей от вредных примесей при выплавке.
Для глубокой вытяжки используют малопрочные, высокопластичные стали 05, 08, 10 всех видов раскисления. Их поставляют в виде тонкого холоднокатанного листа в соответствии с ГОСТ 9045-80. Широко применяют кипящие стали 05кп, 08кп, 10кп. Способность этих сталей хорошо штамповаться обусловлена низким содержанием углерода и почти полным отсутствием кремния. Кипящая сталь склонна к деформационному старению (упрочнению) из-за повышенной газонасыщенности. В связи с этим используют сталь, легированную ванадием или алюминием: 08Фкп, 08Юкп. Перед штамповкой листы имеют σВ = 260 – 360 МПа , d = 42 – 50%, HRB<=46 ед. и отношение sт/sв = 0,6. Чем ниже это отношение, тем пластичнее материал, а увеличение значения более 0,75 ухудшает штампуемость
referatwork.ru
Глава IV. Углеродистые и легированные стали
11. Углеродистые конструкционные стали
Углеродистые стали подразделяют на три основные группы: стали углеродистые обыкновенного качества, качественные углеродистые стали и углеродистые стали специального назначения (автоматную, котельную и др.).
Стали углеродистые обыкновенного качества.Эти наиболее широко распространенные стали поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях.
Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6. Цифры—это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.
В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В. Индексы, стоящие справа от номера марки, означают: кп—кипящая, пс— полуспокойная, сп — спокойная сталь. Между индексом и номером марки может стоять буква Г,что означает повышенное содержание марганца. В обозначениях марок слева от букв Ст указаны группы (Б и В) стали.
По требованиям к нормируемым показателям (химического состава и механических свойств) стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой правее индекса степени раскисления, например Ст5ГпсЗ означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспокойная, третьей категории. В случае заказа стали без указания степени раскисления, но определенной категории последняя пишется за номером марки через тире, например Ст4-3. Сталь первой категории пишется без указания номера последней, например Ст4пс.
Химический состав сталей группы Ане регламентируют, а гарантируют их механические свойства .Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).
Cmаль группы Бпоставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют.
Сталь группы Впоставляют по механическим свойствам, соответствующим нормам Для стали группы А, и по химическому составу, соответствующему нормам для стали группы Б. Сталь группы В используют в основном для сварных конструкций.
Стали углеродистые качественные конструкционные.От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и большинстве случаев более высоким содержанием кремния (Si) и марганца (Мn).
Сталь маркируют двузначными числами, которые обозначают содержание углерода в сотых долях процента, и поставляют с гарантированными показателями химического состава и механических свойств.По степени раскисления сталь подразделяют на кипящую (кп), полуспокойную (пс), спокойную (без указания индекса). Буква Г в марках сталей указывает на повышенное содержание марганца (до 1%).
Табл. 3.
Механические свойства качественной конструкционной стали
Марка | Предел прочно сти растяжения σв, | Относи тельное удлинение δв, | Твер дость, НВ | Назначение |
МПа | % | |||
08 10 15 20 | 330 340 380 420 | 33 31 27 25 | 131 143 149 163 | Малонагруженные детали: шестерни, звездочки, ролики, оси, подвергающиеся цементации |
25 30 35 | 460 500 540 | 23 21 20 | 170 179 207 | Средненагруженные детали: шестерни, валы, оси |
40 45 | 580 610 | 19 16 | 217 229 | Средненагруженные детали: шатуны, валы, шестерни, пальцы |
55 | 640 660 | 14 . 13 | 241 255 | Высоконагруженные детали: шестерни, муфты, пружинные кольца, пружины |
60 65 70 75 80 85 60Г 70Г | 690 710 730 1100 1100 1150 710 800 | 12 10 9 7 6 6 11 8 | 255 255 269 285 285 302 269 285 | Пружины, рессоры, эксцентрики и другие детали, работающие в условиях трения |
Сталь углеродистую качественную поставляют катаной, кованой, калиброванной, круглой с особой отделкой поверхности (серебрянка).
Стали углеродистые специального назначения.К этой группе относят стали с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены а основном для изготовления деталей массового производства. При обработке таких сталей на станках-автоматах образуется короткая и мелкая стружка, снижается расход режущего инструмента и уменьшается шероховатость обработанных поверхностей.
Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают также введением в стали технологических добавок селена, свинца, теллура.
Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют следующие марки автоматной стали: А12,А20, АЗО, А40Г. ИзсталиА12 из-ГОТОВ1ЯЮТ неответственные детали, из стали других марок — более ответственные детали, работающие при значительных напряжениях и повышенных давлениях. Сортамент автоматной стали предусматривает изготовление сортового проката в виде прутков круглого, квадратного и шестигранного сечений. Эти стали не применяют для изготовления сварных конструкций.
Стали листовые для котлов и сосудов, работающих под давлением, применяют для изготовления паровых котлов, судовых топок, камер горения газовых турбин и других деталей. Они должны работать при переменных давлениях и температуре до 450"С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродистую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали 12К, 15К, 16К, 18K.20K.22Kc содержанием в них углерода от 0,08 до 0,28%. Эти стали поставляют в виде листов с толщиной до 200 мм и поковок в состоянии после нормализации и отпуска (см. гл. V).
studfiles.net
5.7. Порошковые стали специального назначения.
Использование порошковых материалов для изготовления изделий, эксплуатируемых в экстремальных условиях, обусловило необходимость создания сталей и сплавов, работающих при повышенных нагрузках, в условиях воздействия коррозионных сред, пониженных и повышенных температур. К числу таких порошковых материалов относятся мартенситностареющие, антикоррозионные и другие стали.
Мартенситностареющие порошковые стали. Мартенситностареющие порошковые стали относятся к разряду высокопрочных сталей, которые по своим свойствам не уступают литым и кованым сталям соответствующего состава. Возможность введения в них повышенного содержания титана (до 2-3%) позволяет увеличить их прочность до 2000 МПа при относительном удлинении 2-3% и ударной вязкости ан = 300-400 кДж/м2.
В мартенситностареющих сталях общим является низкое содержание углерода (не более 0,03%), суммарное содержание кремния и марганца не более 0,2% (допустимое содержание каждого из них не более 0,12%), низкое содержание серы и фосфора (не более 0,01% каждого). В табл. 12 приведены составы и свойства некоторых порошковых мартенситностареющих сталей.
Таблица 12.
Состав и свойства мартенситностареющих порошковых сталей, спеченных при 1250 оС в течение 4 ч.
Марка стали | Химический состав, массовая доля % | Свойства после спекания, термической и термохимической обработки | |||||||||||||
Никель | Кобальт | Другие элементы | Старение | Степень холодной деформации % | Старение | σр, МПа | σ0,9, МПа | δ, % | υ, % | К1с, Мпа · мм½ | НРС9 | αН, кДж/м2 | |||
◦С | ч | ◦С | ч | ||||||||||||
СПН14К7М5Т | 13,5-14,5 | 6,7-7,5 | - 480 - | - 3 - | - - 90 | - - 500 | - - 4 | 900 1380 1480 | 360 1380 1480 | 7 5 2,9 | 18 14 10 | 1560 1590 - | - - - | 760 630 - | |
СПН14К7М5Т3 | 13,5-14,5 | 4,8-5,1 | - 180 - | - 3 - | - - 90 | - - 500 | - - 4 | 1150 1860 2400 | 1060 1930 2200 | 4,5 2 1 | 12 6 3 | 1830 1370 - | - - 60 | 550 3000 - | |
СПН14К5М5Т2Т | 13,5-14,5 | 4,8-5,1 | - 150 - | - 3 - | - - 90 | - - 500 | - - 4 | 1180 2300 2600 | 1140 2100 2400 | 12 8 1 | 71 35 4 | - - - | - - 58 | 280 180 - | |
СПН17К5М5Т | 13,5-14,5 | 4,8-5,1 | - 480 - | - 3 - | - - 90 | - - 500 | - - 4 | 1100 2200 2400 | 940 2000 2300 | 14 10 2 | 75 58 7 | - - - | - | 650 650 - | |
СПН17К5М5ТЮД | 16,5-17,5 | 5,8-9,5 | - 480 | - 3 | - - | - - | - - | 1300 2500 | 1250 2400 | 10 8 | 35 25 | - - | - - | - - |
Получают высокопрочные мартенситностареющие стали путем холодного прессования либо смеси чистых порошковых компонентов, либо смеси железного порошка с гидридами, а также из галоидных соединений легирующих элементов, которые, разлагаясь при спекании, обеспечивают получение более однородной структуры. Наибольшая дисперсность структуры и ее высокая однородность при спекании, отсутствие в структуре спеченных сталей ликвации достигаются при использовании распыленных порошковых мартенситностареющих сталей.
Спекание прессовок производят при температуре 1250-1300°С в течение 3-4 ч. Дальнейшее повышение прочностных свойств может быть достигнуто после холодной пластической деформации (степень деформации 30-90%) с последующим старением при 400-500°С, а также сочетанием закалки, пластической деформации и старения.
Среда при спекании, термической обработке (закалке, старении) определяется составом стали. Стали, не содержащие титан, могут обрабатываться в водороде, аргоне, вакууме; содержащие титан — только в остроосушенном и очищенном аргоне и вакууме. Высокие свойства мартенситностареющих сталей по сравнению с обычными инструментальными сталями позволяют рекомендовать их для изготовления инструмента, работающего при значительных статических и динамических нагрузках. Так, вырубные штампы из порошковой мартенситностареющей стали имеют в 10-15 раз более высокую стойкость по сравнению со штампами из кованой стали Х12Ф1.
Антикоррозионные порошковые стали. Технология изготовления порошковых изделий из антикоррозионных порошковых сталей включает все этапы, которые присущи процессу изготовления обычных конструкционных деталей. Спекают изделия из антикоррозионных сталей при 1150-1350°С в течение 3-6 ч. Однако из-за высокого сродства к кислороду хрома, содержащегося в повышенном количестве в антикоррозионных сталях, при спекании применяют либо вакуум, либо остроосушенный водород с точкой росы не менее 55-60 °С. Спекание в водороде и вакууме обеспечивает рафинирование металла от оксидов и других вредных примесей, что повышает механические и химические свойства изделий. В некоторых случаях допускается спекание в остроосушенном диссоциированном аммиаке. В связи с тем, что спекание в диссоциированном аммиаке сопровождается образованием нитридов хрома, которые охрупчивают изделия и понижают их коррозионную стойкость, охлаждение после спекания рекомендуется проводить быстро. При низкой степени осушки водорода и диссоциированного аммиака желательно применять засыпки с веществами, обладающими большим сродством к кислороду (порошки титана, хрома).
Коррозионная стойкость порошковых антикоррозионных сталей зависит от пористости и наличия примесей. Наличие пор свыше 5-10% повышает скорость коррозии в десятки и даже сотни раз. В связи с этим рекомендуется применение беспористых изделий, получаемых путем горячей ковки, штамповки пористых (свыше 20-25 % пор) заготовок. В этом случае по механическим и химическим свойствам порошковые детали не уступают изделиям, изготовленным из литых и кованых сталей соответствующего состава. В целях повышения механических свойств рекомендуется после горячей ковки проводить диффузионный отжиг. Антикоррозионные порошковые стали широко используются взамен кованых при изготовлении большого числа конструкционных изделий, фильтрующих элементов и т. п. Так, мартенситная сталь СП20Х13 может применяться для изготовления средне- и тяжелонагруженных деталей, работающих в условиях повышенной влажности, а также для изготовления износостойких изделий. Ферритная сталь СПХ25, обладая высокой коррозионной стойкостью, применяется для изготовления коррозионно-стойких сильно нагруженных деталей, работающих в экстремальных условиях и агрессивных средах.
studfiles.net
1.8. Стали специального назначения
1.8.2. Атмосферостойкие стали. Стальные строительные конструкции защищают от коррозии лакокрасочными покрытиями, которые приходится периодически во зобновлять. На грунтовку и окраску расходуется значительная доля стоимости и трудозатрат по изготовлению, монтажу и эксплуатации конструкций. С увеличени ем объема капитального строительства эти расходы непрерывно возрастают. По этому важное народнохозяйственное значение имеют материалы, не требующие защитных покрытий, или те из них, на которые срок службы покрытий сущест венно увеличивается. Таким материалом являются атмосферостойкие стали [35]; они не представляют собой нержавеющий материал, такой, например, как высоко легированная хромоникелевая сталь типа Х18Н10. Легирующие добавки в атмо сферостойкой стали недостаточны для полного пассивирования ее поверхности.
Впервый период взаимодействия с атмосферой поведение атмосферостойкой стали с незащищенной поверхностью мало чем отличается от поведения углероди стых строительных сталей. Отличие состоит лишь в том, что после одинакового времени действия коррозии атмосферостойкая сталь, благодаря небольшим добав кам некоторых легирующих элементов, обнаруживает значительно меньшую поте рю массы, причем эта разница с течением времени увеличивается, так как корро зия атмосферостойкой стали практически прекращается.
Влага на поверхности металла является непременным условием протекания коррозии. Контактирующая с металлом влага почти всегда содержит растворенные газы, соли, кислоты, что делает ее электролитом, необходимым для развития элек трохимической коррозии. На скорость этих процессов влияет величина оммического сопротивления пленки влаги. При малом содержании в ней солей или газов (например в сельской атмосфере) оммическое сопротивление велико и скорость коррозии низкая. В загрязненной промышленной атмосфере, а также в морской атмосфере скорость коррозии заметно выше. Еще значительнее она в морской воде из-завысокой концентрации растворенных солей.
Впромышленной атмосфере содержится сернистый газ (S02), который окисля ется кислородом в электролите до серной кислоты и, как полагают, оказывает на атмосферную коррозию сильное ускоряющее (каталитическое) действие.
Образующийся на поверхности стали гидрат закиси железа Fe(OH)2 с течением времени окисляется в гидрат окиси железа FeOOH, являющийся (наряду с маг нитным оксидом железа Fe30 4) основным компонентом ржавчины. Физико механические свойства слоя продуктов коррозии: плотность, твердость, раствори мость, прочность сцепления с металлической поверхностью при прочих равных условиях зависят от ряда факторов: степени и режима влажности, химического состава стали и коррозионной среды (атмосферы), температуры металла, длитель ности коррозии, солнечной радиации и др.
С течением времени толщина слоя ржавчины увеличивается; в нем заполняют ся поры и трещины, что затрудняет транспортирование влаги и кислорода к гра нице раздела с металлом и миграцию от нее образующихся ионов железа. Все это замедляет коррозию, вследствие чего потеря массы стали от продолжительности коррозии выражается плавной затухающей кривой (рис. 1.19). Вместе с тем на по верхности обычной углеродистой стали в условиях достаточной смачиваемости коррозия никогда не прекращается, так как образующийся мягкий пористый слой ржавчины слабо блокирует массоперенос.
При наличии в стали легирующих элементов: меди, никеля, хрома, молибдена, титана, кремния и др. они также участвуют в реакциях электрохимической корро зии, причем образующиеся соединения этих элементов, попадая в слой ржавчины, способны оказывать значительное влияние на его физико-механическиесвойства.
studfiles.net
Маркировка металлов и сплавов
Чугуны
Чугунами называют сплавы железа с углеродом, в которых содержание углерода превышает 2,14%.механические свойства и области применения чугуна определяются его структурой, в которой важнейшую роль играет углеродная составляющая сплава. По виду последней различают белые, серые, высокопрочные и ковкие чугуны. Углерод в составе чугуна может быть в виде карбида Fe3C, графита и их смеси.
В белом чугуне весь углерод находится в связанном состоянии в виде карбида. В других чугунах углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет
прочностные свойства сплава, их подразделяют на:
1) серые - пластинчатая или червеобразная форма графита;
2) высокопрочные - шаровидный графит;
3) ковкие - хлопьевидный графит.
Серый чугун — наиболее широко применяемый вид чугуна (машиностроение, сантехника, строительные конструкции) — имеет включения графита пластинчатой формы. Для деталей из серого чугуна характерны малая чувствительность к влиянию внешних концентраторов напряжений при циклических нагружениях и более высокий коэффициент поглощения колебаний при вибрациях деталей (в 2-4 раза выше, чем у стали). Важная конструкционная особенность серого чугуна — более высокое, чем у стали, отношение предела текучести к пределу прочности на растяжение. Наличие графита улучшает условия смазки при трении, что повышает антифрикционные свойства чугуна. Свойства серого чугуна зависят от структуры металлической основы, формы, величины, количества и характера распределения включений графита. Перлитный серый чугун имеет высокие прочностные свойства и применяется для цилиндров, втулок и др. нагруженных деталей двигателей, станин и т.д. Для менее ответственных деталей используют серый чугун с ферритно-перлитной металлической основой.
Белый чугун представляет собой сплав, в котором избыточный углерод, не находящийся в твёрдом растворе железа, присутствует в связанном состоянии в виде карбидов железа Fe3C (цементит) или т. н. специальных карбидов (в легированном чугуне). Кристаллизация белых чугунов происходит по метастабильной системе с образованием цементита и перлита. Белый чугун вследствие низких механических свойств и хрупкости имеет ограниченное применение для деталей простой конфигурации, работающих в условиях повышенного абразивного износа. Легирование белого чугуна карбидообразующими элементами (Cr, W, Mo и др.) повышает его износостойкость.
Половинчатый чугун содержит часть углерода в свободном состоянии в виде графита, а часть — в связанном в виде карбидовека. Применяется в качестве фрикционного материала, работающего в условиях сухого трения (тормозные колодки), а также для изготовления деталей повышенной износостойкости (прокатные, бумагоделательные, мукомольные валки).
Ковким называется чугун в отливках, изготовленных из белого чугун и подвергнутых последующему графитизирующему отжигу, в результате чего цементит распадается, а образующийся графит приобретает форму хлопьев. Ковкий чугун обладает лучшей демпфирующей способностью, чем сталь, и меньшей чувствительностью к надрезам, удовлетворительно работает при низких температурах. Механические свойства ковкого чугуна определяются структурой металлической основы, количеством и степенью компактности включений графита. Металлическая основа ковкого чугуна в зависимости от типа термообработки может быть ферритной, ферритно-перлитной и перлитной. Наиболее высокими свойствами обладает ковкий чугун, имеющий матрицу со структурой зернистого перлита; им можно заменять литую или кованую сталь. В тех случаях, когда требуется повышенная пластичность, применяют ферритный ковкий чугун. Для интенсификации процесса графитизации при термообработке ковкий чугун модифицируют Te, В, Mg и др. элементами. Ковкий чугун используют в основном в автомобиле-, тракторо- и сельхозмашиностроении.
Высокопрочный чугун, характеризующийся шаровидной или близкой к ней формой включений графита, получают модифицированием жидкого чугуна присадками Mg, Ce, Y, Ca и некоторых др. элементов. Шаровидный графит в наименьшей степени ослабляет металлическую матрицу, что приводит к резкому повышению механических свойств чугуна с чисто перлитной или бейнитной структурой, приближая их свойства к свойствам углеродистых сталей. Такой чугун применяется для замены стальных литых и кованых деталей (коленчатые валы двигателей, компрессоров и т.д.), а также деталей из ковкого или обычного серого чугуна.
Легированные чугуны. Для улучшения прочностных, эксплуатационных характеристик или придания чугуну особых свойств (износостойкости, жаропрочности, жаростойкости, коррозионностойкости, немагнитности и т.д.) в его состав вводят легирующие элементы (Ni, Cr, Cu, Al, Ti, W, V, Mo и др.).
Маркировка чугунов.
Обозначения марок доменных чугунов содержат буквы и цифры. Буквы указывают основное назначение чугуна: П — передельный для кислородно-конверторного и мартеновского производства и Л — литейный для чугунолитейного производства. Литейный коксовый чугун обозначают ЛК, в отличие от чугуна, выплавленного на древесном угле (ЛД). С увеличением числа в обозначении марки уменьшается содержание кремния (например, в чугуне ЛК5 содержится меньше кремния, чем в чугуне ЛК4). Каждая марка чугуна в зависимости от содержания Mn, Р, S подразделяется соответственно на группы, классы и категории. Марки чугуна литейного производства, как правило, обозначаются буквами, показывающими основной характер или назначение чугуна:
СЧ — серый чугун (ферритные -СЧ10,СЧ15, СЧ18; перлитные -СЧ30,СЧ35, СЧ40 ; сталистые- СЧ24,СЧ25 ). Буквы: С-серый ,Ч – чугун .Цифры соответствуют минимальному значению временного сопротивления при растяжении в кг/ мм2.
ВЧ — высокопрочный ( ВЧ35,ВЧ40, ВЧ60, ВЧ100 ). Буквы В-высокопрочный , Ч-чугун. Цифры соответствуют минимальному значению временного сопротивления при растяжении в кг/ мм2.
КЧ — ковкий ( ферритные- КЧ37-12, КЧ35-10; перлитные- КЧ50-4, КЧ56-4,КЧ60-3). Буквы: К-ковкий,Ч-чугун. Первая цифра соответствуют минимальному значению временного сопротивления при растяжении в кг/ мм2, вторые -относительное удлинение в %.
АЧС, АЧВ, АЧК - антифрикционный чугун ( АЧС-1,АЧС-2, АЧВ-2 ). Буква А впереди означает то, что чугун антифрикционный. Цыфра- порядковый номер по ГОСТУ
Легированный чугун – ЧХ28, ЧХ32, ЧС13, ЧН15Д7,ЧН19Х3Ш. Обозначение марок легированных чугунов состоит из букв, указывающих, какие легирующие элементы входят в состав чугуна, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание данного легирующего элемента; при содержании легирующего элемента менее 1,0% цифры за соответствующей буквой не ставятся. Условное обозначение химических элементов такое же, как и при обозначении сталей (Сталь). Пример обозначения легированных чугунов: ЧН19ХЗ — чугун, содержащий ~19% Ni и ~3% Cr. Если в легированном чугуне регламентируется шаровидная форма графита, в конце марки добавляется буква Ш (ЧН19ХЗШ).
Углеродистые конструкционные стали
Стали углеродистые обыкновенного качества
Эти наиболее широко распространенные стали поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях народного хозяйства.
Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6. Цифры — это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.
В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В (табл. 1). Индексы, стоящие справа от номера марки, означают: кп — кипящая, пс — полуспокойная, сп — спокойная сталь. Между индексом и номером марки может стоять буква Г, что означает повышенное содержание марганца. В обозначениях марок слева от букв Ст указаны группы (Б и В) стали.
По требованиям к нормируемым показателям (химического состава и механических свойств) стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой правее индекса степени раскисления, например Ст5ГпсЗ означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспокойная, третьей категории. В случае заказа стали без указания степени раскисления, но определенной категории, последняя пишется за номером марки через тире, например Ст4—3. Сталь первой категории пишется без указания номера последней, например Ст4пс.
Химический состав сталей группы А не регламентируют, а гарантируют их механические свойства .
Углеродистые стали обыкновенного качества
Группы | Гарантируемые свойства в состоянии поставки | Марки (с учетом степени раскисления) | Категории |
А | Механические свойства | Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп | 1,2,3 |
Б | Химический состав | Б Ст0, БСт1кп, БСт1сп, БСт2кп, БСт2пс, БСт3кп, БСт3пс, БСт3сп, БСт3Гпс, БСт4кп, БСт4пс, БСт6пс, Б Ст6сп | 1,2 |
В | Механические свойства и химический состав | ВСт1кп, ВСт1пс, ВСт1сп, ВСт2кп, ВСт2пс, ВСт2сп, ВСт3кп, ВСт3пс, ВСт3сп, ВСт3Гпс, ВСт4кп, ВСт4пс, ВСт4сп, ВСт5пс, ВСт5сп | 1,2,3,4,5,6 |
Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).
Сталь группы Б поставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют.
Механические свойства углеродистой стали обыкновенного качества
Марка | Предел прочности при растяжении, σв МПа | Относительное удлинение, δ % | Назначение |
Ст0 | 310 | 20 | Малонагруженные детали: шайбы, прокладки |
Ст1 Ст2 | 310…400 330…420 | 32 20 | Малонагруженные детали: болты, шпильки, гайки |
Ст3 Ст4 | 370…470 410…520 | 24 22 | Средненагруженные детали: рычаги, оси, кронштейны |
Ст5 Ст6 | 500…640 600 | 17 12 | Средненагруженные детали: оси, валы |
Сталь группы В поставляют по механическим свойствам, соответствующим нормам для стали группы А, и по химическому составу, соответствующему нормам для стали группы Б. Сталь группы В используют в основном для сварных конструкций.
Стали углеродистые качественные конструкционные
От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и в большинстве случаев более высоким содержанием кремния (Si) и марганца (Мn).
Сталь маркируют двузначными числами, которые обозначают содержание углерода в сотых долях процента, и поставляют с гарантированными показателями химического состава и механических свойств (см. табл.). По степени раскисления сталь подразделяют на кипящую (кп), полуспокойную (пс), спокойную (без указания индекса). Буква Г в марках сталей указывает на. повышенное содержание марганца (до 1%).
Механические свойства качественной конструкционной стали
Марка | Предел прочности при растяжении, σв МПа | Относительное удлинение, δ % | Твердость, НВ | Назначение |
08 10 15 20 | 330 340 380 420 | 33 31 27 25 | 131 143 149 163 | Малонагруженные детали: шестерни, звездочки, ролики, оси, подвергающиеся цементации |
25 30 35 | 460 500 540 | 23 21 20 | 170 179 207 | Средненагруженные детали: шестерни, валы, оси |
40 45 | 580 610 | 19 16 | 217 229 | Средненагруженные детали: шатуны, валы, шестерни, пальцы |
50 55 | 640 660 | 14 13 | 241 255 | Высоконагруженные детали: шестерни, муфты, пружинные кольца, пружины |
60 65 70 75 80 85 60Г 70Г | 690 710 730 1100 1100 1150 710 800 | 12 10 9 7 6 6 11 8 | 255 255 269 285 285 302 269 285 | Пружины, рессоры, эксцентрики и другие детали, работающие в условиях трения |
Сталь углеродистую качественную поставляют катаной, кованой, калиброванной, круглой с особой отделкой поверхности (серебрянка)
Стали углеродистые специального назначения.
К этой группе относят стали (ГОСТ 1414—75) с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены в основном для изготовления деталей массового производства. При обработке таких сталей на станках-автоматах образуется короткая и мелкая стружка, снижается расход режущего инструмента и уменьшается шероховатость обработанных поверхностей.
Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают также введением в стали технологических добавок селена, свинца, теллура.
Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют следующие марки автоматной стали: А12, А20, А30, А40Г. Из стали А12 изготовляют неответственные детали, из сталей других марок — более ответственные детали, работающие при значительных напряжениях и повышенных давлениях. Сортамент автоматной стали предусматривает изготовление сортового проката в виде прутков круглого, квадратного и шестигранного сечений. Эти стали не применяют для изготовления сварных конструкций.
Стали листовые ( котельные)
Применяют для котлов и сосудов, работающих под давлением, для изготовления паровых котлов, судовых топок, камер горения газовых турбин и других деталей. Они должны работать при переменных давлениях и температуре до 450° С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродистую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали 12К, 15К, 16К, 18К, 20К, 22К с содержанием в них углерода от 0,08 до 0,28%. Эти стали поставляют в виде листов с толщиной до 200 мм и поковок в состоянии после нормализации и отпуска.
Легированные конструкционные стали
Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.
Влияние легирующих элементов. Легирующие элементы вводят в сталь для повышения ее конструкционной прочности. Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие элементы упрочняют его. Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель — элементы с решеткой, отличающейся от решетки α-Fе. Молибден, вольфрам и хром влияют слабее.
Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают его ударную вязкость (за исключением никеля). При содержании до 1% марганец и хром повышают ударную вязкость. Свыше этого содержания ударная вязкость снижается; достигая уровня нелегированного феррита при 3% Cr и 1,5% Мn.
Увеличение содержания углерода в стали усиливает влияние карбидной фазы, дисперсность которой зависит от термической обработки и состава сплава. В значительной степени повышению конструктивной прочности при легировании стали способствует увеличение прокаливаемости. Наилучший результат по улучшению прокаливаемости стали достигают при ее легировании несколькими элементами, например Сr + Мо, Сr + Ni, Сr + Ni + Мо и другими сочетаниями различных элементов.
Высокая конструктивная прочность стали обеспечивается рациональным содержанием в ней легирующих элементов. Избыточное легирование (за исключением никеля) после достижения необходимой прокаливаемости приводит к снижению вязкости и облегчает хрупкое разрушение стали.
Хром — оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.
Никель — наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.
Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Никель заметно повышает предел текучести стали, но делает сталь чувствительной к перегреву. В связи с этим для измельчения зерна одновременно с никелем в сталь вводят карбидообразующие элементы.
Кремний является некарбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.
Молибден и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2—0,4% и вольфрам в количестве 0,8—1,2% в комплекснолегированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.
Ванадий и титан — сильные карбидообразущие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, титана, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных труднорастворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.
Бор вводят для увеличения прокаливаемость в очень небольших количествах (0,002— 0,005%).
Маркировка легированных сталей. Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения : хром (X), никель (Н), марганец (Г), кремний (С), молибден (М), вольфрам (В), титан (Т), алюминий (Ю), ванадий (Ф), медь (Д), бор (Р), кобальт (К), ниобий (Б), цирконий (Ц). Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится до 1,5%. В конструкционных качественных легированных сталях две первые цифры марки показывают содержание углерода в сотых долях процента. Кроме того, высококачественные легированные стали имеют в конце марки букву А, а особо высококачественные — Ш. Например, сталь марки 30ХГСН2А: высококачественная легированная сталь содержит 0,30% углерода, до 1% хрома, марганца, кремния и до 2% никеля; сталь марки 95Х18Ш: особо высококачественная, выплавленная методом электрошлакового переплава с вакуумированием, содержит 0,9—1,0% углерода; 17 — 19% хрома, 0,030% фосфора и 0,015% серы.
Легированные конструкционные стали делят на цементуемые, улучшаемые и высокопрочные
Цементуемые легированные стали
Цементуемые стали — это низкоуглеродистые (до 0,25% С), низколегированные (до 2,5%) и среднелегированные (2,5—10% суммарное содержание легирующих элементов) стали. Эти стали (см. табл.) предназначены для деталей машин и приборов, работающих в условиях трения и испытывающих ударные и переменные нагрузки. Работоспособность таких деталей зависит от свойств сердцевины и поверхностного слоя металла. Цементуемые стали насыщают с поверхности углеродом (цементуют) и подвергают термической обработке (закалке и отпуску). Такая обработка обеспечивает высокую поверхностную твердость (HRC 58—63) и сохраняет требуемую вязкость и заданную прочность сердцевины металла.
Цементуемые легированные стали
Марка
| Предел прочности при растяжении, σв МПа, | Относительное удлинение, δ %, | Ударная вязкость, КС, |
Назначение |
| не менее | не менее | МДж/м2 |
|
15ХА | 700 | 12 | 0,7 | Небольшие детали, работающие в условиях трения при средних давлениях и скоростях |
18ХГ
25ХГМ | 900
1200 | 10
10 | —
0,8 | Ответственные детали, работающие при больших скоростях, высоких давлениях и ударных нагрузках |
20ХН 20Х2Н4А | 800 | 14 | 0,8 | Крупные ответственные тяжелонагруженные детали |
18Х2Н4МА | 1150 | 12 | 1,0 | Крупные особо ответственные тяжелонагруженные детали, работащие при больших скоростях с наличием вибрационных и динамических нагрузок |
Улучшаемые легированные стали
Это среднеуглеродистые (0,25—0,6% С) и низколегированные стали. Для обеспечения необходимых свойств (прочности, пластичности, вязкости) эти стали термически улучшают, подвергая закалке и высокому отпуску (500—600°С).
Улучшаемые легированные стали
Марка | Предел прочности при растяжении, σв МПа, | Относительное удлинение, δ %, | Ударная вязкость, КС, |
Назначение |
| не менее | не менее | МДж/м2 |
|
40ХС 40ХФА | 1250 900 | 12 10 | 0,35 0,9 | Небольшие детали, работающие в условиях повышенных напряжений и знакопеременных нагрузок |
30ХГСА | 1100 | 10 | 0,5 | Детали, работающие в ус-ловиях старения, и ответственные сварные конструкции, работающие при знакопеременных нагрузках и температуре до 200° С |
40ХН2МА | 1100 | 12 | 0,8 | Крупные особо ответственные тяжелонагруженные детали сложной формы |
Высокопрочные легированные стали.
Улучшаемые и цементуемые стали после термической обработки дают прочность до σв = 1300 МПа и вязкость до КС = 0,8 — 1,0 МДж/м2. Для создания новых современных машин такой прочности недостаточно. Необходимы стали с пределами прочности σв = 1500 — 2000 МПа. Для этих целей применяют комплексно-легированные и мартенситостареющие стали.
studfiles.net