Влияние легирующих элементов на свойства стали. Виды, марки и назначение сталей. Влияние легирующих элементов на свойства сталей


    Влияние легирующих элементов на свойства стали. Виды, марки и назначение сталей

    Сталь – один из самых востребованных материалов в мире сегодня. Без нее сложно представить любую существующую строительную площадку, машиностроительные предприятия, да и много других мест и вещей, которые нас окружают в повседневной жизни. Вместе с тем, этот сплав железа с углеродом бывает достаточно различным, потому в данной статье будет рассмотрено влияние легирующих элементов на свойства стали, а также ее виды, марки и предназначение.влияние легирующих элементов на свойства стали

    Общая информация

    Сегодня многие марки стали широко применяются практически в любой сфере жизнедеятельности человека. Это во многом объясняется тем, что в этом сплаве оптимально сочетается целый комплекс механических, физико-химических и технологических свойств, которые не имеют какие-либо другие материалы. Процесс выплавки стали непрерывно совершенствуется и потому ее свойства и качество позволяют получить требуемые показатели работы получаемых в итоге механизмов, деталей и машин.

    Классификация по назначению

    Каждая сталь в зависимости от того, для чего она создана, в обязательном порядке может быть причислена в одну из следующих категорий:

    • Конструкционная.
    • Инструментальная.
    • Специального назначения с особыми свойствами.легированные инструментальные стали

    Самый многочисленный класс – это конструкционные стали, разработанные для создания разнообразных строительных конструкций, приборов, машин. Конструкционные марки разделяются на улучшаемые, цементуемые, пружинно-рессорные, высокопрочные.

    Инструментальные стали дифференцируют в зависимости от того, для какого инструмента они производятся: режущего, измерительного и т. д. Само собой, что влияние легирующих элементов на свойства стали этой группы также велико.

    Специальные стали имеют свое разделение, которое предусматривает следующие группы:

    • Нержавеющие (они же коррозионностойкие).
    • Жаропрочные.
    • Жаростойкие.
    • Электротехнические.

    Группы сталей по химическому составу

    Классификацией озвучиваются стали в зависимости от образующих их химических элементов:

    • Углеродистые марки стали.
    • Легированные.

    При этом обе эти группы дополнительно разделяются еще и по количеству содержащегося в них углерода на:

    • Низкоуглеродистые (карбона менее 0,3%).
    • Среднеуглеродистые (концентрация карбона равно 0,3 – 0,7 %).
    • Высокоуглеродистые (карбона более 0,7%).легированная сталь марки

    Что такое легированная сталь?

    Под этим определением следует понимать стали, в которых содержатся, параллельно с постоянными примесями, еще и добавки, внедряемые в структуру сплава, с целью увеличения механических свойств полученного в конечном счете материла.

    Несколько слов о качестве стали

    Этот параметр данного сплава подразумевает под собой совокупность свойств, которые, в свою очередь, обуславливаются непосредственно процессом его производства. К подобным характеристикам, которым подчиняются и легированные инструментальные стали, относятся:

    • Химический состав.
    • Однородность структуры.
    • Технологичность.
    • Механические свойства.

    Качество любой стали напрямую зависит от того, сколько содержится в ней кислорода, водорода, азота, серы и фосфора. Также не последнюю роль играет и метод получения стали. Самым точным с точки зрения попадния в требуемый диапазон примесей является сопособ выплавки стали в электропечах.хром ванадий

    Легированная сталь и изменение ее свойств

    Легированная сталь, марки которой содержат в своей маркировке буквенные обозначения вводимых принудительно элементов, меняет свои свойства не только от этих сторонних веществ, но и также от их взаимного действия между собой.

    Если рассматривать конкретно углерод, то по взаимодействию с ним легирующие элементы можно условно разделить на две большие группы:

    • Элементы, которые формируют с углеродом химическое соединение (карбид) – молибден, хром, ванадий, вольфрам, марганец.
    • Элементы, не создающие карбидов – кремний, алюминий, никель.

    Стоит заметить, что стали, которые легируются карбидобразующими веществами, имеют очень высокую твёрдость и повышенное сопротивление износу.

    Низколегированная сталь (марки: 20ХГС2, 09Г2, 12Г2СМФ, 12ХГН2МФБАЮ и другие). Особое место занимает сплав 13Х, который достаточно тверд для изготовления из него хирургического, гравировального, ювелирного оборудования, бритв.

    Расшифровка

    Содержание легирующих элементов в стали можно определить по ее маркировке. Каждая из таких вводимых в сплав составляющих имеет своё буквенное обозначение. Например:

    • Хром – Cr.
    • Ванадий –V.
    • Марганец –Mn.
    • Ниобий – Nb.
    • Вольфрам –W.
    • Титан – Ti.

    Иногда в начале индекса марки стали стоят буквы. Каждая из них несет особый смысл. В частности, буква "Р" означает, что сталь является быстрорежущей, "Ш" сигнализирует, что сталь шарикоподшипниковая, "А" – автоматная, "Э" – электротехническая и т. д. Высококачественные стали имеют в своем цифро-буквенном обозначении в конце литеру "А", а особо качественные содержат в самом конце маркировки букву "Ш".низколегированная сталь марки

    Воздействие легирующих элементов

    В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.

    Содержание хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.

    Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.

    Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.

    Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.

    Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.углеродистые марки стали

    Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.

    Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.

    Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.

    Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.

    Рассматривая влияние легирующих элементов на свойства стали, нельзя обойти вниманием и никель. Данный металл позволяет стали получить превосходную прокаливаемость и прочность, повысить пластичность и ударопрочность и понизить предел хладноломкости.

    Очень широко используется в качестве легирующей добавки и ниобий. Его концентрация, в 6-10 раз превышающая количество обязательно присутсвтующего углерода в сплаве, позволяет устранить межкристаллитную коррозию нержавеющей марки стали и предохраняет сварные швы от крайне нежелательного разрушения.

    Титан позволяет получить самые оптимальные показатели прочности и пластичности, а также улучшить коррозионную стойкость. Те стали, которые содержит эту добавку, очень хорошо подвергаются обработке различным инструментом специального назначения на современных металлорежущих станках.

    Введение в стальной сплав циркония дает возможность получить требуемую зернистость и при необходимости оказывать влияние именно на рост зерна.

    содержание хрома в стали

    Случайные примеси

    Крайне нежелательными элементами, которые очень негативно сказываются на качестве стали, являются мышьяк, олово, сурьма. Их появление в сплаве всегда приводит к тому, сталь становится очень хрупкой по границам своих зерен, что особенно заметно при смотке стальных лент и в процессе отжига низкоуглеродистых марок сталей.

    Заключение

    В наше время влияние легирующих элементов на свойства стали довольно хорошо изучено. Специалисты тщательно провели анализ воздействия каждой добавки в сплаве. Полученные теоретические знания позволяют металлургам уже на этапе оформления заказа сформировать принципиальную схему выплавки стали, определиться с технологией и количеством требуемых расходных материалов (руды, концентрата, окатышей, присадок и прочего). Наиболее часто сталеплавильщики использую хром, ванадий, кобальт и другие легирующие элементы, которые являются достаточно дорогостоящими.

    fb.ru

    5.1.Влияние легирующих элементов на структуру, механические свойства сталей и превращения при термообработке

    мартенситного превращения в область отрицательных температур, поэтому такая сталь, охлажденная на воздухе при комнатной температуре, сохранит аустенитное состояние.

    Взависимости от вводимых элементов (по химическому составу) ста-

    ли разделяются на: хромистые, марганцовистые, хромоникелевые, хромоникельмолибденовыеи т. п.

    Кроме того, стали подразделяются по общему количеству легирующих элементов в них нанизколегированные (до 2,5 % легирующих эле-

    ментов), легированные (от 2,5 до 10 %) ивысоколегированные (более 10 %).

    Разновидностью классификации по химическому составу является классификация по качеству. Качество стали – это комплекс, обеспечиваемых металлургическим процессом свойств, таких, как однородность химического состава, строения и свойств стали, ее технологичность. Эти свойства зависят от содержания газов (кислород, азот, водород) и вредных примесей (серы и фосфора).

    По качеству легированные стали подразделяются накачественные

    (до 0,04 % S и до 0,035 %P),высококачественные (до 0,025 %S и до

    0,025 % Р) иособовысококачественные (до 0,015 %S и до 0,025 %Р).

    Взависимости от назначения стали можно объединить в следующие группы:

    ·конструкционные, применяемые для изготовления различных деталей машин, механизмов и конструкций в машиностроении и строительстве

    иобладающие определенными механическими, физическими и химическими свойствами;

    ·инструментальные, применяемые для обработки материалов резанием или давлением и обладающие высокой твердостью, прочностью, износостойкостью и рядом других свойств.

    Конструкционные стали подразделяются на:

    ·строительные;

    ·машиностроительные;

    ·стали с особыми свойствами – теплоустойчивые, жаропрочные, жаростойкие, коррозионностойкие.

    Маркировка легированных сталей состоит из сочетания букв и цифр, обозначающих ее химический состав.

    Каждый легирующий элемент обозначается буквой: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, К – кобальт, Н – никель, М – молибден, П – фосфор, Р – бор, С – кремний, Т – титан, Ф – ванадий, Х – хром, Ц – цирконий, Ю – алюминий.

    Первые цифры в обозначении конструкционных сталей показывают среднее содержание углерода в сотых долях процента. Цифры, идущие

    studfiles.net

    Влияние примесей и лигирующих элементов на свойства сталей и сплавов

    Справочная информация

    В компании ГП Стальмаш Вы можете купить круг, шестигранник, лист из наличия на складе (отгрузка от 1-3 рабочих дней в зависимости от вида металлопродукции и необходимости подготовки металла)

    Сталь конструкционная, легированная, инструментальная, пружинная, подшипниковая, автоматная, нержавеющая, жаропрочная – более 260 марок стали в наличии | Круг. Лист. Полоса. Проволока. Шестигранник.

    Оперативная и полная информация о наличии, ценах, условиях и сроках отгрузки по телефонам ГП Стальмаш:+7 (343) 268-7815, +7 (950) 208-1282, +7 (902) 255-6262

    ЧАСЫ РАБОТЫ: Пн - Пт: с 06:30 до 16:00, время Московское, во внерабочее время отправляйте запрос на E-mail: [email protected] или через форму "Обратная связь"

    Влияние примесей на стали и ее свойства

    Углерод (( C ) - У) находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% увеличивается твердость, прочность и упругость стали, понижается пластичность и сопротивление удару, ухудшается обрабатываемость и свариваемость.

    Кремний (( Si ) - C), если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает. При повышении содержания кремния значительно улучшаются упругие свойства, магнитопроницаемость, сопротивление коррозии и стойкость против окисления при высоких температурах.

    Марганец (( Mn ) - Г), как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. Однако марганец образует с железом твердый раствор и несколько повышает твердость и прочность стали, незначительно уменьшая ее пластичность. Марганец связывает серу в соединение MnS, препятствуя образованию вредного соединения FeS. Кроме того, марганец раскисляет сталь. При высоком содержании марганца сталь приобретает исключительно большую твердость и сопротивление износу.

    Сера ((S)) является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение придает стали хрупкость при высоких температурах, например при ковке, - свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость.В углеродистой стали допускается серы не более 0,06-0,07%.Увеличение хрупкости стали при повышенном содержании серы используется иногда для улучшения обрабатываемости на станках, благодаря чему повышается производительность при обработке.

    Фосфор (( P ) - П) также является вредной примесью. Он образует с железом соединение Fe3P, которое растворяется в железе. Кристаллы этого химического соединения очень хрупки. Обычно они располагаются по границам зерен стали, резко ослабляя связь между ними, вследствие чего сталь приобретает очень высокую хрупкость в холодном состоянии (хладноломкость). Особенно сказывается отрицательное влияние фосфора при высоком содержании углерода. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

    Легирующие элементы и их влияние на свойства стали

    Хром (( Cr ) - Х) – наиболее дешевый и распространенный элемент. Хром повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

    Никель (( Ni ) - Н) придает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения.

    Вольфрам (( W ) - В) образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске.

    Ванадий (( V ) - Ф) повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем.

    Кремний (( Si ) - C) в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

    Марганец (( Mn ) - Г) при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

    Кобальт (( Co ) - К) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

    Молибден (( Mo ) - М) увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

    Титан (( Ti ) - Т) повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

    Ниобий (( Nb) - Б) улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

    Алюминий (( Аl ) - Ю) повышает жаростойкость и окалиностойкость.

    Медь (( Cu ) - Д) увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

    Цирконий (( Zr ) - Ц) оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

    Легирование - добавление в состав материалов примесей для изменения (улучшения) физических и химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур.В разных отраслях применяются разные технологии легирования.В металлургии легирование производится введением в расплав или шихту дополнительных элементов (например, в сталь — хрома, никеля, молибдена, вольфрама, ванадия, ниобия, титана), улучшающих механические, физические и химические свойства сплава. Легирование проводится на различных этапах получения металлического материала с целями повышения качества металлургической продукции.

    Металлопрокат от ГП Стальмаш | Открыть для просмотра | [email protected]

    yaruse.ru

    Элементы легирующие. Влияние легирующих элементов на свойства стали и сплавов

    В строительстве, промышленности и некоторых направлениях сельского хозяйства можно наблюдать активное применение металлических изделий. Причем один и тот же металл в зависимости от сферы использования раскрывает разные технико-эксплуатационные свойства. Объяснить это можно процессами легирования. Технологической процедуры, в рамках которой базовая заготовка обретает новые качества или улучшается по имеющимся характеристикам. Этому способствуют активные элементы, легирующие свойства которых вызывают химические и физические процессы изменения металлической структуры.

    элементы легирующие

    Основные легирующие элементы

    Большое, но неоднозначное значение в процессах легирования имеет углерод. С одной стороны, его концентрация в структуре металла порядка 1,2% способствует повышению прочности, твердости и уровня хладноломкости, а с другой – он же снижает теплопроводность и плотность материала. Но даже не это главное. Как и все элементы легирующие, его добавляют при выполнении технологической переработки под сильным температурным воздействием. Однако, далеко не все примеси и активные компоненты сохраняются в структуре после завершения операции. Как раз углерод может оставаться в металле и в зависимости от требуемых характеристик конечного изделия технологи принимают решение о доработке металла или сохранении его текущих качеств. То есть они варьируют уровень содержания углерода посредством специальной операции легирования.

    Также в перечень основных элементов легирования можно внести кремний и марганец. Первый вносится в целевую структуру в минимальном проценте (не более 0,4%) и особого влияния на изменение качеств заготовки не оказывает. Тем не менее этот компонент, как и марганец имеет существенное значение как раскисляющее и связующее вещество. Эти свойства легирующих элементов обуславливают базовую целостность структуры, которая еще в процессе легирования делает возможным органичное восприятие других, уже активных элементов и примесей.

    влияние легирующих элементов

    Вспомогательные легирующие элементы

    В данную группу элементов обычно включают титан, молибден, бор, ванадий и т.д. Наиболее заметным представителем этого звена является молибден, который чаще используют в хромистых сталях. В частности, с его помощью повышается прокаливаемость металла, а также снижается порог хладоломкости. Полезно для строительных марок сталей и применение молибденовых компонентов. Это эффективные легированные элементы в стали, которые обеспечивают динамическую и статическую прочность металлов, устраняя при этом риски внутреннего окисления. Что касается титана, то его применяют нечасто и только для одной задачи – измельчения структурных зерен в хромомарганцевых сплавах. Целенаправленными можно назвать также добавки кальция и свинца. Их используют для металлических заготовок, которые в дальнейшем подвергаются операциям резки.

    Классификации элементов легирования

    свойства легирующих элементов

    Помимо весьма условного разделения легирующих элементов на основные и вспомогательные, также применяются и другие, более точные признаки различия. Например, по механике воздействия на характеристики сплавов и сталей элементы делятся на три категории:

    • Оказывающие влияние с образованием карбидов.
    • С полиморфными превращениями.
    • С формированием интерметаллических соединений.

    Важно учитывать, что в каждом из трех случаев влияние легирующих элементов на свойства интерметаллидов также зависит от сторонних примесей. Например, значение может иметь концентрация того же углерода или железа. Также существует классификация уже элементов полиморфного превращения по характеру воздействия. В частности, выделяются элементы, которые допускают наличие в сплаве легированного феррита, а также их аналоги, способствующие стабилизации оптимального содержания аустенита независимо от температуры.

    Влияние легирования на сплавы и стали

    легированные элементы в стали

    Можно выделить несколько направлений, по которым могут быть улучшены качественные характеристики стали. В первую очередь это физические качества, определяющие технический ресурс материала. Легирование в этой части позволяет увеличить прочность, пластичность, прокаливаемость и твердость. Другим направление положительного влияния от легирующих элементов является улучшение защитных свойств. В этом плане стоит выделить сопротивляемость ударам, красностойкость, жаропрочность и высокий порог коррозийного поражения. Для некоторых сфер применения металлы готовят и с учетом электрохимических качеств. В данном случае элементы легирующие могут использоваться для повышения электро- и теплопроводности, сопротивления окислению, магнитопроницаемости и т. д.

    Особенности влияния вредных примесей

    влияние легирующих элементов на свойства

    Типичными представителями вредных примесей являются фосфор и сера. Что касается фосфора, то он при условии соединения с железом способен формировать хрупкие зерна, которые сохраняются после легирования. В итоге полученный сплав утрачивает высокую степень плотности, а также наделяется хрупкостью. Впрочем, соединение с углеродом дает и положительную характеристику, улучшая процесс отделения стружки. Это качество облегчает процессы механической обработки. Сера, в свою очередь, является еще более опасным веществом. Если влияние легирующих элементов на сталь в целом призвано улучшать сопротивляемость материала внешним воздействиям, то данная примесь нивелирует эту группу качеств. Например, ее высокая концентрация в структуре приводит к увеличению истираемости, снижению сопротивления усталости металла и минимизации коррозионной стойкости.

    Технология выполнения легирования

    Обычно легирование выполняется в рамках металлургического производства и представляет собой внесение в шихту или массу расплава дополнительных элементов, которые рассматривались выше. В результате термической обработки в структуре происходят химические и физические процессы соединения отдельных веществ, а также деформации. Таким образом, элементы легирующие позволяют улучшать качества металлургических изделий.

    влияние легирующих элементов на сталь

    Заключение

    Легирование является сложным технологическим процессом изменения характеристик металла. Сложность его главным образом заключается в первичном подборе оптимальных рецептов для достижения желаемого набора свойств заготовки. Как уже говорилось, влияние легирующих элементов разнопланово и неоднозначно. Один и тот же компонент активной добавки может, например, одновременно улучшать прочность металла и ухудшать его теплопроводность. Задача технологов заключается в разработке выигрышных комбинаций элементов, которые позволят сделать металлическую деталь или конструкцию наиболее приемлемой по своим качествам с точки зрения использования в конкретных целях.

    fb.ru

    Влияние легирующих элементов на свойства стали. Основные легирующие элементы :: SYL.ru

    Влияние легирующих элементов на свойства стали очень велико. Грамотно используя разнообразные добавки, можно получить самый разный материал, с самыми различными свойствами. Однако чтобы успешно использовать легирующие элементы, необходимо знать, что это такое, как они работают и как называются.

    Общее описание веществ

    Итак, как уже было сказано, влияние легирующих элементов на свойства стали велико. Что же это за элементы такие? Это вещества, которые вводятся в структуру стали и влияют на ее физические и химические характеристики. Материал, который получен в результате такого вмешательства, называется легированным. Сам же процесс – это технологическая процедура, основная задача которой - это улучшение или изменение изначальных характеристик сырья. Именно благодаря этой процедуре удается изменять любые свойства стали, делая ее пригодной для использования практически в любой сфере деятельности.

    Легирующие элементы первого порядка

    Естественно, что имеется несколько групп веществ, которые могут оказывать какое-либо действие на материал. В зависимости от степени использования и важности есть основные и вспомогательные реактивы. Влияние легирующих элементов на свойства стали из основной группы очень большое.

    Наиболее распространенным считается углерод. Несмотря на то что он используется практически в любой процедуре, его влияние не совсем однозначное. С одной стороны содержание этого вещества в структуре около 1,2% улучшает такие качества, как прочность, твердость и хладноломкость. Однако с ростом этих свойств ухудшаются другие, к примеру, теплопроводность и плотность сырья. Кроме того, даже эти показатели не считаются главными. Как и введение любого другого вещества, добавление углерода в состав стали сопровождается определенной операцией. И вот здесь возникает важная разница. В результате этой процедуры не все реактивы способны сохранить свои компоненты в изначальной форме, некоторые просто теряются. Углерод же, в свою очередь, сохраняется полностью. Другими словами, во время проведения процедуры у операторов есть возможность полного контроля и регулирования количественного содержания этого вещества в структуре.

    Другие вещества первой группы

    Углерод – это не единственный легирующий элемент, влияющий на свойства стали сильнейшим образом. К основной категории относят также кремний и марганец. Хотя стоит отметить, что, к примеру, добавление кремния всегда очень минимальное, примерно 0,4%, а особых изменений этот реактив в структуру не вносит. Он используется в качестве основного окисляющего и связывающего вещества. Другими словами, эти компоненты являются связующим звеном, которое позволяет добавлять в состав стали другие важные компоненты таким образом, чтобы в итоге получилась целостная и прочная структура.

    Элементы второго порядка

    Количество веществ, входящих в эту группу, значительно больше. Влияние легирующих элементов на структуру стали из этой группы может быть самым разнообразным. Одним из наиболее используемых веществ стал молибден. Чаще всего эта добавка используется в хромистых сталях. Введение этой присадки значительно влияет на две характеристики стали – это увеличение прокаливаемости, а также значительное понижение порога хладноломкости. Чаще всего стали с содержанием молибдена используются строительной промышленностью. Кроме того, с его помощью создаются молибденовые компоненты. Эти вещества считаются очень эффективными, так как при добавлении их в материал они гарантируют динамическую, а также статическую прочность сырья. В то же время эти компоненты значительно уменьшают вероятность внутреннего окисления.

    Еще одним представителем второй категории легирующих компонентов стал титан. Применение этой присадки довольно узкое, а используется она лишь в паре с хромомарганцевыми сплавами. В таких случаях титан способствует измельчению структурных зерен в этом материале. Содержание легирующих элементов, таких как кальций и свинец, к примеру, способствует тому, что процедура резки стали будет проходить гораздо легче. Потому и используются они лишь в тех металлических заготовках, которые после производства нужно будет резать на несколько частей.

    Классификация реактивов

    Стоит сказать, что кроме условного разделения на такие две категории, как основные и дополнительные элементы, существует более точная классификация. К примеру, это может быть связано с таким признаком, как степень механического воздействия на структуру вещества. По этому признаку все элементы можно разделить на три группы:

    • влияние элементов, в результате которого образуются карбиды;
    • элементы, оказывающие полиморфное влияние на сталь;
    • элементы, введение которых формирует интерметаллические соединения.

    Однако здесь очень важно отметить, что влияние реактивов из любой категории этого класса будет зависеть еще и от того, какие сторонние присадки будут присутствовать в сплаве. Кроме того, если углубляться в классификацию легирующих элементов в сплавах, то стоит сказать, что степень полиморфного влияния также можно разделить на несколько групп по характеру их воздействия на материал.

    Общее описание улучшений посредством легирования

    Если говорить в общем, то имеется несколько категорий, по которым можно разделить все легирующие элементы. Одни будут значительно влиять на механические качества материала, улучшая его технический ресурс. Чаще всего улучшаются такие показатели, как прочность, твердость, пластичность или же прокаливаемость. Еще одним направлением, на которое оказывают влияние эти элементы, являются защитные свойства. Легированная сталь отличается от обычной тем, что она значительно лучше противостоит ударам, у нее значительно выше красностойкость, повышена жаропрочность, а также улучшена стойкость к коррозии.

    Некоторые сферы деятельности человека требуют улучшения таких качеств металла, которые можно отнести к электрохимическим. Если необходимо улучшить эту составляющую, то чаще всего акцентируют внимание на повышение электро- и теплопроводности, повышают сопротивляемость к окислению веществ.

    Вредные присадки

    Естественно, что любой процесс сопровождается еще и негативной стороной. Для легированных сталей такой стороной стало появление фосфора и серы, которые также относятся к легирующим реактивам. Однако от них стараются избавляться, а не добавлять в структуру. К примеру, наличие фосфора в составе железа сохранится даже после того, как пройдет весь процесс легирования. А взаимодействие этих двух компонентов вызывает хрупкость зерен стали. В результате продукт будет иметь более низкую прочность, а также повышенную хрупкость. Хотя стоит отметить, что если будут соединяться элементы фосфора и углерода, то будет улучшаться процесс отделения стружки, что поможет в дальнейшем легче обрабатывать сталь. Поэтому минимальное содержание фосфора все же присутствует в составе сплава.

    Из основных легирующих элементов, которые считаются вредоносными, вторым стала сера. Стоит отметить, что содержание этой примеси еще хуже, чем фосфора. В частности это обусловлено тем, что сера нивелирует сопротивляемость металла внешним нагрузкам. Это значит, что наличие этого реактива в составе стали сделает ее менее устойчивой к коррозии, значительно повысит истираемость, а также снизит сопротивляемость усталости металла.

    Как проходит легирование

    Чаще всего процесс легирования проходит на металлургическом производстве. В расплавленную массу или же шихту добавляют необходимое количество тех веществ, которые были описаны выше. В результате последующей термической обработки происходит процесс соединения отдельных реактивов в цельную структуру и некоторая деформация. Таким образом, происходит улучшение качества сплава.

    Подробное описание элементов

    Далее будет представлена более подробная характеристика легирующих элементов.

    Название легирующего элемента Свойства сплава
    Хром Наличие этого вещества в составе сплава увеличивает его прочность и твердость, однако несколько снижается пластичность. Влияет на увеличение такой характеристики, как стойкость к коррозии. Если добавить более чем 13% хрома в структуру, то материал перейдет в группу нержавеющих сталей.

    Никель

    Введение этого компонента также влияет на увеличение сопротивляемости коррозии. Повышается прочность и пластичность сырья. Увеличивается степень прокаливаемости, а также изменяется коэффициент теплового расширения.
    Вольфрам Присадка в виде вольфрама дает толчок к образованию таких веществ, как карбиды. Эти элементы сильно влияют на такие свойства, как красностойкость и твердость. Кроме того, устраняет процесс роста зерен во время нагрева, а также убирает хрупкость, возникающую во время отпуска изделия.
    Ванадий Так же, как и хром, увеличивает прочность и твердость, однако не вызывает ухудшения пластичности. Измельчает зерно. Способствует повышению плотности стали, так как выступает в роли окислителя.
    Кремний Если ввести в состав стали более 1% кремния, то это значительно увеличит прочность и сохранит вязкость материала. Также с ростом процентного содержания реактива будет увеличиваться электрическое сопротивление.
    Марганец Влияние марганца на свойства стали будет происходить лишь в том случае, если его содержание будет также 1% или более. Будет расти твердость, стойкость к износу, повышаться стойкость к ударным нагрузкам. При этом пластичность материала останется прежней.
    Кобальт Способствует повышению жаропрочности и магнитным свойствам сырья.
    Молибден Усиливает такие характеристики, как красностойкость, упругость и предел прочности. Кроме того, увеличивает сопротивление окислению при повышенных температурах.
    Титан Улучшает прочность, а также плотность стали.
    Ниобий Добавление ниобия усиливает стойкость к окислению.
    Алюминий Способствует измельчению зерна.
    Медь Используется для сталей строительного предназначения. Улучшает стойкость к коррозии.
    Цирконий Введение циркония измельчает зерно, а также позволяет получать в результате обработки материал с заранее заданной зернистостью.

    Также стоит добавить, что имеется обозначение легирующих элементов, которое служит для того, чтобы можно было быстро понять, какие именно вещества использовались для улучшения структуры.

    Что происходит при введении реактивов?

    Не стоит думать, что добавление таких веществ не влияет на взаимодействие их между собой. Чем больше вводится разнообразных легирующих веществ, тем сложнее протекает этот процесс. Введение новых элементов создает новые фазы, изменяет процесс термической обработки, приводит к созданию новых структурных составляющих. Также здесь стоит отметить, что все элементы находятся в разном положении. Некоторые находятся в свободном состоянии (медь, свинец), некоторые образуют интерметаллидные соединения – металл-металл и т. д.

    Мартенситные стали

    Имеется такой вид стали, который относят к мартенситному. Введение определенных легирующих элементов в состав такого материала будет сказываться довольно негативным образом. К примеру, марганец, молибден или хром будут снижать мартенситную точку нагрева, а также способствовать увеличению аустенитного остатка. Эти качества будут негативно сказываться на конечном качестве материала после закалки.

    Отпуск сырья

    Присутствие легирующих элементов также оставит свой отпечаток и на отпуске стали. Большое количество реактивов будет уменьшать скорость превращения и повышать температуру, требуемую для превращения. По этой причине все легированные сплавы отпускаются при температуре на 100-150 градусов выше, чем обычные.

    Подведение итогов

    Процесс легирования – это сложный технологический процесс, который используется для улучшения или изменения изначальных характеристик стали. Во время этой процедуры используются основные легирующие элементы или второстепенные. Могут использоваться реактивы из обеих групп сразу. Также стоит помнить о том, что добавление некоторых элементов будет не только улучшать определенные характеристики, но и ухудшать другие. А потому прежде, чем приступить к данному процессу, необходимо проводить тщательные расчеты. Для выполнения этой задачи на заводах и фабриках присутствуют технологи, которые устанавливают состав для каждой марки стали, а также точно определяют количество, какое необходимо добавить в массу, чтобы достичь нужного эффекта.

    www.syl.ru

    3. Влияние легирующих элементов на структуру и свойства штамповых сталей

    Легирование является одним из основных способов воздействия на структуру и свойства инструментальных сталей и способствует повышению работоспособности инструмента.

    Штамповые стали легируют такими элементами как хром, вольфрам, молибден, ванадий, кремний и кобальт. В последние годы появились стали с добавками титана, циркония, ниобия и др.

    Рассмотрим влияние основных легирующих элементов на свойства штамповых сталей.

    Влияние хрома

    Хром положительно влияет на ряд характеристик штамповых сталей (прокаливаемость, склонность к вторичному твердению, теплостойкость и т.д.). По мере повышения его концентрации в твердом растворе существенно возрастает устойчивость аустенита как в перлитной, так и в промежуточной областях, качественно изменяется вид С-образных кривых.

    В хромистых сталях наряду с цементитом образуется два специальных карбида: гексагональный (тригональный) Ме7С3 и кубический Me23C6 (рис. 1). Хром повышает устойчивость этих карбидов против растворения при нагреве и оказывает благоприятное влияние на чувствительность к перегреву сталей, содержащих незначительные количества вольфрама и молибдена. В комплекснолегированных сплавах хром вследствие повышения фазового наклепа при закалке и непосредственного участия в формировании упрочняющей фазы сильно усиливает эффект вторичного твердения [4].

    Рис.1. Сечение диаграммы состояния системы Fe – Cr – C при20оС [5]

    Хром способствует сохранению высокого сопротивления пластической деформации при нагреве до 400–500оС. Пределы прочности и текучести составляют 80% от их значений при 20оС. Кроме того, хром повышает устойчивость против окисления при нагреве до 600–650оС и против разъедающего действия ряда сред.

    При снижении содержания хрома с 5 до 3% изменяется состав карбидных фаз; в стали с 3% хрома присутствуют карбиды Ме3С наряду с карбидами Ме23С6 и Ме6С, что немного уменьшает теплостойкость и предел текучести при температурах выше 400–500оС.

    Увеличение количества хрома с 5 до 8% несколько повышает окалиностойкость, но снижает теплостойкость; твердость не ниже 45HRC у стали 4Х8В2С сохраняется при отпуске до 580оС, а у стали 4Х5В2ФС (с таким же количеством вольфрама) – до 600оС. Кроме того, из-за роста карбидной неоднородности, неизбежного с увеличением хрома, снижаются вязкость и пластичность штампов в крупных сечениях.

    Наиболее заметное влияние на окалиностойкость, а следовательно, на износостойкость хром оказывает при содержании с 2,5 до 3,5–4% (рис. 2).

    Рис. 2. Влияние хрома на окалиностойкость при 600оС стали с 0,4% С; 8%W и 0,5% V [1]

    К числу ограничений использования хрома в качестве легирующего элемента относится прежде всего резкое увеличение карбидной неоднородности при введении его в количествах, превышающих 4–5%. Наличие грубых строк и остатков сетки первичных карбидов в сталях с 6–12% Cr наряду с трудностями технологического характера (снижение пластичности при повышенных температурах, возрастание опасности локальных оплавлений при нагреве слитков под деформацию и др.) существенно снижает их эксплуатационные свойства. Неравномерность распределения «внутренних» концентраторов напряжений, особенно возрастающая при термической обработке вследствие образования вокруг скоплений карбидов обогащенных углеродом и легирующими элементами зон, приводит к заметному уменьшению прочности, пластичности, сопротивления усталостной повреждаемости и износостойкости высокохромистых сталей в условиях динамического нагружения.

    Следует отметить, что увеличение содержания хрома выше 5% наряду с усилением карбидной неоднородности вызывает также повышение чувствительности к перегреву. Этот недостаток присущ сталям, легированным 1–2% W (Mo) и 0,3–0,8% V [1].

    В штамповых сталях для горячего деформирования необходимо жесткое регламентирование содержания хрома, так как он ускоряет их разупрочнение, начиная с 2–3%, что связано со значительным возрастанием скорости коалесценции карбидов.

    Также хром даже при относительно невысоких концентрациях обладает значительной склонностью к дендритной ликвации, большей, чем вольфрам, марганец и кремний. Это может привести к неблагоприятным структурным изменениям – усилению карбидной полосчатости, неоднородности, отклонениям от равновесного фазового состава и др.

    Учитывая вышеприведенные факторы, содержание хрома в штамповых сталях для холодного деформирования ограничивают, как правило, 3,5–4,5%; в штамповых сталях для горячего деформирования: 4–5% и 2–3% Сr для сталей повышенной (4Х5МФС, 4Х4ВМФС) и высокой теплостойкости (типа 4Х2В5ФМ, 5Х3В3МФС) соответственно и 1–2% Cr в сталях умеренной теплостойкости и повышенной вязкости [4].

    Влияние вольфрама и молибдена

    Повышение содержания вольфрама в комплекснолегированных штамповых сталях для холодного деформирования увеличивает их устойчивость против перегрева, смещая температуру начала интенсивного роста зерна к 1070–1100оС в сталях типа Х4МФ уже при введении 2–3% W. Аналогичный эффект при легировании вольфрамом наблюдается и в сталях для горячего деформирования, содержащих не более 0,5–1% V. В этой группе сталей при подобном изменении химического состава происходит более заметное снижение твердости после закалки, чем при увеличении содержания молибдена. В сталях повышенной теплостойкости увеличение концентрации вольфрама с 2 до 3% вызывает значительный рост твердости после закалки и величины действительного зерна аустенита при нагреве до 1150–1180оС.

    Молибден несколько повышает устойчивость против перегрева сталей типа 4Х4В2М2ФС, но оказывает противоположное влияние на поведение при нагреве сплавов с повышенным содержанием углерода (~ 1%, типа Х4В2М2Ф1) [4].

    Вольфрам и молибден эффективно повышают теплостойкость. Теплостойкость возрастает наиболее значительно при увеличении содержания вольфрама до 8% (рис. 3).

    Вольфрам (и в меньшей степени молибден) задерживают коагуляцию карбидов, выделяющихся по границам зерен и некоторым кристаллографическим плоскостям, и усиливают дисперсионное твердение при отпуске, но при увеличении их содержания ухудшается вязкость. Это отрицательное влияние вольфрама значительнее его измельчающего воздействия на зерно. Вольфрам усиливает также карбидную неоднородность, из-за чего дополнительно снижаются механические свойства в крупных сечениях.

    Рис. 3. Влияние вольфрама на теплостойкость стали с 0,35% С; 3% Сr; 0,5% V [1]

    В сталях с молибденом дисперсионное твердение наступает при более низких температурах отпуска, несколько сильнее повышается вторичная твердость. Выделяющийся карбид обладает большей способностью к коагуляции, вследствие чего молибденовая сталь в сравнении с вольфрамовой имеет лучшую вязкость, но несколько меньшую теплостойкость. Также молибден подавляет склонность к отпускной хрупкости вследствие благоприятного воздействия на состояние границ зерен. Содержание молибдена, несмотря на его эффективное влияние, устанавливают не выше 2,5–2,8%, так как он усиливает обезуглероживание [1].

    В штамповых сталях для холодного деформирования наиболее благоприятная структура и требуемые механические свойства достигаются при содержаниях вольфрама порядка 2–3%. Обязательным условием обеспечения повышенной работоспособности подобный сталей является легирование молибденом, который при увеличении его концентрации до 2% усиливает дисперсионное твердение при отпуске и повышает сопротивление смятию; более 2% Mo способствуют обезуглероживанию стали, снижению прочности при изгибе и ударной вязкости.

    В штамповых сталях для горячего деформирования увеличение концентрации вольфрама повышает теплостойкость до определенных пределов. Такими пределами являются 1,0–2% W в сталях типа 4Х4ВМФС и ~ 3% в сталях типа 5Х3В3Ф2МС. Содержание молибдена, как правило, составляет 1,5–3% [4]. Молибден в этих сталях с заменяет вольфрам в соотношении 1 : 2.

    Стали, в которых молибден заменяет более 2–3% W, имеют меньшую карбидную неоднородность. Молибден при замене 3–4% W (и одинаковом ванадии) почти не изменяет теплостойкости, вследствие чего прочностные свойства вольфрамомолибденовых сталей при нагреве такие же, как вольфрамовых [1]. Выбор конкретный соотношений между вольфрамом и молибденом определяется условиями эксплуатации инструмента и он должен быть экономически обоснован.

    Влияние ванадия

    Ванадий оказывает эффективное влияние на процессы собирательной рекристаллизации и существенно уменьшает чувствительность штамповых сталей к перегреву. В относительно невысоколегированных сталях (типа 5ХНМ, 7ХГ2ВМ и др.) его действие оказывается заметным уже при содержании порядка 0,10–0,30%. Для других групп сталей, содержащих карбиды типа М7С3, М6С, М23С6, требуется большее количество ванадия для существенного смещения температур начала интенсивного роста зерна.

    На механические свойства ванадий оказывает неоднозначное влияние. Уменьшая чувствительность к перегреву, при содержаниях до 1% он может повышать прочность и пластичность высокоуглеродистых и среднеуглеродистых (~ 0,4% С) штамповых сталей.

    Положительное влияние ванадия на сопротивление хрупкому разрушению сплавов типа Х4В2МФ, 17Х6Ф4М после отпуска при 150–350оС сохраняется также при легировании до 2–4% V. После обработки на первичную твердость (60–62 HRC) такие стали имеют прочность при изгибе и ударную вязкость около 300–350 и 5–8 кГс×м/см2 против 230–270 и 2–4 кГс×м/см2, для аналогичных сплавов, но с 0,5–1% V. При высокотемпературном (≥500оС) отпуске ванадий при повышенных его содержаниях действует в противоположном направлении, т.е. уменьшает пластичность штамповых сталей как горячего, так и холодного деформирования. Наряду с увеличением опасности преждевременного хрупкого разрушения снижение пластичности высокованадиевых сталей после обработки на вторичную. твердость может приводить также к уменьшению износостойкости в условиях динамического нагружения из-за скалывания и микровыкрашивания.

    Увеличение содержания ванадия с 0,4 до 0,8% усиливает дисперсионное твердение (рис. 4) и улучшает теплостойкость, но снижает вязкость. Вследствие интенсивного развития дисперсионного твердения, наступающего при увеличении количества ванадия с 0,35 до 1%, вязкость снижается с 2,3–2,5 до 1,6–1,8 кг×м/см2 при 20° C и с 3,8–4,0 до 3–3,5 кг×м/см2 при 650°C. Рекомендуется стали с 0,5% V (4Х5МС) применять для работы при нагреве до 580–590оС, а с 1% V (4Х5В2ФС и типа 4Х5МФС) – при нагреве до 640–650оС [1].

    Ванадий, также как и хром, обладает сильно выраженной склонностью к дендритной ликвации, но в отличие от него ванадий благоприятно влияет на дисперсность и характер распределения первичных карбидов в высокоуглеродистых сталях.

    Рис. 4. Влияние ванадия на максимальный уровень вторичной твердости, достигаемый в сталях типа Х4В2М1Ф (1), 4Х4ВМФС (2) и 5Х3В3МФС (3) после отпуска при 500–550оС (закалка на зерно № 10)

    При введении в состав сталей 3–4% V наблюдается значительное ухудшение шлифуемости (из-за присутствия очень твердого карбида МеС), что ограничивает их широкое применение. Другим недостатком является пониженная окалиностойкость при отжиге и горячей пластической деформации [4].

    Стали в состоянии поставки

    По структурному признаку полутеплостойкие стали повышенной вязкости – доэвтектоидные или близкие к эвтектоидным (при 0,5–0,55% С). Структура их после отжига – пластинчатый перлит с участками феррита.

    Сталь 5ХНСВ, легированная кремнием, имеет твердость 217–241 НВ, остальные стали – 197–241НВ [1].

    Теплостойкие стали поставляют после отжига; вольфрамовые – чаще после высокого отпуска. Структура – сорбитообразный перлит. Карбидная неоднородность наблюдается в виде полосчатости, а в сечении более 100 мм у вольфрамовых сталей возможна карбидная сетка. В структуре не допускается нафталиновый излом.

    Твердость после отжига (высокого отпуска), НВ:

    4Х5В2ФС, 4Х2В5ФМ, 4Х3В5М3Ф 180–220

    3Х2В8Ф, 4Х8В2, 4Х5В4ФСМ, типа 3Х3В8Ф 207–255

    стали с >8% W или 5% Mo 228–262

    Обезуглероженный слой не должен превышать норм, указанных ГОСТом 5959–63. Стали необходимо проверять на отсутствие флокенов.

    Режимы закалки и отпуска

    Для полутеплостойких сталей повышенной вязкости температура нагрева под закалку составляет 830–870оС в зависимости от марки стали с предварительным подогревом при 600–620оС.

    Температуры закалки [1]:

    сталь типа 27Х2НМВФ, 30Х2НМФ………………………...950–975оС;

    сталь типа 40ХН3М……………………………………………..850–870оС;

    сталь типа 5ХНСВ……………………………………………....840–860оС;

    сталь типа 5ХНМ, 5ХНВ, 5ХГМ……………………….……820 860оС.

    Высокий отпуск проводится для получения сорбитной структуры (температура отпуска 500–600оС, скорость нагрева 40–50 град/час). Охлаждение после отпуска на воздухе. Инструмент обрабатывается, как правило, на твердость 35–40 HRC или 40–46 HRC.

    Температуры нагрева под закалку и отпуск теплостойких сталей для горячего деформирования приведены в табл. 2.

    Таблица 2. Температуры закалки и отпуска теплостойких сталей повышенной вязкости [1]

    Сталь

    Закалка

    Температура отпуска, оС, на твердость, HRC

    Температура нагрева, оС

    Твердость, HRC

    50

    45

    Стали повышенной разгаростойкости

    4Х5В2ФС

    1060–1080

    52–54

    580–590

    610–620

    Типа 4Х5МС,4Х5ВМС

    1050–1020

    58–60

    560–570

    600–610

    Типа 4Х5МФС

    1010–1040

    52–54

    580–590

    610–620

    4Х8В2

    1000–1100

    53–56

    540–550

    580–590

    4Х3ВМФС, типа 4Х3МС

    980–1020

    53–56

    400–420

    430–450

    7Х3

    830–860

    59–61

    _

    480–580

    Типа 2Х12В3МФ

    980–1020

    53–55

    580–600

    610–620

    Стали повышенной стойкости

    3Х2В8Ф

    1080–1110

    54–56

    600–610

    640–650

    Типа 3Х3В8Ф

    1130–1150

    56–58

    615–625

    660–670

    Типа 4Х3В11

    1170–1200

    56–58

    630–640

    670–680

    Типа 5Х3В15, 5Х4В18

    1180–1220

    56–58

    650–660

    680–690

    Типа 6Х4В9Ф

    1080–1100

    58–60

    580–610

    610–620

    4Х5В4ФСМ

    1060–1070

    54–56

    600–610

    620–630

    4Х2В5ФМ

    1060–1080

    54–56

    610–620

    630–640

    4Х3В5М3Ф

    1110–1130

    52–54

    625–635

    670–680

    Типа 6Х4В6М5, 6Х4В2М8 и 3Х4М6

    1130–1150

    56–58

    650–660

    680–690

    При закалке важной задачей является защита от обезуглероживания; поскольку температуры закалки – высокие. Обязательно применение мер защиты; наиболее целесообразен нагрев в контролируемых атмосферах или в вакууме.

    После закалки данные стали рекомендуется подстуживать на воздухе до 950–900оС, а затем охлаждать в масле.

    Операцию отпуска выполняют немедленно после закалки с целью предупреждения трещин. Как правило, отпуск производят на твердость 45 HRC в штамповых сталях, предназначенных для высадки и выдавливания; 48–53 HRC для ножей и пил горячей резки.

    Поскольку при нагреве для отпуска в структуре сохраняется много аустенита, целесообразно проведение двукратного отпуска. Температура второго отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе.

    studfiles.net

    4.2. Влияние легирующих элементов на структуру и свойства стали

     

    Почти все легирующие элементы изменяют температуры полиморфных превращений железа, температуру эвтектоидной и эвтектической реакции и влияют на растворимость углерода в аустените. Некоторые легирующие элементы способны так же, как и железо, взаимодействовать с углеродом, образуя карбиды, а так же взаимодействовать друг с другом или с железом, образуя промежуточные фазы – интерметаллиды.

    Принято температуры равновесных превращений, совершающихся в железе в сталях в твердом состоянии, обозначать буквой А с соответствующим индексом. Температуры фазового равновесия указаны на диаграмме состояния Fe-Fe3C, поэтому обозначения связаны с линиями этой диаграммы.

    Эвтектоидную температуру (линия PSK) обозначают А1, температуру ??? линии GS – А3, температуру полиморфного превращения Fe Fe (линия NI) А4, температуру линии SE – Асm. Равновесные температуры А3 и А4 для чистого железа равны соответственно 911 и 13920 С. В интервале указанных температур устойчива модификация Fe с решеткой ГЦК.

    По влиянию на температуры полиморфных превращений А3 и А4 легирующие элементы можно разбить на две группыВ первую группу входят элементы группы никеля, которые понижают температуру А3 и повышают температуру А4. К ним относятся Ni, Mn, Co, Cu.

    В сплавах железа с никелем, марганцем и кобальтом - область «открывается», т.е. в определенном интервале температур существуют твердые растворы с ГЦК решеткой. При этом температура А3 при определенной концентрации легирующего элемента понижается ниже нуля. На рис. 4.1. показан участок диаграммы Fe – легирующий элемент с открытой - областью. В сплавах с концентрацией легирующего элемента, равной или превышающей точку b, ГЦК решетка устойчива при температуре 20-250 С; такие сплавы называют аустенитными сталями. Таким образом, аустенитом называют не только твердый раствор углерода в Fe, но и любые твердые растворы на основе Fe.

     

    Рис 4.1 Схема состояния “железо- легирующий элемент группы никеля”

     

    Рис. 4.2 Схема диаграммы состояния “железо

     — легирующий элемент группы хрома”

    а)  замкнутой -областью

    б) с промежуточной фазой

     

    Во вторую группу входят элементы группы хрома, которые повышают температуру А3 и понижают температуру А4. В этом случае температурный интервал устойчивости аустенита уменьшается и, соответственно, расширяется температурный интервал устойчивости Fe. Таких легирующих элементов большинство: Cr, Mo, W, V, Si, Ti и др.

    Все перечисленные элементы образуют с железом диаграмму с «замкнутой»  - областью (рис. 4.2). Концентрация, соответствующая точке с, для хрома составляет 12%.

    Из перечисленных элементов, дающих замкнутую  - область, только хром и ванадий не образуют с железом промежуточных фаз, и поэтому  - область «открывается». Остальные легирующие элементы, замыкающие область, образуют с железом промежуточные фазы, поэтому при определенных концентрациях на диаграммах появляется линия, ограничивающая растворимость, правее которой расположены двухфазные области (рис. 4,2, б).

    Однофазные сплавы с ОЦК решеткой, устойчивой при всех температурах вплоть до солидуса, называют ферритными сталями. Таким образом, ферритом называют не только твердый раствор углерода в Fe, но и любые твердые растворы на основе Fe.

    По отношению к углероду легирующие элементы разделяют на:

     не образующие карбиды, которые, в свою очередь, подразделяются на графитизирующие – кремний, алюминий, медь;  и нейтральные – кобальт и никель

    карбидообразующие – марганец, хром, молибден, вольфрам, ниобий, ванадий, цирконий и титан (элементы перечислены в порядке возрастания их карбидообразующей способности).

    При введении в сталь карбидообразующего элемента в небольшом количестве (десятые доли; для несильных карбидообразователей - 12%) образование карбида этого элемента чаще не происходит. В этом случае атомы легирующего элемента частично замещают атомы железа в решетке цементита; образуется легированный цементит, мало отличающийся по свойствам от обычного цементита.

    Процесс взаимодействия легирующего элемента с фазами стали (ферритом и цементитом) можно представить протекающим в следующей последовательности: вначале происходит взаимодействие с карбидной фазой, в результате которого образуется легированный цементит либо специальные карбиды. Неизрасходованная часть легирующего элемента растворится в феррите (железе). Если легирующий элемент карбидов не образует, то он целиком растворится в железосодержащей (ферритной) фазе и оказывает влияние на полиморфные превращения железа.

    Легирующие элементы существенно влияют на концентрацию углерода в эвтектоиде (перлите) и максимальную растворимость углерода в аустените (точки S и Е диаграммы). Такие элементы, как никель, кобальт, кремний, марганец, хром, молибден, вольфрам, сдвигают точки S и Е влево, т.е. в сторону меньших концентраций углерода. Очевидно, что в присутствии этих легирующих элементов ледебурит в структуре сплава появится при меньших концентрациях углерода, чем в нелегированных железоуглеродистых сплавах. Например, в стали с 1011% Cr ледебурит появляется в структуре при содержании углерода около 1%. В связи с этим легированные стали, содержащие ледебурит, классифицируют как ледебуритные.

    Рассмотрим, какой будет структура различных легированных сталей в равновесном состоянии с учетом указанных закономерностей.

    Пример 1. Сталь 30ХГСА содержит небольшие количества (около 1% карбидообразующих элементов – хрома и марганца – и не образующий карбидов кремний). Часть хрома и марганца израсходуется на легирование цементита, а остальная часть этих элементов и кремний пойдут на легирование феррита. В связи с изменением состава феррита и цементита изменяется состав эвтектоида в сторону меньших концентраций углерода, следовательно, в структуре стали 30ХГСА количество перлита увеличивается по сравнению со сталью 30.

    Пример 2. Сталь шарикоподшипниковая ШХ15 содержит большое количество углерода (0,951,05%) и небольшое количество хрома (1,301,65%). Поскольку хром является активным карбидообразователем, он весь израсходуется на легирование цементита и образование собственных карбидов. Кроме того, он снижает содержание углерода в эвтектоиде. Поэтому структура стали в этом состоянии будет содержать перлит и повышенное количество карбидов хрома и легированного цементита.

    Пример 3. Сталь нержавеющая 08Х13 содержит более 0,08% углерода и 1214% хрома. Поскольку содержание углерода невелико, то расход хрома на образование карбидов будет незначительным. Поэтому практически весь хром израсходуется на легирование феррита. А поскольку хром при концентрации около 12% замыкает область аустенита, то сталь 08Х13 будет иметь ферритную структуру при всех температурах, вплоть до плавления.

    Пример 4. Сталь шарикоподшипниковая 95Х18 содержит около 1% углерода и 1719% хрома. Ввиду большого содержания хрома меньшая часть его израсходуется на образование карбидов, а большая  на легирование феррита. Поэтому структура этой стали будет состоять из легированного феррита и большого количества карбидов хрома и железа, а точнее  из перлита и карбидов. Поскольку хром сдвигает точки S и Е диаграммы влево, и поскольку содержание его велико, то в структуре литой стали появится ледебуритная эвтектика, т.е. это сталь ледебуритного класса.

    Пример 5. Сталь 12Х18Н10Т содержит не более 0,12% углерода, 1719%, хрома, 911% никеля, 0,65% титана. Поскольку титан является более сильным карбидообразователем, чем хром, то в первую очередь будут образовываться карбиды титана, а хром и никель будут легировать феррит. При совместном легировании стали хрома и никеля, которые противоположно воздействуют на полиморфизм железа, влияние никеля проявляется сильнее, поэтому сталь будет иметь аустенитную структуру с небольшим количеством карбидов.

    Пример 6. Сталь 110Г13Л (сталь Гатфильда) содержит 0,91,3% углерода и 11,514,5% марганца. Часть марганца израсходуется на легирование цементита, а большая часть  на легирование феррита. Поскольку марганец является элементом, расширяющим область существования аустенита и его содержание достаточно велико, то равновесная структура стали будет состоять из аустенита и легированного марганцем цементита.

    При определении структуры легированных сталей следует учитывать следующие закономерности:

    1. В зависимости от содержания углерода и легирующих элементов, легированные стали по структуре в равновесном состоянии могут быть отнесены к одному из классов: перлитному, ферритному, аустенитному, ледебуритному (карбидному).

    2. Прежде чем рассматривать влияние легирующего элемента на полиморфные превращения железа, необходимо определить отношение этого легирующего элемента к углероду. Элементы, расширяющие область аустенита, имеют решетку ГЦК, т.е. изоморфную решетке аустенита. И наоборот, элементы с решеткой ОЦК, изоморфные решетке феррита, расширяют область. Если же легирующий элемент является карбидообразующим, то при кристаллизации образуется сложная кристаллическая решетка, отличающаяся от ОЦК и ГЦК решетки, т.е. если легирующий элемент образует карбид, то его влияние на полиморфизм проявляться не будет.

    3. Большинство легированных сталей относятся к перлитному классу, в основном это  низколегированные стали с любым количеством углерода.

    4. Стали аустенитного класса могут содержать любое количество углерода, но обязательно присутствие никеля (не менее 67%) или другого элемента группы никеля.

    5. В сталях ферритного класса должен присутствовать хром в количестве не менее 12% при низком содержании углерода (до 0,1%). С увеличением количество углерода для образования ферритной структуры содержание хрома должно быть тоже увеличено.

    При совместном легировании хромом и никелем, которые противоположно действуют на полиформизм железа, влияние никеля проявляется сильнее приблизительно в 2,5 раза.

    6. Стали ледебуритного (или карбидного) класса  это средне  или высоколегированные стали с содержанием углерода более 0,8%.

     

    studfiles.net