Теплопроводность цветных металлов, теплоемкость и плотность сплавов. Почему теплопроводность меди больше чем теплопроводность стали


    Теплопроводность меди – как влияет на свойства меди? + Видео

    Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.  

    1 Медь – коротко про теплопроводность

    Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м2, толщиной 1 м, за 1 секунду при единичном градиенте температуры.

    Медь – коротко про теплопроводность

    Рекомендуем ознакомиться

    Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

    • алюминий;
    • железо;
    • кислород;
    • мышьяк;
    • сурьма;
    • сера;
    • селен;
    • фосфор.

    Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

    Медь – коротко про теплопроводность фото

    Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

    2 Теплопроводность алюминия и меди – какой металл лучше?

    Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

    Теплопроводность алюминия и меди – какой металл лучше?

    Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

    • плотность (удельный вес) алюминия меньше в 3 раза;
    • стоимость – ниже в 3,5 раза.

    Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

    В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

    Теплопроводность алюминия и меди – какой металл лучше? фото

    Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

    Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

    3 Минусы высокой теплопроводности

    Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.

    У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.

    Минусы высокой теплопроводности

    При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.

    4 Как у меди повысить теплопроводность?

    Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.

    Как у меди повысить теплопроводность?

    Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.

    tutmet.ru

    меди, латуни и алюминия, теплопередача

    Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

    Что такое теплопроводность

    Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

    1. Молекул.
    2. Атомов.
    3. Электронов и других частиц структуры металла.

    Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

    Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

    Показатели для стали

    Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

    Существуют и другие особенности теплопроводности:

    1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
    2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
    3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

    Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

    Влияние концентрации углерода

    Концентрация углерода в стали влияет на величину теплопередачи:

    1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
    2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
    3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

    Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

    Значение в быту и производстве

    Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

    1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
    2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
    3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

    Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

    tokar.guru

    Высокая теплопроводность - медь - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Высокая теплопроводность - медь

    Cтраница 1

    Высокая теплопроводность меди, почти в шесть раз больше, чем у стали, требует более концентрированного нагрева. При этом значительная величина теплового коэффициента расширения меди приводит к существенным тепловым деформациям и напряжениям. Поэтому при сварке меди часто возникает необходимость в предварительном и сопутствующем подогреве основного металла, а также в снижении его деформации.  [1]

    Высокая теплопроводность меди ( в шесть раз выше теплопроводности железных сплавов) делает этот материал особо ценным для изготовления теплообменной аппаратуры.  [2]

    Высокая теплопроводность меди ( в 6 раз выше, чем у железа) предопределяет необходимость применения концентрированных источников тепла и во многих случаях предварительного и сопутствующего подогрева основного металла.  [3]

    Высокая теплопроводность меди требует применения горелок большей мощности, на 1 - 2 номера больше, чем при сварке стали такой же толщины. Мощность горелки берется из расчета 190 - 225 л / час ацетилена на 1 мм толщины.  [4]

    Высокая теплопроводность меди и ее сплавов затрудняет процесс резки и требует для поддержания необходимой температуры в месте реза интенсивного нагрева мощным подогревающим пламенем и большего расхода флюса и кислорода. Поэтому резак, имеющий мощность подогревающего пламени и кислородно-флюсовой струи, достаточные для резки высокохромистой стали толщиной до 300 мм, пригоден для резки бронзы и латуни толщиной только до 150 мм а меди всего лишь до 50 мм.  [5]

    Высокая теплопроводность меди ( в 6 раз выше, чем у железа), что предопределяет необходимость применения концентрированных источников нагрева и во многих случаях предварительного и сопутствующего подогрева основного металла при сварке.  [6]

    Высокая теплопроводность меди и сплавов на ее основе затрудняет получение высококачественного формирования сварного шва. Для обеспечения нормального формирования сварного шва здесь необходим в ряде случаев предварительный, а иногда и сопутствующий подогрев. Если не подогревать предварительно свариваемую конструкцию, то сварочный ( присадочный) металл, расплавляясь в дуге, не будет обеспечивать стабильное сплавление с основным металлом конструкции. Это особенно сказывается на начальных участках сварного шва, на которых интенсивный теплоотвод в массу основного металла приводит к образованию непроваров.  [7]

    Высокая теплопроводность меди, почти в десять раз большая, чем у стали, требует более концентрированного нагрева. При этом значительная величина теплового коэффициента расширения меди ( примерно в 1 5 раза большего, чем у стали) приводит к существенным тепловым деформациям и напряжениям.  [9]

    Высокая теплопроводность меди и малое количество тепла, выделяемое при сгорании, отрицательно влияет на резку. Алюминий не поддается газовой резке в связи с большой разницей в температурах плавления: температура плавления чистого металла 657а С, его окислов 2050 С. Резка высоколегированных хромистых и хромоникелевых сталей возможна только с применением специальных флюсов, которые могут повысить температурный режим резки, а также растворить тугоплавкие окислы.  [10]

    Высокая теплопроводность меди ( в 6 раз выше теплопроводности железных сплавов) делает этот материал особо ценным для изготовления теплообменной аппаратуры.  [11]

    Высокая теплопроводность меди заставляет применять боЗПг шую мощность пламени. Так, для малых толщин ( до 3 - 4 мм) мощность пламени берется из расчета 150 - 175 л ацетилена на 1 мм толщины, а при толщинах до 8 - 10 мм мощность пламени увеличивается до 175 - 225 л / час на 1 мм толщины. При больших толщинах рекомендуется использование двух и даже трех горелок, причем часто сварка ведется одной горелкой, а другие используются для подогрева.  [12]

    Высокая теплопроводность меди заставляет применять большую мощность пламени. Так, для малых толщин ( до 3 - 4 мм) мощность пламени подбирается из расчета 150 - 175 дм3 / ч ацетилена на 1 мм толщины, а при толщинах до 8 - 10 мм мощность пламени увеличивается до 175 - 225 дм3 / ч на 1 мм. При больших толщинах рекомендуется использование двух и даже трех горелок, причем сварка ведется одной горелкой, а другие используются для подогрева.  [13]

    Из-за высокой теплопроводности меди требуется большая мощность пламени горелки. В качестве присадки используется проволока из электролитической меди.  [14]

    Страницы:      1    2    3    4

    www.ngpedia.ru

    Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.

    • написать лс• профиль

    5.0

    Оценка статьи

    Всего голосов: 1

    Репутация автора

    • повысить репутацию• история репутации

    Тепло - это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую. Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:  Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта - тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала - например, большинство металлов хорошо проводят тепло, а дерево и пластик - гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.   Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой - при отличной, например более низкой, температуре. Пусть, например, холодный  конец будет помещён в воду со льдом - таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее - мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из  вышенаписанного, в Дж*м/К*м2*с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.  
    Материал Теплопроводность, Вт/(м·K)
    Алмаз 1001—2600
    Серебро 430
    Медь 401
    Оксид бериллия 370
    Золото 320
    Алюминий 202—236
    Кремний 150
    Латунь 97—111
    Хром 107
    Железо 92
    Платина 70
    Олово 67
    Оксид цинка 54
    Сталь 47
    Оксид алюминия 40
    Кварц 8
    Гранит 2,4
    Бетон сплошной 1,75
    Базальт 1,3
    Стекло 1-1,15
    Термопаста КПТ-8 0,7
    Вода при нормальных условиях 0,6
    Кирпич строительный 0,2—0,7
    Древесина 0,15
    Нефтяные масла 0,12
    Свежий снег 0,10—0,15
    Стекловата 0,032-0,041
    Каменная вата 0,034-0,039
    Воздух (300 K, 100 кПа) 0,022
      Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.   Но мы привыкли считать, что воздух хорошо проводит тепло, а вата - нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и "всплывает" наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C   Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух.  Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.   Ещё один способ теплопередачи - это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (~600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая - порядка 40мВт с 1см2. В пересчёте на площадь поверхности человеческого тела (~1м2) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T4) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.   В отличие от теплопроводности, излучение может распространяться в полном вакууме - именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.      
    • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
    • «Физические величины» под ред.  И. С. Григорьева
    • CRC Handbook of Chemistry and Physics
    • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

    chemiday.com

    Теплопроводность меди. Замечательное свойство

    В истории человеческой цивилизации роль меди преувеличить невозможно. Именно с нее человек начинал осваивать металлургию, учился создавать инструменты, посуду, украшения, деньги. И все благодаря уникальным свойствам этого металла, проявляющимся при сплаве с другими веществами. То мягкий, то прочный, то тугоплавкий, то плавится без всяких усилий. Обладает множеством прекрасных характеристик, и одной из них является теплопроводность меди.

    Если речь зашла об этой характеристике, то надо пояснить, о чем идет речь. Теплопроводностью называют способность вещества передавать тепло от нагретого участка к холодному. Так вот, теплопроводность меди одна из самых высоких среди металлов. Как можно оценить такое свойство, как хорошее или как плохое?

    Если спросить кулинаров и поваров, они скажут, как хорошее, благодаря чему медная посуда наилучшим образом передает тепло от огня к готовящемуся продукту, да и нагрев равномерно распределяется по поверхности, контактирующей с пламенем.

    Конечно, и другие металлы, и не только металлы, передают тепло, или, по-другому, обладают достаточной теплопроводностью, но у меди эта способность одна из лучших, так называемый коэффициент теплопроводности меди самый высокий, выше только у серебра.

    Отмеченная способность обеспечивает широкие возможности использования металла в самых разных областях. В любых системах теплообмена медь является первым кандидатом на применение. Например, в электроотопительных приборах или в радиаторе автомобиля, где нагретая охлаждающая жидкость отдает лишнее тепло.

    Теперь можно попытаться понять, чем обусловлен эффект передачи тепла. Происходящее объясняется достаточно просто. Происходит равномерное распределение энергии по объему материала. Можно провести аналогию с летучим газом. Попав в какой-то замкнутый сосуд, такой газ занимает все доступное ему место. Так и здесь, если металл нагреть в какой-то отдельной области, то полученная энергия равномерно распределяется по всему материалу.

    Таким явлением можно объяснить теплопроводность меди. Не вдаваясь в квантовую физику, можно сказать, что за счет внешнего поступления энергии (нагрева) часть атомов получает дополнительную энергию и затем передает ее другим атомам. Энергия (нагрев) распространяется по всему объему предмета, вызывая его общий нагрев. Подобное происходит с любым веществом.

    Разница только в том, что медь, теплопроводность которой очень высокая, хорошо передает тепло, а другие вещества делают то же самое значительно хуже. Но во многих случаях это может быть и нужным свойством. На свойстве веществ плохо проводить тепло основана теплоизоляция, за счет плохой передачи тепла не происходит его потерь. Теплоизоляция в домах позволяет сохранять комфортные условия проживания в самые суровые морозы.

    Обмен энергией, или, как в нашем случае, передача тепла, может осуществляться и между разными материалами, если они находятся в физическом контакте. Именно это происходит, когда мы ставим чайник на огонь. Он нагревается, а затем от посуды нагревается вода. За счет свойств материала происходит передача тепла. Теплопередача зависит от многих факторов, в том числе от свойств самого материала, таких как его чистота. Так, если теплопроводность меди лучше, чем у других металлов, то уже ее сплавы, бронза и латунь обладают значительно худшей теплопроводностью.

    Говоря об этих свойствах, нельзя не отметить, что теплопроводность зависит от температуры. Даже у самой чистой меди, с содержанием 99,8%, с ростом температуры коэффициент теплопроводности падает, а у других металлов, например, марганцевой латуни, с повышением температуры коэффициент растет.

    В изложенном описании дано объяснение такого понятия, как теплопроводность, объяснена физическая суть явления, на примере меди и других веществ рассмотрены некоторые варианты применения этих свойств в повседневной жизни.

    fb.ru

    Теплопроводность чистых металлов. Таблица теплопроводности металлов

    Теплопроводность металлов в зависимости от температуры

    В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

    Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

    Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

    Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

    Примечание: В таблице теплопроводности также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

    Источник:Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

    thermalinfo.ru

    Теплопроводность цветных металлов, теплоемкость и плотность сплавов: таблицы при различных температурах

    Теплопроводность цветных металлов и технических сплавов

    В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

    Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

    По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

    Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

    Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

    Коэффициенты теплопроводности сплавов

    В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

    Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

    В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

    Удельная теплоемкость цветных сплавов

    В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

    Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

    Удельная теплоемкость многокомпонентных специальных сплавов

    Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС.Размерность теплоемкости кал/(г·град).Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

    Плотность сплавов

    Представлена таблица значений плотности сплавов при комнатной температуре.Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

    ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000!Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.

    Источники:

    1. Михеев М.А., Михеева И.М. Основы теплопередачи.
    2. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
    3. Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
    4. Шелудяк Ю.Е., Кашпоров Л.Я. и др. Теплофизические свойства компонентов горючих систем. М. 1992. — 184 с.
    5. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М.: «Металлургия», 1975.- 368 с.

    thermalinfo.ru